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Abstract

Conventional decision theory suggests that under risk, people choose option(s) by maximiz-

ing the expected utility. However, theories deal ambiguously with different options that have

the same expected utility. A network approach is proposed by introducing ‘goal’ and ‘time’

factors to reduce the ambiguity in strategies for calculating the time-dependent probability of

reaching a goal. As such, a mathematical foundation that explains the irrational behavior of

choosing an option with a lower expected utility is revealed, which could imply that humans

possess rationality in foresight.

Introduction

Decision making under risk, i.e., all possible outcomes and the associated probabilities of the

options are well known, has attracted the interests of researchers in a number of disciplines,

including economics, psychology, neuroscience, and business, and has also inspired discourse

on human’s rationality [1–10]. The expected utility theory established by von Neumann and

Morgenstern [11] states that in a multiple choices problem, a rational decision is assumed to

maximize the utility function (EU), the product of utility (u) and the associated probability (p).

Many cases have shown that this criterion provides a good reference in decision making and

can explain the behaviors of decision makers [3, 12–14].

However, the utility theory does not provides explanations for several behaviors in decision

making. Several studies have also shown that a certain amount of people do not always take

the option(s) with the maximum EU [15–21]. For instance, in experiments conducted by Kah-

neman and Tversky, given the choice between options with (u, p) of A(4000, 0.2) and B(3000,

0.25), 65% of the subjects took the former. However, between C(4000, 0.8) and D(3000, 1),

80% of the subjects took the latter. Here, the option (u, p) means that the subjects who take

this option have a p chance of obtaining u and a (1 − p) chance of obtaining nothing. In other

words, at least 45% of the overlapped subjects were inconsistent in responding to these two

questions [22–27]. Kahneman and Tversky explained the psychological aspect of choosing D
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between C and D; in gain framing, as proposed in their prospect theory, these people were

referred to as risk averse [17, 25, 28–30]. The framing effect introduced in prospect theory

pointed out that people might count on different reference points in frames of gains and losses

[31–33]. Moreover, people are often risk averse in decisions involving gains and are often risk

seeking in decisions involving losses. These inconsistent behaviors owing to the shift of refer-

ence points in different frames are considered as irrational behaviors. Consistency is a princi-

pal aspect of the rational behaviors [34–39].

In evolution in the natural world, an act that is broadly disseminated through genes or

memes should benefit, or at least not be harmful to, the actors or the offspring. In other words,

an apparently detrimental action that is often observed should be beneficial in an obscure way

[40]. The behavior of human beings, who are members of the ecological sphere, should also be

confined by such a natural rule. Therefore, ‘inconsistent’ behaviors require a further study to

find the hidden benefits and mechanisms.

Further, the applicability of the expected utility theory in decision making relies on

the viability of maximizing the EU, which counts on the law of large numbers. That is,

it requires a large number of people making a decision or a person making a decision a

lot of times to obtain outcomes close to the expected value. However, for an individual

who has aspirations other than the average, the results from many people would not be a

good reference to make such a decision. The real outcome would deviate a lot from that pre-

dicted by the expected value [41–45]. Thus, new criteria other than maximizing the EU are

needed.

Timing is significant as to satisfy one’s needs in time is an important issue in decision mak-

ing [44–52]. With respect to time, people may have different needs in short-term or long-term.

An individual may have different financial needs at different stage of life. Thus, one may need

to set specific goals in the financial plans according to the ages [53]. Additionally, achieving a

goal as soon as possible usually, but not always, fits the decision maker’s needs. For example,

in an election campaign, the best strategy for the candidate is to reach the highest rate of sup-

port exactly on voting day in order to transform the support rate into votes−peaking too early

or too late does not as effectively benefit the candidate. Thus, the reference points may change

in different periods [54, 55].

In this study, we provide an alternative aspect by considering goals and the times in making

decisions. It is assumed that the behaviors in decision making is meant to maximize the proba-

bility of achieving a goal during or by a designated time. As human beings have a planning

nature, taking the goal and time, a concrete aim for the future, into account makes an individ-

ual’s activity meaningful [56].

This paper is organized as follows. First, a model that considers both goals and times is pro-

posed; in this model, decisions are considered to be a process moving from the initial stage

through several intermediate stages to ultimately reach the goal. These stages and the connect-

ing paths are respectively illustrated as nodes and links in a network [57–59]. The decisions are

a series of choosing a link that connects the current node to the next node until arriving to the

node of goal. This process is equivalent to a walking on the constructed network, which is then

further transformed into a matrix [60]. We then introduce strategies that set different weight-

ing on choosing the available options. The outcomes of this series of decisions can be calcu-

lated by iteration from the continual multiplication of the matrices. Several strategies are

raised to demonstrate how the proposed model works. Finally, we discuss the applications of

the model in measuring the goal in mind and the mathematical foundation to the economic

behaviors.

Network approach for decision making under risk
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Methods

In our model, the decision process is divided into three parts, (1) Game set, (2) Strategy, and

(3) Iteration. The first part, Game set depends on the situation in which the decision maker is

involved including the number of options and the associated (u, p). Not losing generality, we

set the utility as the monetary value. According to Game set, one can construct a network,

which resembles the diagram in Markov decision process [61–63]. The second part, Strategy,

is new that a decision maker is freely to distribute the weights on options as to narrowly or

broadly bracket choices [64]. One can construct the nodes and links of the decision network

according to these two parts. We can further transform the network into a matrix and proceed

the third part, Iteration to find the time-dependent probability of achieving the goal, Pcom(t).

The decision maker can adjust Strategy to maximize Pcom(t) during the designated t. In this

model, the cost is the time spent on the game.

