organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

3-(4-{3,3,4,4,5,5-Hexafluoro-2-[5-(3methoxyphenyl)-2-methyl-3-thienyl]cyclopent-1-enyl}-5-methyl-2-thienyl)benzonitrile

An-yin Chen,^{a,b} Zhang-Gao Le,^a Gang Liu,^b Shou-Zhi Pu^b* and Cong-Bin Fan^b

^aCollege of Biology, Chemistry and Material Science, East China Institute of Technology, Fuzhou 344000, People's Republic of China, and ^bliangxi Key Laboratory of Organic Chemistry, Jiangxi Science & Technology Normal University, Nanchang 330013, People's Republic of China Correspondence e-mail: congbinfan@yahoo.com.cn

Received 17 July 2009; accepted 30 August 2009

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.005 Å; disorder in main residue; R factor = 0.049; wR factor = 0.127; data-to-parameter ratio = 12.9

The title compound, $C_{29}H_{19}F_6NOS_2$, is a new unsymmetrical photochromic diarylethene derivative with different metaphenyl substituents. The distance between the two reactive (*i.e.* can be irradiated to form a new chemical bond) C atoms is 3.501 (4) Å; the dihedral angles between the mean plane of the main central cyclopentene ring and the thiophene rings are 47.7 (5) and 45.1 (2) $^{\circ}$, and those between the thiophene rings and the adjacent benzene rings are 29.4 (2) and 28.4 $(3)^{\circ}$. The three C atoms and the F atoms of hexafuorocyclopentene ring are disordered over two positions, with site-occupancy factors of 0.751 (4) and 0.249 (4).

Related literature

For related compounds, see: Irie (2000); Irie et al. (2001); Pu et al. (2007, 2008). For the synthesis of the precursors, see: Pu et al. (2006); Yang et al. (2007). For ring-closure reactions, see: Ramamurthy & Venkatesan (1987).

Experimental

Crystal data

$C_{29}H_{19}F_6NOS_2$	$\gamma = 82.158 \ (2)^{\circ}$
$M_r = 575.57$	V = 1335.1 (3) Å ³
Triclinic, $P\overline{1}$	Z = 2
a = 8.6134 (11) Å	Mo $K\alpha$ radiation
b = 11.5938 (15) Å	$\mu = 0.27 \text{ mm}^{-1}$
c = 14.5281 (19) Å	T = 296 K
$\alpha = 68.346 \ (2)^{\circ}$	$0.15 \times 0.13 \times 0.10 \text{ mm}$
$\beta = 88.783 \ (2)^{\circ}$	

Data collection

Bruker SMART CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.961, T_{\max} = 0.974$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.049$ $wR(F^2) = 0.127$ S = 1.034948 reflections 383 parameters

10275 measured reflections 4948 independent reflections 3155 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.029$

16 restraints H-atom parameters constrained $\Delta \rho_{\rm max} = 0.30 \text{ e} \text{ Å}^ \Delta \rho_{\rm min} = -0.23$ e Å⁻³

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

This work was supported by the fund of the Key Laboratory of Nuclear Resources and Environment, East China Institute of Technology, Ministry of Education, China (No. 060607), the Key Scientific Project of the Education Ministry of China (208069), and the Graduate Innovation Fund of East China Institute of Technology (DYCA09002).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2442).

References

- Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Irie, M. (2000). Chem. Rev. 100, 1685-1716.
- Irie, M., Kobatake, S. & Horichi, M. (2001). Science, 291, 1769-1772.
- Pu, S.-Z., Liu, G., Shen, L. & Xu, J.-K. (2007). Org. Lett. 9, 2139-2142.
- Pu, S.-Z., Wen, Z.-D. & Yan, L.-S. (2006). Acta Cryst. E62, 05681-05683. Pu, S.-Z., Zheng, C.-H., Le, Z.-G., Liu, G. & Fan, C.-B. (2008). Tetrahedron, 64,
- 2576-2585.
- Ramamurthy, V. & Venkatesan, K. (1987). Chem. Rev. 87, 433-481.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Yang, T.-S., Pu, S.-Z., Chen, B. & Xu, J.-K. (2007). Can. J. Chem. 85, 12-20.

Acta Cryst. (2009). E65, o2352 [doi:10.1107/S1600536809034771]

3-(4-{3,3,4,4,5,5-Hexafluoro-2-[5-(3-methoxyphenyl)-2-methyl-3-thienyl]cyclopent-1-enyl}-5-methyl-2-thienyl)benzonitrile

