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In the past decade, several discoveries have documented the existence of innervation
in ovarian cancer and cervical cancer. Notably, various neurotransmitters released by
the activation of the sympathetic nervous system can promote the proliferation and
metastasis of tumor cells and regulate immune cells in the tumor microenvironment.
Therefore, a better understanding of the mechanisms involving neurotransmitters in the
occurrence and development of gynecological cancers will be beneficial for exploring
the feasibility of using inexpensive β-blockers and dopamine agonists in the clinical
treatment of gynecological cancers. Additionally, this article provides some new insights
into targeting tumor innervation and neurotransmitters in the tumor microenvironment.

Keywords: perineural invasion, noradrenaline, epinephrine, dopamine, neurotrophic factors, glucocorticoids,
tumor immune microenvironment

INTRODUCTION

Cervical cancer and ovarian cancer are two major gynecological malignancies. Preliminary and
secondary strategies for the prevention of cervical cancer have reduced its rates of incidence and
mortality. However, in 2018, there were 106,000 cases of cervical cancer in China and 48,000 deaths
(Arbyn et al., 2020). Therefore, cervical cancer remains the second leading cause of cancer-related
death among young and middle-aged women (Bray et al., 2018; Siegel et al., 2020). Ovarian cancer
is the seventh most common cause of cancer and the eighth leading cause of death in women.
As ovarian cancer is difficult to diagnose early and is associated with high malignancy and drug
resistance, it has the worst prognosis and highest mortality rate among all gynecological cancers
(Coburn et al., 2017; Webb and Jordan, 2017; Torre et al., 2018). Therefore, a better understanding
of the biological behaviors of cervical cancer and ovarian cancer is urgently needed, and novel
therapeutic targets need to be identified.

Perineural invasion (PNI) has emerged as a novel research hotspot and is a harbinger
of a poor prognosis in multiple cancers, including cervical cancer and ovarian cancer.

Abbreviations: SNS, sympathetic nervous system; PNI, perineural invasion; NE, noradrenaline; E, epinephrine;
DR, dopamine receptor; PGE2, prostaglandin E2; MMPs, metalloproteinases; MMP-2, metalloproteinase 2; MMP-9,
metalloproteinase 9; IL-6, interleukin 6; IL-8, interleukin 8; VEGF, vascular endothelial growth factor; ADAM17, A
Disintegrin and Metalloproteinase 17; DEX, dexamethasone; MDSCs, myeloid-derived suppressor cells; TAMs, tumor
-associated macrophages.
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Cervical cancer and ovarian cancer promote their own PNI via
the release of neurotrophins (Allen et al., 2018; Long et al., 2018),
axonal guidance molecules (Madeo et al., 2018), and exosomes
(Madeo et al., 2018; Lucido et al., 2019; Vermeer, 2019; Kovacs
et al., 2020). In addition, Schwann cells and cervical cancer cells
can work in concert to promote tumor innervation (Huang et al.,
2020). Evaluations of clinical specimens have also confirmed the
presence of innervation in cervical cancer and ovarian cancer
(Lucido et al., 2019; Kovacs et al., 2020; Reavis et al., 2020). In
these evaluations, PNI in cervical cancer has a detection rate of
7.0% to 35.1% (Zhu et al., 2018; Zhu et al., 2019). Furthermore,
existing studies suggest that there is a positive correlation
between chronic stress and cancer progression. Long-term stress
stimulation activates the sympathetic nervous system (SNS)
and the hypothalamic-pituitary-adrenal axis (HPA), leading to
the release of stress hormones, especially catecholamines and
glucocorticoids. Catecholamine hormones can be further divided
into norepinephrine (NE), epinephrine (E), and dopamine.
These hormones act on β-adrenergic receptors, dopamine
receptors (DRs), and glucocorticoid receptors. The interactions
between stress hormones and receptors can produce a series of
physiological effects on tumor cells and stromal cells.