Game set: Construction of the network

Approaching mode and Growing mode are raised for constructing the network as shown in

Figs 1 and 2, respectively.

The payoff table of the decision game for the Approaching mode is listed in Fig 1(I). The

decision maker who choose option j has a pj chance of obtaining uj that move j stages and a

(1 − pj) chance of staying at the original stage. In the Approaching mode as shown in Fig 1(II),

the stage occupied by the decision maker is denoted as Sk, indicating that it requires k stages to

reach the goal, S0. Thus, a series of decisions is considered a walk from Sk to S0 in the network.

The available options correspond to the links connecting to the following nodes according to

the payoff table. For a decision maker at Sk, option i indicates an outward link pointing to Sk−i

and a returning link associated with probabilities of pi and (1 − pi), respectively. The value and

the utility of ui is set to be equal to move i stages in our research.

Fig 1. Construction of the network in a decision game of G of S0 in Approaching mode. (I) Payoff table: the decision maker who

chooses option j has a chance of pj to gain uj or a chance of (1 − pj) to gain nothing. (II) Game set: the game set according to the payoff

table in (I) is further illustrated. At Sk, the decision maker has k options, e.g., option 1 leads to Sk−1 with a probability of p1 or stay at S0

with a probability of (1 − pk−1), option 2 leads to Sk−2 with a probability of p2 or stay at S0 with a probability of (1 − p2), . . ., and option

k leads to S0 with a probability of pk or stay at S0 with a probability of (1 − pk). (III) Weights: the decision maker at Sk can distribute

the weights of kw1, kw2, . . ., and kwk on the options of (u1, p1), (u2, p2), . . ., and (uk, pk), respectively. Thus, the probabilities of moving

from Sk to Sk−1, Sk−2, . . ., and S0 are kw1 p1, kw2 p2, . . ., and kwk pk, respectively. The one also has a probability of (kw1(1 − p1) +
kw2(1 − p2) + . . . + kwk(1 − pk)) of staying at Sk.

https://doi.org/10.1371/journal.pone.0196060.g001
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In the Growing mode as shown in Fig 2(II), the initial stage is denoted as S0. The options

taken by the decision maker correspond to the links connecting to the following nodes accord-

ing to the payoff table as shown in Fig 2(I). At S0, option i indicates an outward link pointing

to Si and a returning link associated with probabilities of pi and (1 − pi), respectively. Again,

the value and the utility of ui is set to be equal to move i stages.

Strategy matrix, W

The decision maker can distribute weights on the possible links (options). In the Approaching
mode as shown in Fig 1(III), the decision maker can distribute a weight, kw1 (< 1), on option i
when she is at Sk. Thus, she has a kwi pi chance of moving to Sk−i and a kwi(1 − pi) chance of stay-

ing at Sk. Generally, at Sk, the decision maker can set the weights of kw1, kw2, . . . kwk−1, and kwk

on the options 1, 2, . . ., k − 1, and k, respectively. Thus, the chances of moving from Sk to Sk−1,

Sk−2, . . .S1, and S0 are kw1 p1, kw2 p2, . . . kwk−1 pk−1, and kwk pk, respectively. The chance of stay-

ing at Sk is (kw1(1 − p1) + kw2(1 − p2) + . . .kwk−1(1 − pk−1) + kwk(1 − pk)), i.e.
Pk

i¼1

kwi(1 − pi).
In the Growing mod as shown in Fig 2(III), the decision maker can distribute a weight,

0wi (< 1), on option i when she is at S0. Thus, she has a 0wi pi chance of moving from S0 to Si
and a 0wi(1 − pi) chance of staying at S0. Generally, at S0, the decision maker can set the weights

of 0w1, 0w2, . . . 0wk−1, and 0wk on the options 1, 2, . . ., k−1, and k, respectively. Such that, the

chances of moving from S0 to S1, S2, . . .Sk−1, and Sk are 0w1 p1, 0w2 p2, . . . 0wk−1 pk−1, and 0wk

pk, respectively. The chance of staying at S0 is (0w1(1 − p1) + 0w2(1 − p2)+ . . . 0wk−1(1 − pk−1) +
0wk(1 − pk)), i.e.

Pk
i¼1

0wi(1 − pi).
Since the outward links are conservative, the total of the weights is set as 1, i.e.,

Pj
i¼1

jwi = 1

for any j in both modes. A strategy in a decision corresponds to how the decision maker dis-

tribute the weights, jwi, on the available links at Sj. For simplicity, we take Approaching mode in

the following sections. A decision maker at Si distributes the weight on the link, (um, pm) and is

denoted as iwm, which indicates moving m stages to Si−m with a probability of pm or staying at

Fig 2. Construction of the network in a decision game of G of S0 in Growing mode. (I) Payoff table: the decision maker who

chooses option j has a chance of pj to gain uj or a chance of (1 − pj) to gain nothing. (II) Game set: the game set according to the

payoff table in (I) is further illustrated. At S0, the decision maker has k options, e.g., option 1 leads to S1 with a probability of p1 or stay

at S0 with a probability of (1 − p1), option 2 leads to S2 with a probability of p2 or stay at S0 with a probability of (1 − p2), . . ., and

option k leads to Sk with a probability of pk or stay at S0 with a probability of (1 − pk). (III) Weights: the decision maker at S0

can distribute the weights of 0w1, 0w1, . . ., and 0wk on the options of (u1, p1), (u2, p2), . . ., and (uk, pk), respectively. Thus, the

probabilities of moving from S0 to S0, S1, S2, . . ., and Sk−1 are 0w1 p1, 0w2 p2, . . ., and 0wk pk, respectively. The one also has a

probability of (0w1(1 − p1) + 0w2(1 − p2) + . . . + 0wk(1 − pk)) of staying at S0.

https://doi.org/10.1371/journal.pone.0196060.g002

Network approach for decision making under risk

PLOS ONE | https://doi.org/10.1371/journal.pone.0196060 April 27, 2018 4 / 19

https://doi.org/10.1371/journal.pone.0196060.g002
https://doi.org/10.1371/journal.pone.0196060


Si with a probability of (1 − pm). A strategy matrix W is set when all elements, bij are set, which

are equivalent to iwi−j.