A. Chen, Z.-G. Le, G. Liu, S.-Z. Pu and C.-B. Fan

Comment

Photochromic diarylethene is one of the most promising candidates for photoelectronic applications, such as optical storage (Irie, 2000; Pu *et al.*, 2008), photoswitches (Irie *et al.*, 2001; Pu *et al.*, 2007) and waveguides. In the hexafluorocyclophentene ring of the title compound, C1=C5 [1.342 (4) Å] is clearly a double bond, being significantly shorter than the other single bonds, such as C1-C2 [1.502 (6) Å], C2-C3 [1.530 (6) Å], C3-C4 [1.583 (1) Å], C1-C7 [1.467 (4) Å], C5-C19 [1.471 (4) Å]. The title compound shows a photoactive antiparallel conformation (Fig. 1). The two independent planar thiophene ring systems have essentially identical geometries, and the dihedral angles between the main central cyclopent-1-ene ring and those of the two thiophene rings, S1/C6-C9 and S2/C18-C21, are 47.7 (5) and 45.1 (2)°, respectively. The dihedral angle between the thiophene and adjacent benzene ring is 29.4 (2)° for the C11-C16 benzene ring and 28.4 (3)° for the C23-C28 benzene ring. The two thiophene groups are linked by the C1=C5 double bond, with both of them attached to the ethylene group *via* the 2-position. The distance between the two reactive C atoms (C6…C18) is 3.501 (4) Å, which is short enough, theoretically, for the ring-closure reaction to take place in the crystalline phase (Ramamurthy & Venkatesan, 1987). Crystals of the title compound (1a) show photochromism in accordance with the expected ring closure, to form (1b) (Fig. 2); upon irradiation with 313 nm light, the colorless crystals turn blue rapidly. The blue compound when dissolved in hexane displays an absorption maximum at 583 nm. Upon irradiation with visible light with a wavelength greater than 450 nm, the blue crystals again turn initial colorless; a hexane solution has an absorption maximum at 294 nm.

Experimental

The title compound was originally derived from 3-bromo-5-(3-methoxyphenyl)-2-methylthiophene (1) (Yang *et al.*, 2007) (5.0 g, 17.6 mmol) with an n-BuLi/hexane solution (7.1 mL, 2.5 M, 17.6 mmol) at 195 K under a nitrogen atmosphere, after 30 min, perfluorocyclopentene (2.2 mL, 17.6 mmol) was added quickly to the reaction solution. The mixture was stirred for 3 h at this temperature. The reaction mixture was filtered and evaporated in vacuo. The residue was purified by column chromatography on silica gel (hexane) to give (2-methyl-5- (3-methoxylphenyl)thiophene)perfluorocyclopent-1-ene, (2) (4.53 g, 11.3 mmol). Finally, to a stirred THF solution (50 ml) of 3-bromo-5-(3-cyanophenyl)-2-methylthiophene, (3) (Pu *et al.*, 2006) (2.6 g, 9.6 mmol), an n-BuLi/hexane solution (3.8 ml, 2.5 M, 9.6 mmol) was slowly added in at 195 K under a nitrogen atmosphere. After 30 min, compound (2) (3.8 g, 9.6 mmol) was added and the mixture was stirred for 2 h at this temperature. The reaction mixture was extracted with diethyl ether and evaporated in vacuo, then purified by column chromatography (petroleum ether) to give the title compound, (Ia) (2.41 g, 4.2 mmol), in 43.7% yield. ¹H NMR (400 MHz, CDCl₃, TMS): δ 1.88 (s, 3H, -CH₃), 1.90 (s, 3H, -CH₃), 3.76 (s, 3H, -OCH₃), 6.76-6.78 (dd, 1H, Hz, thiophene-H), 6.97 (s, 1H, thiophene-H), 7.04, 7.06 (d, 1H, J=8.0 Hz, phenyl -H), 7.17-7.24 (m, 2H, phenyl -H), 7.27 (s, 1H, phenyl-H), 7.41 (t, 1H, J=8.0 Hz, phenyl -H), 7.45 (C Cl₂H₁), 5.0 (d, 1H, J=8.0 Hz, phenyl -H), 7.66, 7.68 (d, 1H, J=8.0 Hz, phenyl -H), 7.72 (s, 1H, phenyl-H), 7.72 (s, 1H, phenyl-H), 7.48, 7.50 (d, 1H, J=8.0 Hz, phenyl -H), 7.66, 7.68 (d, 1H, J=8.0 Hz, phenyl -H), 7.27 (s, 1H, phenyl-H); Elemental analysis: calc. for C₂H₁P₆NOS₂: C 60.20, H 3.83%. Found: C 58.84, H 3.77%; m.p.: 369.4–370.8 K.

Refinement

All H atoms attached to C were geometrically positioned and treated as riding with C—H = 0.96 Å (methyl) or 0.93 Å (aromatic), and with $U_{iso}(H) = 1.2U_{eq}$ (aromatic C) or $1.5U_{eq}$ (methyl C). The cyclopent-1-ene ring in C2, C3, C4-envelope conformation is disorder. The occupancies of the disorder components were refined to 0.751 (4):0.249 (4) for C2:C2', C3:C3', C4:C4' and F1:F1', F2:F2', F3:F3', F4:F4', F5:F5', F6:F6'. The disordered atoms were refined with bond restraints of C—F = 1.34 (1) and C—C = 1.50 (1) Å, and with constraints of same displacement parameters for major and minor atoms.

Figures

Fig. 1. Molecular structure of the title compound; thermal displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radius. Only the major component of the disordered groups are shown.

Fig. 2. Photochromic interconvertion of the title compound.