The β-adrenergic receptors (β1, β2, β3) are a group of G
protein-coupled receptors that mediate SNS signal transduction
and activate downstream signaling pathways to prepare the
body for “fight or flight.” β2-Adrenergic receptor (ADRB2)
is overexpressed in ovarian cancer and cervical cancer and
is positively correlated with a poor prognosis in patients
(Lutgendorf et al., 2009; Huang et al., 2016; Chen et al.,
2017). Ovarian cancer patients with high glucocorticoid receptor
expression also have shorter progression-free survival and overall
survival (Veneris et al., 2017; Veneris et al., 2019). The DRs
include DR1 and DR2, both of which are highly expressed
in ovarian cancer (Peters et al., 2020). Currently, no evidence
has directly demonstrated that intratumoural infiltrating nerves
are involved in the effect of stress on tumor cells. However,
we hypothesize that under chronic stress, tumor innervation
and receptors on the tumor cell surface may function via
stress hormones to establish cross-talk and promote tumor
progression together.

EPIDEMIOLOGICAL STUDIES

Epidemiological studies have reported that depression, social
isolation, and posttraumatic stress disorder, which cause long-
term activation of the SNS, are closely related to the incidence
of ovarian cancer. In patients with high depressive symptoms
and low social support, the levels of NE in ovarian cancer tissues
are significantly increased, and the risk of ovarian cancer or
cancer progression is increased (Lutgendorf et al., 2009, 2011;
Huang et al., 2015; Roberts et al., 2019). In contrast, eudaimonic
well-being is negatively correlated with the NE levels in ovarian
cancer tissues. Improving the eudaimonic well-being of patients
with ovarian cancer has certain physiological protective effects
(Davis et al., 2015). Although the specific mechanism has yet to
be clearly elucidated, the possible explanation is that in ovarian

cancer, the levels of circulating NE or intratumoural NE gradually
increase due to the presence of chronic stress, which causes tumor
vascularization, metastasis, invasion, and other effects.

Continuous human papillomavirus (HPV) infection is the
main reason for the occurrence and development of cervical
cancer. Severe types of stress, such as bereavement (loss of
a parent, spouse, or child), may increase the risk of cancers
related to HPV infection, such as cervical cancer. Continuous
exposure to these severely stressful life events can increase the
susceptibility of the host to cancer-causing HPV infection or
accelerate the occurrence of established infectious cancers and
ultimately lead to cervical cancer (Coker et al., 2003; Fang et al.,
2011; Lu et al., 2016, 2019). Although behavioral changes after
stressful life events may also play a role in cervical cancer, chronic
stress-induced neuroendocrine disorders leading to changes in
the biological behavior of tumor cells have been increasingly
considered to be one of the biological mechanisms linking
psychological stress with the occurrence and development of
cervical cancer (Kennedy et al., 2014). Hence, regardless of the
cause of cervical cancer, psychotherapy may be an important part
of its prevention or treatment.

NORADRENALINE AND EPINEPHRINE

In response to stress, the levels of circulating catecholamines
will increase. However, the local sympathetic nerve appears to
provide most of the catecholamine content in tumor tissue, as
we did not find any significant difference in circulating NE levels
among tumor patients, nor did we find a significant correlation
between plasma NE levels and intratumoural NE levels. However,
these studies also had some limitations. Blood sampling was
performed 2∼3 h before surgery, so parallel analyses of NE levels
in the tumor and plasma could not be performed (Lutgendorf
et al., 2009, 2011; Cole et al., 2015). In another study, mice were
treated with hexamethonium bromide, a compound that can
block ganglionic transmission in the peripheral nervous system.
As expected, hexamethonium bromide completely eliminated the
effect of stress on tumor growth. Tumor samples from animals
that routinely faced restraint stress had significantly more
innervation than tumor samples from control animals, and this
increase could also be completely blocked by hexamethonium
bromide. Adrenalectomy also failed to significantly inhibit stress-
induced tumor growth, intratumoural nerve counts, and blood
NE levels (Allen et al., 2018). All these results confirm the
role of nerve endings in catecholamine-mediated tumor growth.
Therefore, we concluded that under chronic stress, nerves in
the tumor parenchyma can release neurotransmitters, such as
NE and E, into the tumor microenvironment. Then, these
neurotransmitters bind to receptors on the tumor cell surface
and produce a series of effects on tumor cells. The effects are
described below.