Matrices

The network of a decision game can be transformed into a game matrix Q [60]. The Q is a

(k + 1) × (k + 1) matrix with the elements, qij are the probability connecting Si to Sj. Addition-

ally, the distribution of the weights on each option can be represented in a strategy matrix W.

In our game setting, Q is determined by the decision game and W depends on the decision

maker’s strategy. They are mutually independent. The Q and the W can be further composed

into a matrix A. The correlation of these matrices are shown in Eq 1, in which “�” denotes the

operation of the Hadamard product, aij = qij � bij for i> j. The diagonal elements of A are set in

D, which contains only diagonal elements, i.e., dii = aii and dij = 0 for i 6¼ j.

A ¼ Q � WþD ð1Þ

Walking on the network can be further transformed into an iteration of a transition matrix,

A. The element aij indicates the transition probability from Si to Sj [60]. Thus, A is a (k + 1) ×
(k + 1) matrix with elements indexing from a00 to akk. Those aij are i iw(i−j) p(i−j) for i> j. The

diagonal elements, aii corresponding to the self-linking links, are
Pi

m¼1

iwm(1 − pm). The left

part of A and the associated elements aij are shown in Eqs 2 and 3, respectively.

A ¼

1 0 0 0 . . .

1w1p1
1w1ð1 � p1Þ 0 0 . . .

2w2p2
2w1p1

2w2ð1 � p2Þþ

2w1ð1 � p1Þ
0 . . .

3w3p3
3w2p2

3w1p1

3w3ð1 � p3Þþ

3w2ð1 � p2Þþ

3w1ð1 � p1Þ

. . .

. . . . . . . . . . . . . . .

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

ð2Þ

aij ¼

iwði� jÞpði� jÞ for i > j

Si
m¼1

iwmð1 � pmÞ for i ¼ j

(

ð3Þ

Xi

m¼1

aim ¼ iwmpmþ
iwm� 1pm� 1þ

iwm� 2pm� 2 þ . . .þiw1p1

þiwmð1 � pmÞþ
iwm� 1ð1 � pm� 1Þþ

iwm� 2ð1 � pm� 2Þ þ . . . :þiw1ð1 � p1Þ

¼ iwiþ
iwi� 1þ

iwi� 2 þ . . . :

¼
Xi

m¼1

iwm

¼ 1

ð4Þ

The sum of each row of A is 1 as shown in Eq 4, indicating that A is not only a lower trian-

gular but also a stochastic matrix.

Network approach for decision making under risk
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Iteration: State vector and iteration relation

We then introduce a state matrix, R(t), [r0, r1, r2, . . ., rk] with dimension of 1 × (k + 1). The ele-

ments ri(t) indicate the probability of a decision maker staying at Si in t. Therefore, a decision

maker begins at Sk, which corresponds to R(0) of [0, 0, 0, . . ., 1]. The first element, r0(t), is

called Pcom(t), the probability that a decision maker arrives at S0 within t. The next state,

r0(t + 1), is generated from the product of r0(t) and aij as shown in Eq 5. Thus, the state matrix

R(t) fits the iteration relation as shown in Eq 6. The decision maker eventually arrives at S0,

which corresponds to R(1), [1, 0, 0, . . ., 0].

riðt þ 1Þ ¼ r0ðtÞa0i þ r1ðtÞa1i þ r2ðtÞa2i þ � � � þ rkðtÞaki

¼
Xk

m¼0

rmðtÞami

ð5Þ

Rðt þ 1Þ ¼ RðtÞA

¼ Rðt � 1ÞA2

¼ Rðt � 2ÞA3

¼ . . .

¼ Rð0ÞAtþ1

ð6Þ

We then examine the solvability to find the best strategy to satisfy the decision maker. In a

decision game beginning at Sk, the number of unknown variables in W is k(k + 1)/2. There

are (k + 1) constraints including the sum of each row of W and the desired rc
0
. There are still

k(k + 1)/2 − (k + 1) undetermined variables. The problem can be analytically solved when k is

less than 2. For k> 2, one can construct a trail W and then obtain the r0(t) resulting from the

iteration relation in Eq 6. The decision maker may try several Ws in order to determine strate-

gies that satisfy the needs.

Strategy comparison

At Sk, the decision maker has k number of options from (u1, p1), (u2, p2), (u3, p3), . . ., to (u(k−1),

p(k−1)), and (uk, pk) linking to S(k−1), S(k−2), S(k−3), . . ., to S1, and S0, respectively. For resolving

the ambiguity raised in Abstract, the expected utility for each option is set as 1, i.e., (ui, pi) is set

as i; 1

i

� �
linking from Sk to Sk−i. This setting is also for comparison of different strategies choices

among options without privilege. In this paper, we raise strategy examples: fix, min k, max k,

risky, random, and safe.

The fix strategy indicates that a decision maker always chooses a certain option until the

end of the game as shown in Fig 3. Assuming that the decision maker takes the option of

(m, pm), only g/m stages are needed to arrive at S0.

A decision maker taking the min k strategy always chooses the safest option, i.e., (1, 1). In

other words, the decision maker moves one stage each time. In a game with a goal (G) of g,

it takes g stages to reach G. This provides us a baseline for comparison with other strategies.