$\label{eq:2.1} 3-(4-\{3,3,4,4,5,5-Hexafluoro-2-[5-(3-methoxyphenyl)-2-methyl-3-thienyl] cyclopent-1-enyl \-5-methyl-2-thienyl) benzonitrile$

Crystal data	
$C_{29}H_{19}F_6NOS_2$	Z = 2
$M_r = 575.57$	$F_{000} = 588$
Triclinic, PT	$D_{\rm x} = 1.432 \ {\rm Mg \ m}^{-3}$
a = 8.6134 (11) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
<i>b</i> = 11.5938 (15) Å	Cell parameters from 1963 reflections
c = 14.5281 (19) Å	$\theta = 2.4 - 21.8^{\circ}$
$\alpha = 68.346 \ (2)^{\circ}$	$\mu = 0.27 \text{ mm}^{-1}$
$\beta = 88.783 \ (2)^{\circ}$	T = 296 K
$\gamma = 82.158 \ (2)^{\circ}$	Block, colourless
V = 1335.1 (3) Å ³	$0.15\times0.13\times0.10~mm$

Data collection

Bruker SMART CCD area-detector diffractometer	4948 independent reflections
Radiation source: fine-focus sealed tube	3155 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.029$
T = 296 K	$\theta_{\text{max}} = 25.5^{\circ}$
ϕ and ω scans	$\theta_{\min} = 2.4^{\circ}$
Absorption correction: multi-scan	$h = -10 \rightarrow 10$

(SADABS; Sheldrick, 1996)	
$T_{\min} = 0.961, \ T_{\max} = 0.974$	$k = -14 \rightarrow 14$
10275 measured reflections	$l = -17 \rightarrow 17$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.049$	H-atom parameters constrained
$wR(F^2) = 0.127$	$w = 1/[\sigma^2(F_0^2) + (0.0556P)^2 + 0.1414P]$ where $P = (F_0^2 + 2F_c^2)/3$
<i>S</i> = 1.03	$(\Delta/\sigma)_{max} < 0.001$
4948 reflections	$\Delta \rho_{max} = 0.30 \text{ e} \text{ Å}^{-3}$
383 parameters	$\Delta \rho_{min} = -0.22 \text{ e } \text{\AA}^{-3}$
16 restraints	Extinction correction: none
Defense of the first standard and the set of the set	

Primary atom site location: structure-invariant direct methods

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \text{sigma}(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
C2	0.8607 (7)	0.8219 (8)	0.1970 (5)	0.0616 (8)	0.751 (4)
C3	0.9550 (6)	0.8673 (5)	0.2620 (5)	0.0653 (13)	0.751 (4)
C4	0.8293 (11)	0.9522 (4)	0.2991 (4)	0.0510 (14)	0.751 (4)
F1	0.9173 (6)	0.7019 (6)	0.2107 (4)	0.0911 (14)	0.751 (4)
F2	0.8822 (6)	0.8920 (4)	0.1004 (4)	0.0963 (15)	0.751 (4)
F3	1.0171 (4)	0.7695 (3)	0.3431 (2)	0.1018 (11)	0.751 (4)
F4	1.0726 (3)	0.9286 (4)	0.2184 (3)	0.0965 (11)	0.751 (4)
F5	0.8628 (3)	0.9419 (3)	0.3914 (2)	0.0814 (9)	0.751 (4)
F6	0.8338 (4)	1.0749 (3)	0.2401 (2)	0.0802 (11)	0.751 (4)
C2'	0.8610 (15)	0.822 (2)	0.1990 (15)	0.0616 (8)	0.249 (4)
C3'	0.9453 (17)	0.9039 (17)	0.2351 (15)	0.0653 (13)	0.249 (4)
C4'	0.848 (4)	0.9271 (15)	0.2995 (13)	0.0510 (14)	0.249 (4)
F1'	0.904 (2)	0.700 (2)	0.2492 (14)	0.0911 (14)	0.249 (4)
F2'	0.877 (2)	0.8315 (16)	0.1047 (14)	0.0963 (15)	0.249 (4)