Activation of Oncogenes
The increases in the levels of NE and E induced by chronic stress
can act on ADRB2 to promote tumor cell growth, metastasis,
and angiogenesis (Sood et al., 2006; Thaker et al., 2006;
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Hassan et al., 2013; Cole et al., 2015; Jiang et al., 2020). These
effects involve the activation of multiple tumor genes, including
Src and signal transducer and activator of transcription-3
(STAT3). The Src protein plays important roles in the regulation
of cell growth and differentiation, but abnormal activation of the
Src protein is closely related to the occurrence of several tumors.
Elevated NE levels lead to the abnormal phosphorylation of Src
through ADRB2, followed by regulation of downstream pathways
to enhance the proliferation, migration, and angiogenesis of
ovarian cancer cells (Nilsson et al., 2007; Sood et al., 2010;
Armaiz-Pena et al., 2013; Choi et al., 2015; Cole et al., 2015). It has
also been confirmed that there is a positive correlation between
high levels of NE in tumors and high Src phosphorylation levels
in ovarian cancer tissues (Armaiz-Pena et al., 2013). STAT3 is
another important oncogene. Abnormal activation of STAT3
triggers a variety of pathological events, including tumorigenesis
(Calo et al., 2003). Norepinephrine and E induce STAT3
phosphorylation through ADRB2; STAT3 then translocates into
the nucleus to activate target genes, leading to the proliferation,
infiltration, and metastasis of ovarian cancer cells (Landen et al.,
2007). Mitogen-activated protein kinase phosphatase-1 (MKP-
1), also known as DUSP1, participates in the inactivation of
MAPK and leads to the inhibition of apoptosis. High expression
of MKP-1 is related to resistance to chemotherapy in ovarian
cancer (Denkert et al., 2002). NE activates the cAMP-PKC-CREB
signaling pathway through ADRB2 to induce the expression of
the MKP-1 gene, which inhibits the responsiveness of ovarian
cancer cells to paclitaxel chemotherapy (Wu et al., 2005; Kang
et al., 2016). NE and E can also upregulate the expression of silent
information regulator-1 (Sirt1) by activating ADRB2. Sirt1 can
block the acetylation of p53, thereby conferring chemotherapy
resistance to cervical cancer cells (Reed and Quelle, 2014;
Chen et al., 2017) (Figure 1).

Metastasis, Invasion, and
Epithelial-Mesenchymal Transition
Metalloproteinase (MMP)-2 and MMP-9 play key roles in the
invasion of malignant tumors (Davidson et al., 1999; Bergers
et al., 2000; Huang et al., 2002; Sood et al., 2004). Norepinephrine
and E can directly increase the invasive ability of ovarian
cancer cells through upregulation of MMP-2 and MMP-9 via
ADRB2. Propranolol (a non-selective β-blocker) can block this
process (Sood et al., 2006; Thaker et al., 2006). In addition to
being an inflammatory mediator, prostaglandin E2 (PGE2) is
related to tumor cell proliferation, metastasis, and angiogenesis.
Norepinephrine and E induce Nf-kb phosphorylation through
ADRB2, and then p-Nf-kb enters the nucleus and binds with the
PTGS2/PTGES gene to increase the synthesis of PGE2, which
ultimately drives the proliferation and metastasis of ovarian
cancer (Nagaraja et al., 2016). Epithelial-mesenchymal transition
(EMT) plays an important role in embryonic development,
damage repair, and cancer metastasis. Upregulation of the
expression of Slug is an EMT hallmark (Hajra et al., 2002;
Onder et al., 2008; Casas et al., 2011; Villarejo et al., 2014).
Human telomerase reverse transcriptase (hTERT), apart from
stabilizing the length of telomeres, is believed to promote

malignant transformation independent of telomere lengthening.
Norepinephrine upregulates hTERT-mediated Slug expression
through Src and ultimately promotes the occurrence of EMT in
ovarian cancer (Choi et al., 2015) (Figure 1A).