With the max k strategy, the decision maker always chooses the riskiest option, i.e., the one

with the highest utility, (g, 1/g), as shown in Fig 4. The decision maker either stays at the very

beginning, Sg, or moves to S0 with a probability of (1 − 1/g) or 1/g, respectively. Both min k
and max k are special cases of the fix strategy. With the risky strategy, the decision maker places

more weight on the high utility options. In other words, at any stage during the game, Sk, she

Network approach for decision making under risk
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chooses the option of (k, 1/k) in a probabilistic manner, which is in proportion to the utility, k.

With the safe strategy, the decision maker places more weight on the options with high proba-

bility. That is, she chooses the option of (k, 1/k) at Sk in a probabilistic manner, which is in

proportion to the probability, 1/k. With the random strategy, the decision maker chooses the

option in a random manner in all stages. That is, she weights all option equally. The Ws for the

strategies, risky, random, and safe are listed in Table 1. Note that the real time can be estimated

by multiplying t with an approximated period τ to make a decision, i.e., tτ.

The results are calculated by the iteration relation, as shown in Eq 6, to see how r0(t) evolves

with the associated W. It can also be performed by computer simulation. Because of the law of

large numbers, both methods should produce consistent outcomes. Therefore, we only show

the results from the calculations.

Fig 3. The network of the fix strategy choosing (m, pm). For simplicity, the G is set as 3m to demonstrate the

network. The decision maker only passes the stages with indexes of (g − nm), where m = g/u and n = 0, 1, 2, or 3, i.e., 3

stages from Sg to S0. That is, there are only four stages with this strategy: Sg, Sg−m, Sg−2m, and S0 (or S3m, S2m, Sm, and S0,

respectively).

https://doi.org/10.1371/journal.pone.0196060.g003

Fig 4. The network of the max k strategy in a decision game of G of g. The decision maker always chooses the option

with the highest utility, i.e., (g, 1/g), a special case of the fix strategy. Thus, she either stays at Sg or moves to S0. The

intermediate stages, Sg−1 to S1, are not reachable.

https://doi.org/10.1371/journal.pone.0196060.g004

Table 1. Strategies in a decision game at Si. Pr: (k, 1/k) is the probability to choose (k, 1/k).

Strategy Pr: (k, 1/k) iwk aij, i > j
risky / k 2k/i(i + 1) ai, j = 2/i(i + 1)

random 1/i 1/i 1/i(i − j)
safe / 1/k 1= k

Pi
m¼1

1

m

� �
1= ði � jÞ2

Pi
m¼1

1

m

� �

https://doi.org/10.1371/journal.pone.0196060.t001
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Results

The results are presented both in the time-dependent cumulative distribution function (CDF,

Pcom(t)) of the probability of achieving the goals and the associated time-dependent probabil-

ity mass function (PMF, P(t)).

Fixed option strategy

We first show the outcomes of the fix strategy. In a decision game with G of g, the node num-

ber is reduced from (g + 1) to
g
mþ 1
� �

when the decision maker takes (m, pm) only, as shown

in Fig 3. The dimension of the associated matrix A is also reduced from (g + 1) × (g + 1) to
g
mþ 1
� �

�
g
mþ 1
� �

. Thus, there are only two outward links for each stage: the one linking to

the next stage and the other linking to the original stage. The associated A becomes a band
matrix in which the non-zero elements locate only in the main diagonal and the first diagonal

below, as shown in Eq 7.

1 0 0 0 . . .

p ð1 � pÞ 0 0 . . .

0 p ð1 � pÞ 0 . . .

0 0 p ð1 � pÞ . . .

. . . . . . . . . . . . . . .

2

6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
5

ð7Þ

The networks of the fix strategies with u of 4 and 6 in a decision game of G of 24 are shown

in Fig 5A and 5B, respectively. For the decision maker that chooses C(4, 0.5), the network

becomes a six-stage link from S24 to S0 through S4n, where n 2 integers. For the decision maker

that chooses B(6, 0.3), the network becomes a four-stage link from S24 to S0 through S6n, where

n 2 integers. From the aspect of networks, the decision involves comparing a six-stage route

with higher probability of moving to a four-stage route with lower probability of moving.

The game shown in Fig 5 is taken as an example for comparisons of (1) options with the

same expected utility, A 6; 1

3

� �
and C(4, 0.5), and, (2) options with different expected utilities,

B(6, 0.3) and C(4, 0.5). In Fig 6B, the CDF curves of options of A and C interlace at tint of 12.

This indicates that on average, both options take 12 stages to achieve the goal because the

expected utility for both is 2. In the region of t< tint, PcomA is larger than PcomC, which indi-

cates that A is more preferable than C in this region. The situation is reversed in the region of

t> tint, where PcomC is larger than PcomA, indicating that option C is more preferable than A.

The result demonstrates that options with the same expected utilities lead to different probabil-

ities of achieving the goal. The riskier option A leads to a higher probability of achieving the

goal in the earlier period, whereas the safer option C leads to a higher probability of achieving

the goal in the later period. This is also found in the PMF curves that the peak positions are in

the order of A< C in Fig 6A.

By introducing the goal, the ambiguity of choosing the options with the same expected utili-

ties is eliminated. In other words, a decision maker willing to achieve an urgent goal can take

the option with a larger u, i.e., a risky option; a decision maker willing to achieve a goal in the

future can take the option with larger p, i.e., a safe option.