F3'	1.0853 (14)	0.8369 (11)	0.2718 (9)	0.1018 (11)	0.249 (4)
F4'	0.9731 (9)	0.9989 (10)	0.1527 (8)	0.0965 (11)	0.249 (4)
F5'	0.8899 (11)	0.8652 (10)	0.3949 (8)	0.0814 (9)	0.249 (4)
F6'	0.8456 (16)	1.0469 (13)	0.2921 (9)	0.0802 (11)	0.249 (4)
C1	0.6932 (3)	0.8443 (2)	0.2242 (2)	0.0474 (7)	
C5	0.6795 (3)	0.9091 (2)	0.28436 (19)	0.0460 (7)	
C6	0.4380 (3)	0.8805 (2)	0.13185 (19)	0.0451 (6)	
C7	0.5704 (3)	0.8033 (2)	0.1798 (2)	0.0461 (7)	
C8	0.5748 (3)	0.6789 (3)	0.1826 (2)	0.0516 (7)	
H8	0.6580	0.6159	0.2111	0.062*	
С9	0.4467 (3)	0.6608 (2)	0.1399 (2)	0.0482 (7)	
C10	0.3912 (3)	1.0166 (2)	0.1107 (2)	0.0545 (7)	
H10A	0.3333	1.0270	0.1650	0.082*	
H10B	0.3269	1.0533	0.0511	0.082*	
H10C	0.4834	1.0571	0.1024	0.082*	
C11	0.4066 (4)	0.5459 (3)	0.1315 (2)	0.0520 (7)	
C12	0.2517 (4)	0.5282 (3)	0.1271 (2)	0.0593 (8)	
H12	0.1722	0.5894	0.1304	0.071*	
C13	0.2130 (4)	0.4207 (3)	0.1178 (2)	0.0673 (9)	
C14	0.3297 (5)	0.3315 (3)	0.1111 (2)	0.0739 (10)	
H14	0.3046	0.2602	0.1029	0.089*	
C15	0.4834 (5)	0.3476 (3)	0.1163 (2)	0.0688 (9)	
H15	0.5620	0.2861	0.1126	0.083*	
C16	0.5244 (4)	0.4538 (3)	0.1270 (2)	0.0620 (8)	
H16	0.6293	0.4631	0.1310	0.074*	
C17	0.0082 (6)	0.3090 (4)	0.1022 (4)	0.1315 (19)	
H17A	0.0523	0.3022	0.0429	0.197*	
H17B	-0.1042	0.3193	0.0965	0.197*	
H17C	0.0442	0.2343	0.1580	0.197*	
C18	0.4268 (3)	0.8736 (3)	0.37482 (19)	0.0480 (7)	
C19	0.5397 (3)	0.9477 (2)	0.33159 (19)	0.0452 (7)	
C20	0.5058 (3)	1.0699 (3)	0.33379 (19)	0.0480 (7)	
H20	0.5720	1.1306	0.3087	0.058*	
C21	0.3672 (3)	1.0900 (3)	0.3761 (2)	0.0503 (7)	
C22	0.4206 (4)	0.7390 (3)	0.3910 (2)	0.0602 (8)	
H22A	0.3639	0.7343	0.3366	0.090*	
H22B	0.3687	0.7003	0.4515	0.090*	
H22C	0.5253	0.6962	0.3951	0.090*	
C23	0.2932 (3)	1.2076 (3)	0.38317 (19)	0.0511 (7)	
C24	0.1306 (4)	1.2368 (3)	0.3827 (2)	0.0610 (8)	
H24	0.0666	1.1797	0.3799	0.073*	
C25	0.0641 (4)	1.3508 (3)	0.3865 (2)	0.0698 (9)	
C26	0.1566 (5)	1.4367 (3)	0.3904 (2)	0.0796 (10)	
H26	0.1110	1.5126	0.3935	0.095*	
C27	0.3175 (5)	1.4096 (3)	0.3896 (3)	0.0760 (10)	
H27	0.3805	1.4679	0.3912	0.091*	
C28	0.3851 (4)	1.2964 (3)	0.3863 (2)	0.0619 (8)	
H28	0.4937	1.2789	0.3863	0.074*	
C29	-0.1043 (5)	1.3799 (4)	0.3840 (3)	0.0919 (13)	
	<- /			< -)	

