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Great cities look small

Aaron Sim1,3, Sophia N. Yaliraki2, Mauricio Barahona1

and Michael P. H. Stumpf3

1Department of Mathematics, 2Department of Chemistry, and 3Department of Life Sciences, Imperial College
London, London SW7 2AZ, UK

Great cities connect people; failed cities isolate people. Despite the fundamental

importance of physical, face-to-face social ties in the functioning of cities, these

connectivity networks are not explicitly observed in their entirety. Attempts at

estimating them often rely on unrealistic over-simplifications such as the

assumption of spatial homogeneity. Here we propose a mathematical model

of human interactions in terms of a local strategy of maximizing the number

of beneficial connections attainable under the constraint of limited individual

travelling-time budgets. By incorporating census and openly available online

multi-modal transport data, we are able to characterize the connectivity of

geometrically and topologically complex cities. Beyond providing a candidate

measure of greatness, this model allows one to quantify and assess the

impact of transport developments, population growth, and other infrastructure

and demographic changes on a city. Supported by validations of gross domestic

product and human immunodeficiency virus infection rates across US metro-

politan areas, we illustrate the effect of changes in local and city-wide

connectivities by considering the economic impact of two contemporary

inter- and intra-city transport developments in the UK: High Speed 2 and

London Crossrail. This derivation of the model suggests that the scaling of differ-

ent urban indicators with population size has an explicitly mechanistic origin.
1. Introduction
Can the greatness of a city be quantified? The city of Nineveh, capital of the Neo-

Assyrian empire of 911–627 BC, was once described as ‘an exceedingly great city,

three days’ journey in breadth’ [1]. Today, a city described as such would more

likely be dismissed as an urban sprawl let down by an inefficient transport infra-

structure. Without reference to travelling-time constraints, size is clearly not a

sufficient measure of greatness—just like rank and title can be poor predictors

of influence in social networks [2,3]. Of the many candidates [4,5], the simplest

objective measure of success is, possibly, the extent to which a city fulfils its pri-

mary purpose of maximizing the number of face-to-face, opportunity-spawning,

interactions between its inhabitants [6]. From the rise of the Medici in fifteenth

century Florence to the prestige of an efficient transport system in a twenty-

first century metropolis, this connectivity is synonymous with both the eminence

of individuals and the success of whole cities [7–11].

Measuring this connectivity, however, is not straightforward. Despite the

success of social theory and experiments in much smaller contexts [12–14],

the number of face-to-face social ties in a city, unlike secondary socio-economic

indicators, remains poorly estimated. Beneath the reductionist representation of

cities as featureless groups of individuals lies a forbidding, real-world diversity

[7], including widely differing population sizes (approx. 103–107), distributions

(uniform, polycentric [15]), topologies and geometries, the latter covering both

geography (boundaries, natural features) and the different modalities of transport

infrastructure (rail networks, traffic) [16]. In addition, cultural and activity-specific

behavioural difference (e.g. travelling-time tolerances) is a complicating factor in

theories of urban human interactions.

A typical strategy is to ignore this heterogeneity in favour of simple summary

statistics like population size [17], density [18], or even congestion sensitivity [4]
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or a global fractional dimensionality [19]. However, compar-

ing cities that differ significantly on any of the excluded

characteristics is then simply not possible with these models.

Of particular significance to city planners, such models are,

for the same reasons, unsuitable for assessing the impact of

complex infrastructure or demographic changes.

The parsimony of such approaches is, nevertheless, not

without merit. Most notably, there is an apparent common

scaling with respect to population size across a wide range

of urban indicators [20]. However, this empirical scaling is

similar but not identical across indicators, both in the scaling

exponent b and level of statistical support (e.g. US 2002 new

AIDS cases exhibit a power law against population with an

exponent b ¼ 1.23 and correlation coefficient Adj-R2 ¼ 0.76

while private R&D employment has b ¼ 1.34 with Adj-R2 ¼

0.92) [17]. Furthermore, power-law relationships can also

arise by chance or as statistical artefacts, and even if supported

by data they are largely descriptive and do not constitute

constructive mechanistic narratives [21,22]. Indeed, recent

attempts (such as in [19,23,24]) to lift this science of cities

above the level of descriptive statistics reflect a growing

desire for more generative and explanatory models.

A major step in this direction was taken by Pan et al.
in [18] where the observations behind the super-linear

scaling relations were shown to be entirely consistent

with—and actually better modelled by—the more fundamen-

tal assumption that the probability of social-tie formation

between two individuals is inversely proportional to the

number of people in closer proximity. Despite the arbitrary

nature of the probability ansatz, this elegant reduction of

purely phenomenological power-law statistical observations

to a statement about the likelihood of interactions between

pairs of individuals suggests the existence of an underlying

set of behavioural principles governing the formation of the

network of social ties in a city.