We compare the results of choosing the options with different expected utilities, B(6, 0.3)

and C(4, 0.5) in Fig 6. The two CDF curves of B and C interlace at tint near 10 in (B). For

t< tint, that PcomB is larger than PcomC indicates B is preferred in the earlier region. For
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t> tint, that PcomC is larger than PcomB indicates C is preferred in the later region. Again, tak-

ing option C, which has a higher expected utility, is preferable for a decision maker willing to

take a longer time to achieve her goal. However, for a decision maker wanting to achieve her

goal in a shorter period, taking B is preferable, even though the corresponding expected utility

is low. This might provide a mathematical explanation for the behavior of choosing the option

with a low expected utility, which can be interpreted as the decision maker wishing to satisfy

her desire quickly.

Comparing the CDF curves of A and B in (B), it is found that PcomA is larger than PcomB

in the whole t range investigated. The ambiguity in decision making comes from when

ΔuΔp< 0 ((ui − uj)(pi − pj)< 0). This also results an interlace in the CDF curves. In other

words, there exists a dominant option when pi>� pj or ui>� uj and ΔuΔp> 0. The criterion of

the preferable option using the fix strategy can be formulated as Eq 8.

ðuX >� uY _ pX >� pYÞ ^ eX > eY () X ≽ Y ð8Þ

Baseline for comparison: The min k strategy

A decision maker who takes the min k strategy always chooses the option of (1, 1) despite the

stage at which she steps in. It takes g stages to move from Sg to S0 since this option consistently

leads the decision maker to advance one stage each time. The P as a function of t for this

Fig 5. The network of the a decision game of G of 24 with options of A(6, 13 ) (or B(6, 0.3)) and C(4, 0.5). The

network can be decoupled when a decision maker takes the fix strategy. For a decision maker that chooses A (or B), the

network becomes a four-stage network linking from S24 to S0 through S18, S12, and S6. For a decision maker that

chooses C, the network becomes a six-stage network linking from S24 to S0 through S20, S16, S12, S8, and S4.

https://doi.org/10.1371/journal.pone.0196060.g005
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strategy is a delta function with non-zero value at g and the associated Pcom is a step function

with a value of 1 for t>� g, as shown in the black lines in Fig 7A, 7B and 7C. This indicates that

the decision maker will not reach the goal until t = g. This can serve as a baseline for compari-

son with the other strategies.

The riskiest decision maker: The max k strategy

The max k strategy can be considered a special case of the fix strategy where the riskiest option

is always taken. The network for the max k strategy in a game with G of g is illustrated in Fig 4.

The associated matrix is shown in Eq 9. The state R is a 1 × 2 row vector with an initial state

R(0) of [0, 1], as shown in Eq 10. The Pcom can be deduced to a function of t, as shown in

Fig 6. Comparison of the fix strategies with different expected utilities in a decision game of G of 24. The options

are A 6; 1

3

� �
, B(6, 0.3), and C(4, 0.5), denoted by the black square, red circle, and blue diamond, respectively. The PMF

and CDF curves are shown in (A) and (B), respectively. Between A and B, where ΔuΔp> 0, it is found that choosing A
is dominant because PcomA > PcomB in the whole t range shown in (B). Between A and C, which have the same

expected utility, the two curves interlace at tint near 12. For t< tint, A is preferred, whereas for t> tint, B is preferred.

Between B and C, which have different expected utilities, the two curves interlace at tint near 10. For t< tint, B is

preferred, whereas for t> tint, C is preferred. Therefore, between the options in which ΔuΔp< 0, the preferred option

becomes t dependent.

https://doi.org/10.1371/journal.pone.0196060.g006
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Eq 11. The outcome of this strategy is shown in the following section.

1 0

1=g ð1 � 1=gÞ

" #

ð9Þ

RðtÞ ¼ 0 1½ �
1 0

1=g ð1 � 1=gÞ

" #t

ð10Þ

PcomðtÞ

¼ r0ðtÞ

¼
1

g
½1þ ð1 �

1

g
Þ � ð1 �

1

g
Þ

2
þ ð1 �

1

g
Þ

3
þ . . .þ ð1 �

1

g
Þ
t� 1
�

¼
1

g
1 � ð1 � 1=gÞt

1 � ð1 � 1=gÞ

¼ 1 � ð1 � 1=gÞt

ð11Þ

Comparison of the strategies

The CDF and the PMF as functions of t for the exemplified strategies in decision games with G

of 10, 50, and 100 are shown in Fig 7A, 7B and 7C, respectively.

The outcomes exhibit scalability in that the positions of the peaks of the curves for the strat-

egies investigated are in proportion to the G. For example, the peaks of the curves for the safe

Fig 7. The CDF (Pcom, upper panel) and PMF (P, lower panel) curves for the strategies of max k (grey hexagon),

risky (black square), random (red circle), safe (blue diamond), and min k (black line) to reach the goals of (A) 10,

(B) 50, and (C) 100. The Pcom curves interlace near tint of 12, 60, and 120 for (A), (B), and (C), respectively. In the

regime of t< tint, the Pcom are in the order of max k, risky, random, safe, and min k, indicating that the max k strategy

leads to the highest probability of achieving a goal as soon as possible. However, in the regime of t> tint, the Pcom are

in reverse order, indicating that the min k strategy leads to the highest probability of achieving the goal at a later time.

The averages of all these strategies in (A), (B), and (C) are 10, 50, and 100, respectively.

https://doi.org/10.1371/journal.pone.0196060.g007
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strategy are at 10, 50, and 100 for the G of 10, 50, and 100, respectively. Therefore, we will only

describe the results from Fig 7A in details as the other two results for G of 50 and 100 exhibit

the same qualitative properties.