N1	-0.2356 (4)	1.4047 (4)	0.3815 (3)	0.1329 (16)
01	0.0558 (3)	0.4145 (2)	0.1161 (2)	0.0975 (9)
S1	0.32016 (9)	0.79945 (7)	0.09174 (5)	0.0523 (2)
S2	0.28003 (9)	0.95549 (7)	0.41707 (6)	0.0570(2)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C2	0.0492 (19)	0.066 (2)	0.075 (2)	0.0006 (16)	0.0011 (16)	-0.0354 (18)
C3	0.036 (2)	0.067 (4)	0.096 (5)	0.000 (2)	-0.005 (2)	-0.035 (3)
C4	0.048 (3)	0.050 (3)	0.063 (2)	-0.008 (3)	0.0055 (16)	-0.0309 (19)
F1	0.0546 (17)	0.0930 (16)	0.155 (5)	0.0099 (12)	0.006 (3)	-0.087 (3)
F2	0.0647 (14)	0.153 (5)	0.0747 (16)	-0.029 (3)	0.0199 (11)	-0.042 (3)
F3	0.092 (2)	0.095 (2)	0.114 (3)	0.0270 (18)	-0.0439 (19)	-0.045 (2)
F4	0.0457 (17)	0.140 (3)	0.145 (3)	-0.0392 (19)	0.0381 (17)	-0.093 (2)
F5	0.0607 (16)	0.130 (3)	0.0804 (16)	-0.0208 (19)	-0.0012 (12)	-0.067 (2)
F6	0.0650 (15)	0.057 (2)	0.115 (3)	-0.0247 (14)	0.024 (2)	-0.023 (2)
C2'	0.0492 (19)	0.066 (2)	0.075 (2)	0.0006 (16)	0.0011 (16)	-0.0354 (18)
C3'	0.036 (2)	0.067 (4)	0.096 (5)	0.000 (2)	-0.005 (2)	-0.035 (3)
C4'	0.048 (3)	0.050 (3)	0.063 (2)	-0.008 (3)	0.0055 (16)	-0.0309 (19)
F1'	0.0546 (17)	0.0930 (16)	0.155 (5)	0.0099 (12)	0.006 (3)	-0.087 (3)
F2'	0.0647 (14)	0.153 (5)	0.0747 (16)	-0.029 (3)	0.0199 (11)	-0.042 (3)
F3'	0.092 (2)	0.095 (2)	0.114 (3)	0.0270 (18)	-0.0439 (19)	-0.045 (2)
F4'	0.0457 (17)	0.140 (3)	0.145 (3)	-0.0392 (19)	0.0381 (17)	-0.093 (2)
F5'	0.0607 (16)	0.130 (3)	0.0804 (16)	-0.0208 (19)	-0.0012 (12)	-0.067 (2)
F6'	0.0650 (15)	0.057 (2)	0.115 (3)	-0.0247 (14)	0.024 (2)	-0.023 (2)
C1	0.0408 (16)	0.0449 (16)	0.0557 (17)	-0.0031 (13)	0.0014 (13)	-0.0187 (14)
C5	0.0428 (16)	0.0451 (15)	0.0501 (16)	-0.0076 (12)	0.0010 (13)	-0.0170 (13)
C6	0.0476 (16)	0.0459 (16)	0.0465 (16)	-0.0076 (13)	0.0049 (13)	-0.0224 (13)
C7	0.0415 (16)	0.0491 (16)	0.0538 (17)	-0.0065 (13)	0.0037 (13)	-0.0261 (14)
C8	0.0479 (17)	0.0475 (17)	0.0603 (18)	0.0008 (13)	-0.0026 (14)	-0.0231 (14)
C9	0.0516 (17)	0.0431 (15)	0.0531 (17)	-0.0030 (13)	0.0019 (13)	-0.0226 (13)
C10	0.0567 (18)	0.0443 (16)	0.0621 (19)	-0.0028 (14)	-0.0032 (14)	-0.0205 (14)
C11	0.066 (2)	0.0456 (16)	0.0459 (16)	-0.0046 (15)	-0.0030 (14)	-0.0198 (13)
C12	0.068 (2)	0.0485 (17)	0.0628 (19)	-0.0063 (15)	-0.0068 (16)	-0.0218 (15)
C13	0.087 (3)	0.0470 (18)	0.068 (2)	-0.0173 (18)	-0.0074 (18)	-0.0186 (16)
C14	0.115 (3)	0.0417 (18)	0.069 (2)	-0.018 (2)	-0.003 (2)	-0.0227 (16)
C15	0.094 (3)	0.0420 (18)	0.068 (2)	0.0048 (18)	0.0031 (19)	-0.0227 (16)
C16	0.075 (2)	0.0513 (18)	0.0618 (19)	-0.0045 (16)	0.0054 (16)	-0.0252 (15)
C17	0.135 (4)	0.084 (3)	0.179 (5)	-0.048 (3)	-0.038 (3)	-0.038 (3)
C18	0.0487 (17)	0.0518 (16)	0.0472 (16)	-0.0107 (13)	0.0008 (13)	-0.0212 (14)
C19	0.0427 (16)	0.0483 (16)	0.0472 (16)	-0.0083 (13)	0.0006 (13)	-0.0200 (13)
C20	0.0450 (17)	0.0511 (17)	0.0520 (16)	-0.0127 (13)	0.0014 (13)	-0.0218 (14)
C21	0.0439 (17)	0.0579 (18)	0.0505 (16)	-0.0038 (14)	-0.0013 (13)	-0.0228 (14)
C22	0.068 (2)	0.0564 (18)	0.0583 (18)	-0.0188 (16)	0.0079 (15)	-0.0204 (15)
C23	0.0500 (17)	0.0582 (18)	0.0454 (16)	0.0004 (14)	-0.0003 (13)	-0.0221 (14)
C24	0.056 (2)	0.067 (2)	0.0564 (18)	-0.0040 (16)	0.0048 (15)	-0.0202 (16)
C25	0.061 (2)	0.070 (2)	0.062 (2)	0.0079 (18)	0.0113 (16)	-0.0133 (18)