Angiogenesis
Angiogenesis refers to the formation of new blood vessels by
original endothelial cells and is an important physiological
process in the repair of tissue damage. In cancer, angiogenesis
is a key process for the growth and metastasis of most solid
tumors, as it ensures a supply of oxygen and nutrients to
the tumor tissue and transports metabolic waste from the
tumor microenvironment (Lim et al., 2020). Although tumor
angiogenesis is mainly driven by vascular endothelial growth
factor (VEGF), it is also affected by MMPs, interleukin (IL)-6,
IL-8, and so on. Norepinephrine can increase the expression of
VEGF in ovarian cancer cells (Lutgendorf et al., 2003; Thaker
et al., 2006; Chakroborty et al., 2009; Szubert et al., 2016) and
promote the migration of endothelial cells by inducing the
expression of MMP-2 and MMP-9 (Bergers et al., 2000; Huang
et al., 2002; Thaker et al., 2006; Landen et al., 2007; Gonzalez-
Villasana et al., 2015), thereby inducing the formation of new
blood vessels in tumors. The cytokines IL-6 and IL-8 are vital
in inflammation and can increase tumor angiogenesis (Browning
et al., 2018; Taher et al., 2018; Kim, 2020; Fousek et al., 2021).
Norepinephrine can induce ovarian cancer cells to produce IL-
6 and IL-8 through effects on the Src protein and FosB protein,
respectively, and thus promote angiogenesis in ovarian cancer
(Nilsson et al., 2007; Shahzad et al., 2010) (Figure 1A).

Cell Survival
Anoikis refers to the process of programmed cell death that
occurs after the separation of normal cells from the extracellular
matrix and neighboring cells. Evasion of anoikis improves the
chances of survival of metastatic cancer cells, allowing the
cancer cells to proliferate at new sites of attachment (Liotta and
Kohn, 2004). Focal adhesion kinase (FAK) is a widely expressed
protein tyrosine kinase that participates in the malignant invasion
of tumors. Norepinephrine and E initiate Src-related FAK
phosphorylation through ADRB2 and thus protect ovarian
cancer cells from anoikis (Sood et al., 2010). Norepinephrine can
also induce YAP1 dephosphorylation and nuclear translocation
via ADRB2, thus protecting cervical cancer cells from anoikis
(Li et al., 2020). Propranolol can also inhibit this NE-mediated
process (Gong et al., 2019) (Figure 1). In addition to NE,
neurotrophic factors and their ligands, such as BDNF/TrkB, can
induce escape from anoikis in ovarian cancer, cervical cancer,
and endometrial cancer cells (Yu et al., 2008; Bao et al., 2013;
Yuan et al., 2018a).

DOPAMINE

Dopamine is another catecholamine neurotransmitter and
regulates various physiological functions of the central nervous
system. Disorders related to the regulation of the dopamine
system include Parkinson’s disease and schizophrenia. In a
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FIGURE 1 | Summary of the effects of NE/E on pathways involved in cancer cell survival, metastasis, and chemoresistant signaling. (A) NE binds to ADRB2 to
activate Src, which then induces the phosphorylation of FAK and the expression of VEGF, IL-6, and IL-8, conferring anoikis resistance, metastasis, and angiogenesis
in ovarian cancer cells. STAT3 is phosphorylated and translocates to the nucleus to transactivate the target genes MMP-2 and MMP-9. NE can also activate ADRB2
to transcriptionally activate PTGS2 and PTGES via Nf-kb to produce PGE2. Finally, NE can induce ovarian cancer cells to become resistant to chemotherapy by
acting on a target gene to induce MKP-1 expression through CREB. Additionally, NE-mediated tumor growth and angiogenesiscan be blocked by dopamine.
(B) YAP1 is dephosphorylated and translocates from the cytoplasm to the nucleus in response to NE signaling, which results in anoikis resistance, a process initiated
by the activation of ADRB2. Norepinephrine can also activate ADRB2 to induce chemoresistance by suppressing the acetylation of p53 through the upregulation of
Sirt1 in cervical cancer cells.

restraint stress model, intratumoural NE levels were found to
remain elevated, whereas dopamine levels were dramatically
decreased in the stress group compared with the control group
(Moreno-Smith et al., 2011). The possible reason for the drop
in the dopamine levels is that dopamine is a precursor for the
synthesis of NE and E.