In this paper we propose one such set of rules. These rules

are ‘parameter-free’ in the sense that they do not depend on

any arbitrary functional assumptions beyond several intuitive

statements on human behaviour. We build from them a model

for real-world deliberate (as opposed to accidental or serendipi-

tous) social interactions derived solely in terms of this set of

agent-driven principles and is, therefore, by design, truly

mechanistic. In particular, via our derivation from first principles,

we show how the probability of social-tie formation originally

proposed in [25] can be viewed as an emergent consequence

of these more fundamental and, crucially, mechanistic prin-

ciples. On a practical side, the model readily incorporates

available detailed demographic, transportation and economic

data, thereby providing a tool for the a priori assessment of the

effectiveness of planned infrastructure measures.
2. A model of deliberate social ties
2.1. Modelling principles
We start with four principles, the justification for and math-

ematical implications of which we will shortly unpack:

(1) Individuals are characterized by a set of attributes

(heterogeneity).

(2) For each attribute, individuals seek out social ties only with

others who have higher attribute values (utility optimization).
(3) Individuals have a set of attribute-specific travelling-time

budgets tmax (resource constraints).

(4) A directed tie is formed only if there are no closer and

better opportunities in the proximity of the seeker

(intervening opportunities).

2.1.1. Heterogeneity
The first principle is a nod to the variety of city life. Besides a

multitude of attributes—from objective (e.g. wealth) to sub-

jective (e.g. beauty), from beneficial (e.g. artistic skills) to

harmful (e.g. criminality)—there exists a spectrum of skills

and levels in those attributes across the population. To rep-

resent this heterogeneous set of attributes, we define a set

of non-identically distributed random variables

fX, Y, Z, . . .g: ð2:1Þ

Each set of realizations fx, y, z, . . . g then represents an indi-

vidual’s set of abilities and scores in the corresponding

attributes.

2.1.2. Utility optimization
The second principle is a statement of human endeavour,

whereby one seeks to build beneficial ties. It is simply a vari-

ation on the theory of rational choice where individuals are

deemed to act in their own perceived best interest [26]. For

a given attribute Z, we express this necessary condition for

a directed social tie from person i to person j as

ði! jÞZ ) zðjÞ . zðiÞ: ð2:2Þ
2.1.3. Resource constraints
The third principle reflects the finite nature of individual

resources by adopting the concept of the travelling-time

budget tmax, that is the maximum amount of time a person

is willing to spend on a single commuting trip. There are sev-

eral explanations for the key role it plays in the model. First,

instead of Euclidean distances between geographical locations,

a more faithful representation of a city’s geometry is the set of

real travelling times along the spatially embedded, multi-

layered, transportation network between individuals (e.g.

[27]). Second, there is increasing evidence that the relevant

measure for the formation of social ties is tmax rather than

the spatial separation between pairs of individuals (see [28]

for a critical overview). In particular, it has been shown that

in cities across the world with high multi-modal commuting

behaviours, there is a uniformity in commute times that is

independent of travel distance [29].

Here, instead of imposing a single, universal tmax, such as

was done in [18], we allow for a list of different budgets

tX
max, tY

max, . . . to reflect the heterogeneity of differing priori-

ties and motivation levels for different activities undertaken

by a single, fixed, population. For example, a city dweller

who travels for 3 h to attend an important business meeting

might not be willing to spend more than 10 min on a

weekly drive to a supermarket.

This principle gives us a necessary condition for the

existence of a tie:

ði! jÞZ ) tij � tZ
max, ð2:3Þ

where tij is the travelling-time distance between individuals

i and j.
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2.1.4. Intervening opportunities
The fourth principle represents the search heuristic that a

person employs to perform constrained optimization and is

the defining geometric ingredient of our model. Each poten-

tial face-to-face interaction implies a minimal path defined by

the shortest connecting travel route, which, in turn, defines a

temporal social sphere within which one evaluates the merit

of the candidate interaction against other less costly options.

These temporal spheres Sij are simply the sets of people that

are closer to individual i than another individual j, i.e. in a

city of population size Npop,

Sij :¼ fkjtik , tijg
Npop

i¼1 , ð2:4Þ

with their cardinalities defining the components of the

rank matrix1

nij :¼ jSijj: ð2:5Þ

Then, we can express a third necessary condition for a

directed social tie as

ði! jÞZ ) zðjÞ . max
k[Sij

zðkÞ: ð2:6Þ

In studies of human mobility, the consideration of such

intervening opportunities has been shown to be the key to

understanding travel patterns between cities [30,31]. This

fourth principle of our model is entirely consistent with

and supports the growing body of evidence linking mobility

and social contact patterns in cities [24].