C26 C27	0.090 (3) 0.087 (3)	0.062 (2) 0.059 (2)	0.078 (2) 0.086 (2)	0.018 (2) -0.0044 (19)	0.005(2) -0.002(2)	-0.0260(19) -0.0330(19)
C28	0.059 (2)	0.063 (2)	0.067 (2)	-0.0024(16)	-0.0043 (16)	-0.0303(17)
C29	0.067 (3)	0.087(3)	0.091(3)	0.017 (2)	0.022 (2)	-0.008(2)
N1	0.078 (3)	0.123 (3)	0.143 (3)	0.021 (2)	0.034 (2)	0.001 (2)
01	0.096 (2)	0.0707 (16)	0.129 (2)	-0.0306 (15)	-0.0231 (17)	-0.0324 (16)
S1	0.0505 (4)	0.0490 (4)	0.0619 (5)	-0.0042 (3)	-0.0044 (3)	-0.0264 (4)
S2	0.0502 (5)	0.0664 (5)	0.0616 (5)	-0.0165 (4)	0.0121 (4)	-0.0295 (4)
Geometric paran	neters (Å, °)					
C2F1		1 352 (5)	C12_		1 386	(4)
C_2 —F2		1.352 (5)	C12-	н12	0.9300	(+)
$C_2 - C_1$		1.507 (6)	C12-	-01	1 367	, (4)
$C^2 - C^3$		1.530 (6)	C13		1.307	(-)
C3-F4		1.330(0)	C14-	-C15	1.370	(5)
C3-F3		1.354 (5)	C14-	_H14	0.9300)
C3-C4		1.537(3)	C15-		1 388	, (4)
C4—F5		1 337 (5)	C15-	-H15	0.9300)
C4—F6		1 369 (5)	C16-	-H16	0.9300)
C4—C5		1 492 (8)	C17-	01	1 424	(4)
C2'—F2'		1 340 (10)	C17-	-H17A	0.9600)
C2'—F1'		1 339 (10)	C17-	-H17B	0.9600)
C2'—C1		1.494 (10)	C17–	-H17C	0.9600)
C2'—C3'		1.505 (10)	C18–	C19	1.372	(4)
C3'—F4'		1.338 (10)	C18–	C22	1.499	(4)
C3'—F3'		1.345 (10)	C18–	S2	1.716	(3)
C3'—C4'		1.32 (4)	C19–	C20	1.420	(4)
C4'—F5'		1.334 (10)	C20–	C21	1.362	(4)
C4'—F6'		1.350 (10)	C20–	-H20	0.9300)
C4'—C5		1.53 (3)	C21–	C23	1.462	(4)
C1—C5		1.342 (4)	C21–		1.722	(3)
C1—C7		1.467 (4)	C22–	-H22A	0.9600)
C5—C19		1.471 (4)	C22–	-H22B	0.9600)
С6—С7		1.371 (4)	C22–	-H22C	0.9600)
C6—C10		1.490 (3)	C23–	C28	1.395	(4)
C6—S1		1.715 (3)	C23–	C24	1.395	(4)
С7—С8		1.423 (3)	C24–	C25	1.387	(4)
С8—С9		1.355 (4)	C24–	-H24	0.9300)
С8—Н8		0.9300	C25–	C26	1.375	(5)
C9—C11		1.468 (4)	C25–	C29	1.441	(5)
C9—S1		1.727 (3)	C26–	C27	1.379	(5)
C10—H10A		0.9600	C26–	-H26	0.9300)
C10—H10B		0.9600	C27–	C28	1.379	(4)
C10—H10C		0.9600	C27–	–H27	0.9300)
C11—C12		1.384 (4)	C28–	-H28	0.9300)
C11—C16		1.389 (4)	C29–	N1	1.126	(4)
F1—C2—F2		106.8 (5)	C12–	C11C16	119.0	(3)
F1—C2—C1		115.7 (5)	C12-	С11С9	120.8	(3)

F2—C2—C1	111.1 (5)	C16—C11—C9	120.2 (3)
F1—C2—C3	109.8 (6)	C13—C12—C11	121.1 (3)
F2—C2—C3	108.3 (6)	C13—C12—H12	119.5
C1—C2—C3	105.0 (4)	C11—C12—H12	119.5
F4—C3—F3	106.9 (4)	O1-C13-C14	125.5 (3)
F4—C3—C4	111.4 (5)	O1-C13-C12	114.9 (3)
F3—C3—C4	107.3 (5)	C14—C13—C12	119.6 (3)
F4—C3—C2	115.7 (6)	C13—C14—C15	119.8 (3)
F3—C3—C2	110.6 (5)	C13—C14—H14	120.1
C4—C3—C2	104.7 (5)	C15—C14—H14	120.1
F5—C4—F6	106.4 (4)	C14—C15—C16	121.4 (3)
F5—C4—C5	116.0 (6)	C14—C15—H15	119.3
F6—C4—C5	111.9 (5)	C16—C15—H15	119.3
F5—C4—C3	111.8 (5)	C15-C16-C11	119.1 (3)
F6—C4—C3	108.4 (6)	C15—C16—H16	120.5
C5—C4—C3	102.3 (4)	C11—C16—H16	120.5
F2'—C2'—F1'	102.3 (18)	O1—C17—H17A	109.5
F2'—C2'—C1	112.5 (15)	O1-C17-H17B	109.5
F1'—C2'—C1	103.8 (14)	H17A—C17—H17B	109.5
F2'—C2'—C3'	118.5 (18)	O1—C17—H17C	109.5
F1'—C2'—C3'	113.2 (17)	H17A—C17—H17C	109.5
C1—C2'—C3'	105.8 (11)	H17B—C17—H17C	109.5
F4'—C3'—F3'	106.7 (13)	C19—C18—C22	129.6 (3)
F4'—C3'—C4'	118.9 (17)	C19—C18—S2	110.3 (2)
F3'—C3'—C4'	116.3 (19)	C22-C18-S2	120.0 (2)
F4'—C3'—C2'	104.6 (18)	C18—C19—C20	112.7 (2)
F3'—C3'—C2'	106.0 (16)	C18—C19—C5	125.0 (2)
C4'—C3'—C2'	102.8 (16)	C20—C19—C5	122.3 (2)
F5'—C4'—F6'	101.1 (13)	C21—C20—C19	113.8 (2)
F5'—C4'—C5	108 (2)	C21—C20—H20	123.1
F6'—C4'—C5	107 (2)	С19—С20—Н20	123.1
F5'—C4'—C3'	116 (2)	C20—C21—C23	127.3 (3)
F6'—C4'—C3'	110 (2)	C20—C21—S2	110.0 (2)
C5—C4'—C3'	113.5 (15)	C23—C21—S2	122.7 (2)
C5—C1—C7	129.3 (2)	C18—C22—H22A	109.5
C5—C1—C2'	110.0 (9)	C18—C22—H22B	109.5
C7—C1—C2'	120.6 (9)	H22A—C22—H22B	109.5
C5—C1—C2	111.0 (4)	C18—C22—H22C	109.5
C7—C1—C2	119.5 (4)	H22A—C22—H22C	109.5
C1—C5—C19	129.6 (2)	H22B—C22—H22C	109.5
C1—C5—C4'	103.5 (10)	C28—C23—C24	118.2 (3)
C19—C5—C4'	126.8 (9)	C28—C23—C21	120.1 (3)
C1—C5—C4	112.9 (3)	C24—C23—C21	121.6 (3)
C19—C5—C4	117.5 (4)	C25—C24—C23	120.2 (3)
C7—C6—C10	129.4 (2)	С25—С24—Н24	119.9
C7—C6—S1	110.49 (19)	C23—C24—H24	119.9
C10—C6—S1	120.1 (2)	C26—C25—C24	120.8 (3)
C6—C7—C8	112.6 (2)	C26—C25—C29	120.0 (3)
C6—C7—C1	123.7 (2)	C24—C25—C29	119.2 (4)