Norepinephrine-mediated tumor growth and angiogenesis
were completely blocked with daily dopamine administration
(Moreno-Smith et al., 2011) (Figure 1A). The signaling pathway
that involves dopamine is the dopamine-mediated reversal of
NE-induced Src phosphorylation. In addition, dopamine reduces
the stress-mediated growth and microvessel density of ovarian
cancer through tumor cell DR2 and inhibits the mobilization of
endothelial progenitor cells from the bone marrow cavity into
the peripheral circulation through DR2 on endothelial progenitor
cells (Basu et al., 2001; Chakroborty et al., 2008; Moreno-Smith
et al., 2011). In addition, dopamine can promote the maturation
and normalization of the ovarian cancer vascular system through
the DR1, allowing greater intake of chemotherapeutic drugs
(Moreno-Smith et al., 2013). Based on these findings, dopamine
replacement therapy may represent a novel treatment strategy
to block the detrimental effects of chronic stress. Interestingly,
the incidence of cancer in patients with schizophrenia may be
lower than that in the general population (Mortensen, 1989;
Barak et al., 2005; Asada et al., 2008; Chou et al., 2011). Patients
with schizophrenia have high levels of the dopaminergic system,
and preclinical studies have confirmed that dopamine can inhibit

tumor angiogenesis. However, this view is still controversial, and
it remains to be confirmed whether the lower incidence of cancer
in schizophrenia patients is related to the hyperactivity of their
dopaminergic system.

NEUROTROPHIC FACTORS

Neurotrophic factors are protein molecules that are necessary
for the growth and survival of nerve cells. Neurotrophic factors
belong to the small polypeptide growth factor family composed
of five members: nerve growth factor (NGF), brain-derived
neurotrophic factor (BDNF), neurotrophic factor-3 (NT-3),
neurotrophic factor-4/5 (NT-4/5), and neurotrophic factor-6
(NT-6). Neurotrophic factors interact with two types of receptors:
p75 and Trk receptors. The Trk receptors are necessary for
neurite growth and cell survival. Different Trk receptors bind
to specific neurotrophic factors with high affinity: NGF binds to
TrkA, BDNF, and NT4/5 bind to TrkB, and NT-3 binds to TrkC
(Chao and Hempstead, 1995; Retamales-Ortega et al., 2017).

The expression levels of NGF and its receptor TrkA in ovarian
cancer and cervical squamous cell carcinoma are significantly
increased and related to the proliferation and metastasis of
ovarian cancer as well as the clinical grade and nerve infiltration
of cervical cancer (Tapia et al., 2011; Streiter et al., 2016;
Retamales-Ortega et al., 2017; Long et al., 2018; Faulkner et al.,
2020). Ovarian cancer cells express and secrete NGF, which
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directly stimulates endothelial cell proliferation by activating
TrkA receptors to induce angiogenesis. Nerve growth factor also
acts on the receptor TrkA on the surface of cancer cells in
an autocrine manner to increase the protein expression levels
of VEGF, COX-2, and A Disintegrin and Metalloproteinase 17
(ADAM17). These three proteins are related to angiogenesis,
migration, and cell proliferation in epithelial ovarian cancer
(Vera et al., 2014; Retamales-Ortega et al., 2017) (Figure 2).
The activation of the receptor TrkB by BDNF also plays an
important role in tumor progression. BDNF and TrkB are
overexpressed in epithelial ovarian cancer tissues. Activation of
the BDNF/TrkB pathway induces ovarian cancer cell migration,
invasion, angiogenesis, and anoikis resistance (Qiu et al., 2006;
Au et al., 2009; Siu et al., 2009). In addition to ovarian cancer,
cervical cancer, endometrial cancer, and uterine leiomyosarcoma
also exhibit high expression of BDNF and TrkB, which are
closely related to adverse clinical phenomena, such as lymph node
metastasis (Yu et al., 2008; Moon et al., 2011; Makino et al., 2012;
Bao et al., 2013; Yuan et al., 2018a,b).