The CDF curves are shown in the upper panels. The curves for max k, risky, random, and

safe interlace at tint near 12, 60, and 120 for G of 10, 50, and 100, respectively, which also show

scalability. In the range of t< tint, the Pcom are in the order of max k> risky> random > safe
>min k. This result indicates that the riskier strategies lead to a higher probability of achieving

the goal by tint. However, in the range of t> tint, the order is reversed. This indicates that the

safer strategies have a higher probability of achieving the goal in the long run.

The PMF curves for the exemplified strategies are very different although the expected util-

ity for the options are all the same. The peak position indicates that the majority of decision

makers who take that strategy achieve their goal during that period. Among these strategies,

the peak positions are in the order of max k< risky< random < safe’min k as long as the t
increases. This provides suggestions for decision makers who wish to achieve a goal during a

designated period. With a G of 10, for example, for decision makers who wish to achieve their

goals during 8< t< 12, the safe strategy is recommended, whereas for those wish to achieve

their goal during 4< t< 10, the risky strategy is recommended.

In our game set, the expected utilities for all options are the same, as are the resulting aver-

age times to reach the goal. This is also plausible according to the law of large numbers. Thus,

in the CDF curves shown in Fig 7, the strategy that leads decision makers to a higher probabil-

ity of achieving a goal in an early period also leads them to a lower probability of achieving the

goal in a late period. Therefore, a decision maker can set strategies, i.e., construct the W and

apply our method to find satisfactory strategies according to the resulting Pcom(t) and P(t).

Discussions

Expected utility revisited

No matter which strategy a decision maker takes, the average t to reach the goal is the same,

which is also guaranteed by the law of large numbers. However, the resulting distribution of

Pcom(t) is highly dependent on the various strategies. By taking the goal and time into account,

our results show that the expected utility is not the sole criterion, even though it is often used

in evaluating strategies in decision making under risk. For a decision maker who wants to

achieve a goal as soon as possible, riskier options are preferable than safer options, even though

the former may have a lower expected utility. Therefore, the criteria for a rational decision

need to be reconsidered.

Rationality often implies that a decision maker should be consistent. In other words, a deci-

sion maker who takes the option with the maximum expected utility in this question, should

also take the one with the maximum expected utility in another question. According to our

results, this inconsistency might imply that people do not maximizing the expected utility, but

the Pcom(t). That is, in some circumstances, a decision maker may wish to accomplish a goal

earlier, and in other circumstances, she may wish to accomplish a goal later. Furthermore,

goals might vary under different circumstances. Inconsistency in answering the decision ques-

tion might not exhibit the irrationality, but rather reveal a different goal-time consideration.

Therefore, the meaning of rational choice needs to be redefined.

Measurement of goal in mind

In our model, a decision maker should consider both the goal and time when choosing a strat-

egy, as well as the distribution of the weights on options. As in the results shown in Fig 6, a

decision maker who chooses a riskier option with a low expected utility might reveal urgency
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in achieving her goal. This might provide an opportunity to measure the decision maker’s

wishes and also shed light on revealing the automatic and unconscious calculation in mind. It

is suggested that an individual’s series of decisions be recorded in order to estimate their goal

and urgency in achieving it. The goal in mind might be measured when the time question is

answered, e.g., by the individual’s plan. The urgency might be obtained when the goal in mind

is answered directly by the individual or estimated according to the individual’s need.

The aforementioned experiments conducted by Kahneman and Tversky [22, 31, 65, 66] are

taken as an example to illustrate how to estimate the goal or urgency. Fig 8 shows the CDF

curves for a decision between A(4000, 0.2) and B(3000, 0.25) and between C(4000, 0.8) and

D(3000, 1) with G of 24000 (upper panel) and 12000 (lower panel). Accordingly, 65% of the

subjects chose A between A and B, and 80% chose D between C and D. Our model provides a

possible explanation for the majority of subjects who took A and D. We then try to find a

range of t that satisfies both PcomA > PcomB and PcomD > PcomC. If they wished to achieve the

goal within 5< t< 20 (10< t< 42), a goal in mind could be estimated as 12000 (24000). On

the other hand, if they stated that their goal were 12000 (24000), the t in which they wished to

reach the goal could be estimated as 5< t< 20 (10 < t< 42).

Prospect theory revisited

By using our model, we try to reinterpret two aspects in prospect theory [22, 24–26, 31]: (1)

the framing effect and (2) non-linear preference. The framing effect, as mentioned previously,

describes that in frame of gains or losses, people tend towards risk aversion or risk seeking,

respectively.

In a decision game with the payoff table as shown in Table 2. A decision maker that is s
stages away from S0 has two options: a riskier option, R(ur, pr), and a safer option, S(us, ps), in

which ur pr = us ps and pr< ps. In the frame of gains as shown in Fig 9A, a decision maker is s
stages away from S0. Choosing either R or S may lead her to S0. However, choosing S leads her

to S0 with a higher chance than that choosing R. Besides, choosing R results in a probability of

Fig 8. The CDF curves for decisions between A(4000, 0.2) and B(3000, 0.25), and between C(4000, 0.8) and D
(3000, 1) with G of 24000 (upper panel) and 12000 (lower panel). A possible explanation resulted from our model

− the majority of subjects that took A and D might imply that they wish to achieve a goal of 12000 within 5< t< 20 or

to achieve a goal of 24000 within 10< t< 42. If these subjects wish to achieve the goal by t = 30, it could be estimated

that the goal in mind is about 24000.

https://doi.org/10.1371/journal.pone.0196060.g008
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Table 2. Reward and probability.