C8—C7—C1	123.7 (2)	C25—C26—C27	119.6 (3)
C9—C8—C7	113.7 (2)	С25—С26—Н26	120.2
С9—С8—Н8	123.1	С27—С26—Н26	120.2
С7—С8—Н8	123.1	C28—C27—C26	120.1 (3)
C8—C9—C11	129.6 (3)	С28—С27—Н27	119.9
C8—C9—S1	110.2 (2)	С26—С27—Н27	119.9
C11—C9—S1	120.3 (2)	C27—C28—C23	121.1 (3)
C6—C10—H10A	109.5	С27—С28—Н28	119.5
C6—C10—H10B	109.5	C23—C28—H28	119.5
H10A—C10—H10B	109.5	N1-C29-C25	178.8 (5)
C6—C10—H10C	109.5	C13—O1—C17	117.6 (3)
H10A—C10—H10C	109.5	C6—S1—C9	92.97 (13)
H10B-C10-H10C	109.5	C18—S2—C21	93.21 (13)
F1—C2—C3—F4	94.8 (6)	C3—C4—C5—C1	-16.5 (4)
F2—C2—C3—F4	-21.6 (6)	F5-C4-C5-C19	44.6 (5)
C1—C2—C3—F4	-140.3 (5)	F6—C4—C5—C19	-77.6 (5)
F1—C2—C3—F3	-26.9 (6)	C3—C4—C5—C19	166.6 (3)
F2—C2—C3—F3	-143.2 (5)	F5—C4—C5—C4'	-100 (4)
C1—C2—C3—F3	98.0 (5)	F6—C4—C5—C4'	138 (5)
F1—C2—C3—C4	-142.2 (4)	C3—C4—C5—C4'	22 (4)
F2—C2—C3—C4	101.5 (5)	C10—C6—C7—C8	-178.1 (3)
C1—C2—C3—C4	-17.3 (6)	S1—C6—C7—C8	0.5 (3)
F4—C3—C4—F5	-89.5 (6)	C10—C6—C7—C1	2.5 (4)
F3—C3—C4—F5	27.2 (7)	S1—C6—C7—C1	-178.9 (2)
C2—C3—C4—F5	144.8 (6)	C5—C1—C7—C6	48.2 (4)
F4—C3—C4—F6	27.5 (7)	C2'—C1—C7—C6	-127.5 (10)
F3—C3—C4—F6	144.1 (5)	C2—C1—C7—C6	-127.0 (4)
C2—C3—C4—F6	-98.3 (6)	C5—C1—C7—C8	-131.2 (3)
F4—C3—C4—C5	145.8 (5)	C2'—C1—C7—C8	53.2 (11)
F3—C3—C4—C5	-97.5 (5)	C2—C1—C7—C8	53.6 (5)
C2—C3—C4—C5	20.0 (5)	C6—C7—C8—C9	-1.5 (3)
F2'—C2'—C3'—F4'	21.7 (19)	C1—C7—C8—C9	177.9 (3)
F1'	141.4 (14)	C7—C8—C9—C11	-177.7 (3)
C1—C2'—C3'—F4'	-105.6 (16)	C7—C8—C9—S1	1.9 (3)
F2'-C2'-C3'-F3'	-91 (2)	C8—C9—C11—C12	150.9 (3)
F1'	28.8 (18)	S1—C9—C11—C12	-28.6 (4)
C1—C2'—C3'—F3'	141.8 (14)	C8—C9—C11—C16	-29.7 (4)
F2'—C2'—C3'—C4'	146.6 (15)	S1—C9—C11—C16	150.8 (2)
F1'—C2'—C3'—C4'	-93.7 (14)	C16—C11—C12—C13	-0.3 (4)
C1—C2'—C3'—C4'	19.3 (17)	C9—C11—C12—C13	179.1 (3)
F4'—C3'—C4'—F5'	-140.1 (16)	C11-C12-C13-O1	178.9 (3)
F3'—C3'—C4'—F5'	-10 (3)	C11—C12—C13—C14	-1.2 (5)
C2'—C3'—C4'—F5'	105 (2)	O1—C13—C14—C15	-178.3 (3)
F4'—C3'—C4'—F6'	-26 (3)	C12-C13-C14-C15	1.8 (5)
F3'—C3'—C4'—F6'	104 (2)	C13—C14—C15—C16	-0.9 (5)
C2'—C3'—C4'—F6'	-141.1 (17)	C14—C15—C16—C11	-0.6 (5)
F4'—C3'—C4'—C5	94 (2)	C12—C11—C16—C15	1.1 (4)
F3'—C3'—C4'—C5	-136.5 (16)	C9—C11—C16—C15	-178.2 (3)
C2'—C3'—C4'—C5	-21.2 (16)	C22—C18—C19—C20	-177.6 (3)