Moreover, neurotrophins released by tumor cells can stimulate
adjacent nerve cells to develop nerve endings in the tumor.
For example, NE can bind to ADRB3 expressed by ovarian
cancer cells to produce BDNF, and then BDNF acts on TrkB
receptors on host neurons to increase the innervation of the
tumor (Entschladen et al., 2006; Allen et al., 2018) (Figure 2).
These nerve endings may release catecholamines, which initiate

the migratory and angiogenic activity of tumor cells, prerequisites
for invasion and metastasis.

GLUCOCORTICOIDS

Glucocorticoids are another type of hormone that increase
during a stress response. They are widely used clinically as anti-
inflammatory and immunosuppressive agents. Glucocorticoids
can also be used as adjuvant drugs with chemotherapy to reduce
the side effects of chemotherapy. However, in vitro studies
have demonstrated that glucocorticoids can promote tumor
cell survival, metastasis, and drug resistance. The expression
of receptor tyrosine kinase-like orphan receptor 1 (ROR1) is
closely related to the phenotype of ovarian cancer stem cells,
peritoneal metastasis, and the development of resistance to
chemotherapy (Zhang et al., 2012; Zhang H. et al., 2014; Zhang
S. et al., 2014; Henry et al., 2017; Karvonen et al., 2019).
Dexamethasone (DEX), a synthetic glucocorticoid, can promote
the expression of ROR1, fibronectin, and MUC1 by activating
glucocorticoid receptors, thereby mediating stemness, adhesion,
and drug resistance in cancer cells, respectively (Yin et al., 2016;
Karvonen et al., 2020). The activation of glucocorticoid receptors
can also upregulate the expression of serum and glucocorticoid-
regulated kinase 1 (SGK1) and MKP-1, both of which can
promote the survival of ovarian cancer cells (Melhem et al., 2009;

FIGURE 2 | Schematic representation of the effects of NGF/TrkA and BDNF/TrkB, which are involved in several signaling pathways in ovarian cancer. Ovarian cancer
cells express and secrete NGF. Through the activation of TrKA, NGF induces angiogenesis by directly stimulating the proliferation of endothelial cells. Nerve growth
factor also regulates angiogenesis indirectly through the production of VEGF by ovarian cancer cells. In addition, NGF increases COX-2 levels, which induces the
production of PGE-2. PGE-2 has been associated with invasion in cancer cells. ADAM17 also appears to be regulated by the activation of NGF/TrkA. Activation of
the BDNF/TrkB pathway also confers migration, invasion, angiogenesis, and anoikis resistance to ovarian cancer cells. Norepinephrine can also bind to ADRB3
expressed by ovarian cancer cells to induce the production of BDNF, which then acts on TrkB receptors on nerve cells to increase the innervation of tumor tissues.
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Stringer-Reasor et al., 2015) (Figure 3A). Glucocorticoids can
also affect the life cycle of HPV, interfere with the function
of p53, and reduce the expression of miR-145, thus playing
direct roles in the persistence of HPV infection and resistance
to chemotherapy in cervical cancer patients (Feng et al., 2012;
Shi et al., 2012) (Figure 3B).

As a common drug used for abortion in clinical practice,
mifepristone has anti-glucocorticoid activity separate from its
anti-progesterone effect. The addition of mifepristone to a
combination cisplatin and paclitaxel regimen can prevent the
development of drug resistance in ovarian cancer cells and
cervical cancer cells (Jurado et al., 2009; Gamarra-Luques et al.,
2012; Ponandai-Srinivasan et al., 2019). This also suggests that
the activation of the glucocorticoid signaling pathway negatively
impacts gynecological cancers.

Consistency between preclinical and clinical studies on
ovarian cancer supports the hypothesis that glucocorticoid
signaling has a promotive effect on solid tumors. However,
cervical cancer patients with higher expression of glucocorticoid
receptors have longer progression-free survival and overall
survival (Block et al., 2017; Kost et al., 2019). The reason for
the contradiction between clinical and experimental studies on
cervical cancer is unclear, and whether other signaling pathways
are involved remains to be studied.