As will be shown in the next section, these four principles,

together with an assumption or prior knowledge of the

spatial distribution of attribute values among the population,

are sufficient to construct a weighted, directed network

with the nodes fi, j, . . .g representing a city’s inhabitants

and edge weights fProbði! jÞgNpop

i,j¼1 representing the prob-

abilities of social ties between individuals. This probability

network encapsulates the different levels of heterogeneity

(attributes, geometry, topology, transport modality and

spatial population distribution) in our model of a city. From

this probability network, one can extract a host of statistics

relevant to the problem at hand. Below we focus on the

expected degree, i.e. the expected number of social ties of

individuals in a city, which we take as a first measure

of connectivity, and which turns out to be a strong predictor

for several urban indicators.
2.2. Counting social ties
By design of the model, the three conditions (2.2), (2.3) and

(2.6) are together sufficient for the formation of the social

tie (i!j )z. The probability Prob(i! j )z is, therefore, simply

the probability that those three conditions are satisfied.

We begin by setting tmax!1, before reintroducing a

finite tmax at a later stage. Then by similar reasoning

behind the radiation mobility model [30], we have

Probði! jÞZ ¼ ProbðzðjÞ . zðiÞÞ � ProbðzðjÞ . max
k[Sij

zðkÞÞ:

ð2:7Þ

As we show in the electronic supplementary material, S1–S5,

this equation can be simplified to give

Probði! jÞ ¼ 1

nij þ 2
, ð2:8Þ
i.e. in the absence of travelling time budget constraints, the

probability of a social tie is entirely determined by the rank

matrix nij (2.5), and is the same for all attributes (hence the

dropped Z label).

This probability expression is, for large nij, virtually

equivalent to the proposal Prob(i! j)¼ 1/nij as introduced in

[25] and developed in [18]. Crucially, however, we have

shown that it can in fact be derived directly from first princi-

ples and is naturally regularized by being well defined when

nij ¼ 0 without the need for artificial and arbitrarily imposed

constraints on the minimum sizes of social spheres [18]. Remark-

ably also, the attribute-dependency retained at the beginning of

our derivation drops out naturally from the final expression—

our model is, therefore, a non-trivial instance of a probabilistic

and mechanistic social interaction model consistent with

observations of emergent urban-feature independence [17].

Clearly, the key input of the model is, then, the travelling-

time distance matrix tij from which one uses to build the rank

matrix nij. The data required for constructing tij are often

public and readily available online through a variety of

tools,2 as demonstrated in the application examples in §4.

The expected total number of ties TZ corresponding to an

attribute Z in a population of size Npop is then simply the sum

over each individual set of probabilities up to a finite tZ
max, i.e.

TZ ¼
XNpop

i,j¼1

1

nij þ 2
Iðtij � tZ

maxÞ: ð2:9Þ

Although technically correct, building the distance matrix tij

covering the entire population is highly impractical for all but

the smallest of cities. Instead, we subsample the geographical

extent of the city at Ns ð�NpopÞ points to generate the much

smaller sample distance matrix t̂ij. From this coarse-grained

representation of the city, we obtain the approximation

TZ � Npop ln
Npop

2Ns

� �
þ 1

Ns

XNs

i¼1

ln nZ
i

" #
þ 2Ns

�nZ , ð2:10Þ

where nZ
i :¼

PNs

k¼1 Iðt̂ik � tZ
maxÞ is the size of the social sphere,

as related to attribute Z, of the location i in the subsampled

city and �nZ ¼ ð1=NsÞ
PNs

i¼1 nZ
i (see the electronic supplementary

material for the derivation of this approximation). In the follow-

ing section, we show through a series of simulations that this

approximation is both unbiased and robust.

For the remainder of the paper, we drop the Z label for

notational clarity.
2.3. Local connectivity
The total number of ties T is a global, city-wide, connectivity

measure which encapsulates the intricate complexities of the

city geometry and heterogeneities in agent attributes. Our

model also offers a measure that captures the spatial vari-

ation in tie-formation across a city. We introduce the

concept of the local connectivity of some sub-region of a

city as the sum of all incoming and outgoing ties. Let Ti rep-

resent the local connectivity at the location of individual i,
such that T ¼

PNpop

i¼1 Ti. Then

Ti¼
1

2
ðTfrom

i þ Tto
i Þ

¼ 1

2
ln

ani

2
þ 1

� �
þ ga

2

XNs

j¼1
j=i

1

aðn̂ ji þ 3=2Þ þ 1=2
, ð2:11Þ
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where a ¼ Npop=Ns and g is a scaling factor that ensures, for

consistency, that
PNs

i¼1 Tfrom
i ¼

PNs

i¼1 Tto
i (for a full derivation

see the electronic supplementary material).