Option u p
R ur pr

0 (1 − pr)
S us ps

0 (1 − ps)

https://doi.org/10.1371/journal.pone.0196060.t002

Fig 9. Examples of the mathematical interpretation of the economic behaviors in (A) frame of gains and (B)

frame of losses. There are two options, a riskier R(ur, pr) and a safer S(us, ps), in which ur pr = us ps and pr< ps. (A) In

the frame of gains, both ur and ps are positive. When the decision maker is at Ss, which is s stages away from the goal,

S0, both options may lead her to S0. Nevertheless, choosing S allows her a higher probability to arrive S0 and a lower

probability to stay at Ss than choosing R. Thus, S is preferable. This demonstrates a risk aversion behavior for a decision

maker when the positive goal is near in the frame of gains. (B) In the frame of losses, both ur and us are negative. When

the decision maker is at Ss, which is s stages away from S0 that she tries to avoid. Both options may lead her to S0.

However, choosing R allows her to stay at S0 with a higher probability than choosing S ((1 − pr)> (1 − ps)). Although

choosing R may lead her to Ss−r, a worse stage than S0, it does not really matter since both Ss−r and S0 indicate her

arrival to the negative goal. Additionally, choosing R may lead her farther away from S0. This demonstrates a risk

seeking behavior for a decision maker when the goal is near in the frame of losses.

https://doi.org/10.1371/journal.pone.0196060.g009
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(1 − pr) to stay at Ss, which is higher than (1 − ps) that choosing S. For a decision maker at the

stage near the goal, it is preferable to choose a safer option. Therefore, one would exhibit risk

aversion because there is no need to choose a riskier option with a small probability and a

large reward that is in excess of the goal. In an extreme case, it is preferable to choose an option

of a sure gain when the gain can just lead her to the goal with certainty.

We further consider the situation in frame of losses by assuming both ur and us are negative.

In Fig 9B, S0 is set as negative, indicates a lower bound of losses, e.g., the bankruptcy, which

a decision maker tries to avoid. At Ss, choosing R results in a chance of (1 − pr) to stay at Ss,

which is higher than (1 − ps) that choosing S. Therefore, the decision maker would show a pref-

erence in choosing a riskier option. That is, a decision maker may behave as a risk seeker in

the frame of losses, especially when she is near the negative goal. Besides, a sure loss (ps = 1) is

not welcome since a rational decision maker tries to avoid the arrival at S0.

This demonstrates risk aversion in frame of gains and risk seeking in frame of losses. Such

an asymmetry between the behaviors in the frame of gains and the frame of losses is embedded

in our model. In other words, the framing effect in prospect theory can be mathematically

interpreted.

The nonlinear preference, the concavity and convexity in the value-utility curve as shown

in the prospect theory is referred to psychological activities [25]. In our model, the expected

utility is in proportion to the monetary value. Hence, the criterion instead of the expected util-

ity, Pcom(t) is intrinsically nonlinear, which may related to the nonlinear preference in the

prospect theory.

Mathematical interpretation of economical behaviors

The house money effect proposed by Thaler and Johnson [28] describes that people will tend

to spend the money of a prior gain, e.g., earned from gambling, in a risk seeking mode. Our

model can interpret that the one has a larger goal in dealing with this money. In other words,

the one is willing to take a risk because the goal is out of the consideration. In the presence of

prior losses, the decision maker will take the options with rewards that have opportunities to

break even, which is called break—money effect [28]. This implies that with a prior loss, the

goal might be shifted to break even or at least get something [65, 67, 68]. Such that, the tenden-

cies toward a risk-seeking behavior would be enhanced especially in the frame of losses.

Besides, people may divide their money in parts, which will be used in different ways

according to mental accounts [28]. Our model suggests that people can finely adjust the

weights in a strategy for each account by the goal and the time to reach that goal. The computa-

tional shortcut is proposed to be included in heuristic procedure in decision making [8, 25,

69–72]. Our model suggests that people might unconsciously proceed such a mental computa-

tion on the Pcom.

Perspectives

An individual’s behavior or activity may play a crucial role in the collective cooperation. It is

proven that the social diversity of individual behavior will substantially improve the level of

cooperation [73–76]. Presently, our model can be considered as a single player game, which

provides a reference for the behaviors of individuals in decision making. Such that, the game

theory can involve by considering the players’ goals and urgencies based on our model. Addi-

tionally, the policy maker may design a game situation to enhance the level of cooperation in

order to obtain the public good with less contradiction.

For making decisions under uncertainty, where the (u, p) for each option is unknown.

Learning from experience is thus important in constructing the (u, p) practically and in
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explaining the human behaviors [55, 77]. Our model provide a mathematical process to esti-

mate the (ui, pi) for all possible options. As shown in Eq 6, A can be resolved by the resulting

Pcom(t) by setting a trial W after repeated decision-makings. This provides an opportunity to

find the decision network, possible combinations of the (ui, pi)s, and the associated Qs through

these trials. Therefore, learning from experiences becomes mathematically achievable.

The proposed model combines “the goal and time” together to provide a mathematical pro-

cedure in decision making and also provides a mathematical foundation to explain several psy-

chological effects in economical behaviors. Additionally, such a mathematical procedure also

provides foundation for decision making by Artificial Intelligence.