TUMOR IMMUNE MICROENVIRONMENT

It is clear that the tumor microenvironment, which is composed
of a series of stromal cells [including macrophages, T cells,
myeloid-derived suppressor cells (MDSCs), and fibroblasts] and
their secreted products, has a significant impact on cancer

progression. In this section, we will briefly discuss the effects
of sustained stress on the immune microenvironment of
gynecological cancers. A previous section explains that NE can
induce the production of IL-6 and IL-8 in ovarian cancer cells
and promote angiogenesis and metastasis. Additional effects
of IL-6 include attenuation of Th1 responses in the tumor
microenvironment (Johnson et al., 2018; Tsukamoto et al., 2018),
activation of cancer-associated fibroblasts (Karakasheva et al.,
2018), reductions in CD8+ cytotoxic T lymphocyte populations,
increases in immunosuppressive FOXP3 + regulatory T cell
populations (Kato et al., 2018), and enhanced generation
of MDSCs (Hanazawa et al., 2018). In combination with
chemotherapy, propranolol potentially results in improvements
in circulating CD8 + T cells (Ramondetta et al., 2019).
IL-8 also has a strong ability to recruit macrophages or
MDSCs to the tumor microenvironment (Fousek et al., 2021).
Macrophages have two different phenotypes: a tumor-suppressive
phenotype (M1) and a tumor-supportive phenotype (M2).
Tumor-associated macrophages (TAMs) mainly exhibit M2
characteristics. IL-8 can polarize macrophages toward the
CD163 +M2 phenotype, which may contribute to poor survival
in ovarian cancer (Ning et al., 2018). At the same time, stress
hormones can also directly bind to β2-adrenergic receptors on
the surface of macrophages (Sloan et al., 2010; Allen et al., 2018;
Colon-Echevarria et al., 2020). Ultimately, this will exacerbate
the infiltration of TAMs (Figure 4). In a study, treatment
of mice with hexamethonium bromide resulted in a marked
reduction in macrophage infiltration. In contrast, cytisine, a
neuronal nicotinic acetylcholine (nACh) receptor agonist, could
mimic the effects of restraint stress on macrophage infiltration
(Allen et al., 2018). Therefore, macrophage infiltration mediates
stress-enhanced progression.

FIGURE 3 | Schematic of the effects of glucocorticoids on pathways involved in cancer cell survival, metastasis, and chemoresistant signaling. (A) The upregulation
of fibronectin and MUC1 induced by DEX contributes to DEX-induced pro-adhesion effects and protects ovarian cancer cells from chemotherapy. Dexamethasone
induces increased expression of SGK1 and MKP-1, both of which promote cell survival. Dexamethasone induces anti-apoptotic features and drug resistance in
ovarian cancer by promoting ROR1-mediated stemness. (B) Glucocorticoid-induced HPV–E6 expression effectively suppresses the upregulation of p53-dependent
miR-145 and cellular apoptosis.
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FIGURE 4 | Restraint stress can act through a variety of immune mechanisms to promote tumor progression. IL-6 released by ovarian cancer cells can inhibit
adaptive antitumor immunity by suppressing Th1 responses and CD8 + T cell activation and by driving and recruiting regulatory T cells. IL-6 also initiates
cancer-associated fibroblast and MDSC infiltration of the tumor microenvironment. IL-8 released by ovarian cancer cells can inhibit innate immunity by polarizing
macrophages toward a type 2 tumor-associated phenotype and by supporting MDSCs into the tumor microenvironment. NE and E also exacerbate the infiltration of
M2 macrophages via β2-adrenergic receptors on macrophages.