F2'-C2'-C1-C5	-141.7 (14)	S2-C18-C19-C20	0.3 (3)
F1'	108.5 (15)	C22—C18—C19—C5	4.4 (5)
C3'—C2'—C1—C5	-10.9 (15)	S2—C18—C19—C5	-177.7 (2)
F2'—C2'—C1—C7	35 (2)	C1C5C19C18	42.1 (4)
F1'	-75.1 (15)	C4'—C5—C19—C18	-133.1 (7)
C3'—C2'—C1—C7	165.6 (8)	C4—C5—C19—C18	-141.5 (3)
F2'—C2'—C1—C2	15 (61)	C1C5C19C20	-135.7 (3)
F1'-C2'-C1-C2	-95 (63)	C4'—C5—C19—C20	49.1 (8)
C3'—C2'—C1—C2	146 (63)	C4—C5—C19—C20	40.6 (4)
F1—C2—C1—C5	129.1 (6)	C18—C19—C20—C21	-1.4 (3)
F2—C2—C1—C5	-108.9 (5)	C5-C19-C20-C21	176.7 (2)
C3—C2—C1—C5	7.9 (6)	C19—C20—C21—C23	-175.1 (2)
F1—C2—C1—C7	-54.9 (7)	C19—C20—C21—S2	1.8 (3)
F2—C2—C1—C7	67.1 (7)	C20-C21-C23-C28	-28.5 (4)
C3—C2—C1—C7	-176.0 (3)	S2—C21—C23—C28	155.0 (2)
F1—C2—C1—C2'	105 (62)	C20-C21-C23-C24	148.8 (3)
F2—C2—C1—C2'	-133 (62)	S2-C21-C23-C24	-27.7 (4)
C3—C2—C1—C2'	-16 (62)	C28—C23—C24—C25	-0.7 (4)
C7—C1—C5—C19	6.8 (5)	C21—C23—C24—C25	-178.0 (3)
C2'—C1—C5—C19	-177.1 (9)	C23—C24—C25—C26	0.2 (5)
C2-C1-C5-C19	-177.6 (4)	C23—C24—C25—C29	178.8 (3)
C7—C1—C5—C4'	-177.1 (6)	C24—C25—C26—C27	0.6 (5)
C2'—C1—C5—C4'	-1.1 (11)	C29—C25—C26—C27	-178.0 (3)
C2—C1—C5—C4'	-1.6 (7)	C25—C26—C27—C28	-0.9 (5)
C7—C1—C5—C4	-169.6 (3)	C26—C27—C28—C23	0.4 (5)
C2'—C1—C5—C4	6.4 (10)	C24—C23—C28—C27	0.4 (4)
C2-C1-C5-C4	5.9 (5)	C21—C23—C28—C27	177.8 (3)
F5'—C4'—C5—C1	-115.1 (14)	C14—C13—O1—C17	-2.6 (5)
F6'—C4'—C5—C1	136.6 (12)	C12—C13—O1—C17	177.3 (3)
C3'—C4'—C5—C1	15.1 (13)	C7—C6—S1—C9	0.5 (2)
F5'—C4'—C5—C19	61.1 (15)	C10—C6—S1—C9	179.3 (2)
F6'—C4'—C5—C19	-47.2 (15)	C8—C9—S1—C6	-1.4 (2)
C3'—C4'—C5—C19	-168.7 (9)	C11—C9—S1—C6	178.2 (2)
F5'—C4'—C5—C4	101 (5)	C19—C18—S2—C21	0.6 (2)
F6'—C4'—C5—C4	-7(3)	C22—C18—S2—C21	178.7 (2)
C3'—C4'—C5—C4	-129 (5)	C20—C21—S2—C18	-1.4 (2)
F5—C4—C5—C1	-138.4 (4)	C23—C21—S2—C18	175.7 (2)
F6—C4—C5—C1	99.4 (5)		