Conclusion

The proposed network approach provides a powerful tool for analysing the time-dependent

outcomes of decisions. The behaviors that contradict those predicted by expected utility theory

can be mathematically explained. Our results imply that planning could be embedded in deci-

sion behaviors. For a rational decision under risk, one needs to consider achievement of the

desired goal within a specific period in the future rather than maximizing the expected utility

in the present. Moreover, the model not only provides a mathematical foundation for resolving

ambiguity in decision making, but also provides mathematical reasoning on the behaviors that

chooses the options with lower expected utilities.
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63. Bäuerle N, Rieder U. Markov Decision Processes. Jahresber Dtsch Math Ver. 2010; 112:217. https://

doi.org/10.1365/s13291-010-0007-2

64. Read D, Loewenstein G, Rabin M. Choice Bracketing. J Risk Uncertain. 1999; 19:171. https://doi.org/

10.1023/A:1007879411489

65. Erev I, Ert E, Plonsky O, Cohen D, Cohen O. From anomalies to forecasts: Toward a descriptive model

of decisions under risk, under ambiguity, and from experience. Psychol Rev. 2017; 124(4):369. https://

doi.org/10.1037/rev0000062 PMID: 28277716

66. Wulff DU, Mergenthaler-Canseco M, Hertwig R. A Meta-Analytic Review of Two Modes of Learning and

the Description-Experience Gap. Psychol Bull. 2018; 144(2):140. https://doi.org/10.1037/bul0000115

PMID: 29239630

67. Payne JW. It is Whether You Win or Lose: The Importance of the Overall Probabilities of Winning or

Losing in Risky Choice. J Risk Uncertain. 2005; 30:5. https://doi.org/10.1007/s11166-005-5831-x

68. Ert E, Erev I. On the descriptive value of loss aversion in decisions under risk: Six clarifications. Judgm

Decis Mak. 2013; 8(3):214.

69. Finucane ML, Alhakami A, Slovic P, Johnson SM. The affect heuristic in judgments of risks and benefits.

Journal of Behavioral Decision Making. 2000; 13:1. https://doi.org/10.1002/(SICI)1099-0771(200001/

03)13:1%3C1::AID-BDM333%3E3.0.CO;2-S

70. Slovic P, Finucane M, Peters E, MacGregor DG. Rational actors or rational fools? Implications of the

affect heuristic for behavioral economics. J Socio-Econ. 2002; 31:329. https://doi.org/10.1016/S1053-

5357(02)00174-9

71. Slovic P, Finucane ML, Peters E, MacGregor DG. The affect heuristic. Eur J Oper Res. 2007;

177:1333. https://doi.org/10.1016/j.ejor.2005.04.006

72. Bateman I, Dent S, Peters E, Slovic P, et al. The Affect Heuristic and the Attractiveness of Simple Gam-

bles. J Behav Dec Making. 2007; 20:365. https://doi.org/10.1002/bdm.558

73. Perc M, Szolnoki A. Social diversity and promotion of cooperation in the spatial prisoner’s dilemma

game. Phys Rev E. 2008; 77:011904.

74. Chen M, Wang L, Sun S, Wang J, Xia C. Evolution of Cooperation in the spatial public goods game with

adaptive reputation assortment. Phys Lett A. 2016; 380:40. https://doi.org/10.1016/j.physleta.2015.09.

047

75. Wang J, Lu W, Liu L, Li L, Xia C. Utility Evaluation Based on One-to-N Mapping in the Prisoner’s

Dilemma Game for Interdependent Networks. PLoS ONE. 2016; 11(12):e0167083. https://doi.org/10.

1371/journal.pone.0167083 PMID: 27907024

76. Wang C, Wang L, Wang J, Sun S, Xia C. Inferring the reputation enhances the cooperation in the public

goods game on interdependent lattices. Appl Math Comput. 2017; 293:18.

77. Gale J, Binmore KG, Samuelson L. Learning to be imperfect: the ultimatum Game. Game Econ Behav.

1995; 8(1):56. https://doi.org/10.1016/S0899-8256(05)80017-X

Network approach for decision making under risk

PLOS ONE | https://doi.org/10.1371/journal.pone.0196060 April 27, 2018 19 / 19

https://doi.org/10.1155/2015/810514
https://doi.org/10.1155/2015/810514
http://www.ncbi.nlm.nih.gov/pubmed/26273645
https://doi.org/10.1093/bib/bbv033
https://doi.org/10.1093/bib/bbv033
http://www.ncbi.nlm.nih.gov/pubmed/26059461
https://doi.org/10.1109/TCBB.2016.2520947
https://doi.org/10.1109/TCBB.2016.2520947
http://www.ncbi.nlm.nih.gov/pubmed/26890920
https://doi.org/10.1287/moor.16.3.580
https://doi.org/10.1365/s13291-010-0007-2
https://doi.org/10.1365/s13291-010-0007-2
https://doi.org/10.1023/A:1007879411489
https://doi.org/10.1023/A:1007879411489
https://doi.org/10.1037/rev0000062
https://doi.org/10.1037/rev0000062
http://www.ncbi.nlm.nih.gov/pubmed/28277716
https://doi.org/10.1037/bul0000115
http://www.ncbi.nlm.nih.gov/pubmed/29239630
https://doi.org/10.1007/s11166-005-5831-x
https://doi.org/10.1002/(SICI)1099-0771(200001/03)13:1%3C1::AID-BDM333%3E3.0.CO;2-S
https://doi.org/10.1002/(SICI)1099-0771(200001/03)13:1%3C1::AID-BDM333%3E3.0.CO;2-S
https://doi.org/10.1016/S1053-5357(02)00174-9
https://doi.org/10.1016/S1053-5357(02)00174-9
https://doi.org/10.1016/j.ejor.2005.04.006
https://doi.org/10.1002/bdm.558
https://doi.org/10.1016/j.physleta.2015.09.047
https://doi.org/10.1016/j.physleta.2015.09.047
https://doi.org/10.1371/journal.pone.0167083
https://doi.org/10.1371/journal.pone.0167083
http://www.ncbi.nlm.nih.gov/pubmed/27907024
https://doi.org/10.1016/S0899-8256(05)80017-X
https://doi.org/10.1371/journal.pone.0196060