CLINICAL TRIALS

As mentioned above, several experiments have confirmed that the
activation of β-adrenergic receptors can promote the malignant
progression of ovarian cancer. However, the existing clinical
research results are still conflicting. Some studies have reported
that patients with epithelial ovarian cancer who used β-blockers
have a lower chance of death and longer overall survival than
patients who did not use β-blockers (Diaz et al., 2012; Al-
Niaimi et al., 2016; Ramondetta et al., 2019). In contrast, other
clinical studies have observed no association between the use of
β-blockers and a reduction in ovarian cancer mortality (Heitz
et al., 2013; Johannesdottir et al., 2013; Cho et al., 2020). One
study even reported that patients who used β-blockers during the
perioperative period had an increased risk of death (Gonzalez
et al., 2020). Notably, almost all patients in the above studies
were using selective β1-receptor blockers, but it is more likely that
non-selective β-blockers can benefit patients with ovarian cancer.
However, the use of non-selective β-blockers has been limited due
to well-known side effects. Hence, these contradictory research
results highlight the importance of stratification studies based
on the type of β-blocker. Otherwise, the results are unreliable
(Hefner and Csef, 2016). After categorizing the selectivity
of β-blockers, we observed that ovarian cancer patients who

used non-selective β-blockers showed reduced cancer-specific
mortality. Selective β-blocker intake did not affect prognosis
and even produced reduced overall survival (Watkins et al.,
2015; Heitz et al., 2017; Harding et al., 2019). The reason
underlying this finding is still unclear. However, the patients
taking selective β-blockers tended to be older and have various
chronic underlying diseases, which might make them more
intolerant of cancer therapy.

Glucocorticoids have been included in standard treatment
plans because they can reduce the side effects of chemotherapy.
However, an increasing number of experiments have proven
that glucocorticoids can promote the survival of tumor cells.
These results have caused concerns among clinicians to some
extent, resulting in the question: Is the adjuvant application
of glucocorticoids safe during chemotherapy? However, when
DEX is used during the perioperative period or chemotherapy
administration, there is currently no evidence to indicate that
the application of this glucocorticoid will negatively impact the
prognosis of patients (Munstedt et al., 2004; De Oliveira et al.,
2014; Djedovic et al., 2018). We have yet to determine whether
the small sample size affected the results of the study or whether
the benefits of glucocorticoids, such as an increased white
blood cell count and increased patient compliance, concealed
its protective effect on tumor cells. In general, before further
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research is performed to address this question, we should at least
allay fears related to the use of glucocorticoids; after all, their
benefits are obvious.

DISCUSSION

Several preclinical experiments have demonstrated
overexpression of stress hormone receptors in ovarian cancer
cells and cervical cancer cells. Various stress hormones produced
under chronic stress exert protective effects on cancer cells
through these receptors, which eventually leads to adverse clinical
results. Simultaneously, cancer cells can also initiate their own
innervation by releasing neurotrophic factors. Under chronic
stress, these nerve endings release stress hormones (mainly NE
and E), which in turn bind to the overexpressed receptors on
tumor cells and induce various effects (Faulkner et al., 2019).
Therefore, it is theoretically feasible to try to eliminate tumor
innervation or block stress hormone receptors on the surface
of tumor cells. Drugs that block these receptors are common
in clinical treatment and therefore have the greatest potential.
However, the relatively small cohort of studies evaluating non-
selective β-blockers have led us to question the effectiveness of
these drugs in treating cancers. Hence, whether to use non-
selective β-blockers in gynecological cancer patients has not
yet been determined. Likewise, there is no sufficient evidence
indicating that using glucocorticoids will shorten the lifespan
of chemotherapy-treated patients. Therefore, we do not support
the aversion to using DEX for gynecological cancer treatment;
after all, several preliminary studies have demonstrated that
DEX is effective in preventing postoperative nausea, vomiting,

and the side effects of chemotherapy. Dopamine and DR
agonists are widely used in the treatment of Parkinson’s disease,
hyperprolactinemia, and other non-neoplastic diseases; they are
inexpensive and have few side effects. Therefore, the prospect of
dopamine being used to treat cancer patients in the future is also
very encouraging.

In summary, we should view a tumor as a complete organism.
This “organism” contains tumor cells, stromal cells, and vascular
and neural connections to its host. This provides not only
mechanisms for disease progression but also opportunities for
therapeutic intervention. Further studies are needed to clarify
the exact relationships between PNI and stress hormones
in gynecological cancers. Only through this work can the
process of using these inexpensive drugs to treat gynecological
cancers be accelerated.
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