The distribution of Ti reflects the heterogeneity of the

induced interaction network (see electronic supplemen-

tary material, figure S3d). In particular, it enables one to

quantify the distinct and disproportionate influence that

transportation and other infrastructure schemes can have

in different parts of the city, as we show in an example

in §4.2.
J.R.Soc.Interface
12:20150315
2.4. Relating social-tie connectivity with other
measurable indicators

Our underlying assumption is that there is a link between the

attribute-specific social-tie connectivity T, as defined in (2.10),

and a measure U of a related productive urban activity:

U ¼ f ðTÞ ¼ a0 þ a1T þ a2T2 þ � � � : ð2:12Þ

U can correspond to socio-economic measures such as

gross domestic product (GDP), innovation indices, etc. We

are primarily interested here in scenarios where the

contribution of individual, isolated, efforts is either non-

existent (e.g. spreading of disease) or negligibly small

(e.g. collaborative scientific research output). In such cases,

a0 ¼ 0. As a first approximation, we consider here a simple

proportional relation with ai.1 ¼ 0, which often provides

reasonably good explicative power [18,32]. For example,

if the probability p of disease transmission in a single

encounter between an infected and susceptible individual

is small (e.g. sexual per-act human immunodeficiency virus

(HIV) transmission risk is less than 0.014 [33]), then within

a relatively short timeframe the total number of new infection

cases given T such interactions is simply pT. We, therefore,

define our relation to be simply

U ¼ aT, ð2:13Þ

with a [ R the single unknown parameter relating connec-

tivity and its related activity measure. In situations where

the first-order approximation breaks down, the networks of

social ties generated through our model allow the use of

higher statistics beyond the average degree, which could be

used to test hypotheses against (2.12). We discuss this point

further at the end of the paper (see also the electronic

supplementary material where we discuss the expected

degree distribution).

In summary, there are just two parameters in the model:

the constant of proportionality a and, implicit in the compu-

tation of T, the travelling-time budget tmax. We emphasize

that these parameters have precise meanings in the model,

i.e. they are not just post hoc adjustable tuning levers, and

that they can be inferred from data to characterize the

dynamics and the implications of human interactions con-

tained in the observations (for an example, see §3.4).

Alternatively, the parameters, tmax in particular, can be fixed

using prior knowledge, such as from travel behaviour surveys,

information from similar cities or from crowd-sourced location

data. Furthermore, under the linear assumption, the typical

exercise of comparing scenarios (e.g. the relative increase of

economic activity before and after the completion of a new

railway) affords a further simplification, as the parameter a
cancels out when taking ratios.
3. Validation of the social-tie model
The mathematical model above formalizes the hypothesis-

driven narrative stemming from our set of agent-driven,

behavioural principles and represents a possible mechanis-

tic process of face-to-face communication within a general

population together with its city-level phenomenological

implications. To check the implications of the model, we

have performed a set of simulations and empirical validations.

We begin by validating the procedure to obtain T, the

total number of ties. There are two separate aspects to consi-

der: (i) the statistical validity of the sampling approximation

(2.10) for the population-level T and (ii) the validity of the

rank-based formula (2.8) for the probability of a tie between

two individuals given the four principles in our model. We

examine both parts together in a single set of simulations,

as described below.
3.1. Statistical surrogates of cities with multi-modality
mobility

To test our model, we generate multiple surrogates of cities

and the corresponding travelling-time matrices under multi-

modal transport networks. These simulated cities are designed

to model real-world urban mobility patterns involving mul-

tiple transport modes. We consider four population sizes

Npop ¼ (300, 500, 800, 1200), with five different population dis-

tributions (a uniform distribution over a 45� 45 km square

area, and a two-dimensional, circularly symmetric, Gaussian

distribution with standard deviations of 3, 6, 9 and 12 km)

and two travelling time budgets (tmax ¼ 1, 2 h).

To simulate the multi-modal transportation infrastructure

we proceed as follows. For each pair of individuals i, j in our

simulated city, we compute the Euclidean spatial distance sij

and decompose into binary form

sij ; ðsð0Þij � 2
0Þ þ ðsð1Þij � 2

1Þ þ ðsð2Þij � 2
2Þ þ � � � , ð3:1Þ

where sðkÞij [ f0, 1g. The multi-modality transport network is

represented by a speed vector v ¼ ðv0, v1, . . . ; vmÞ, where

each component is the speed of a certain transportation

mode in order of increasing speed, vkþ1 � vk. We then gener-

ate the travelling-time distance matrix tij between all pairs of

points in the city as

tij ¼
Xm

k¼1

sðkÞij � 2k

vk
: ð3:2Þ

This framework for the simulation of travelling times

replicates two features of modern-day transport infrastruc-

ture, which is illustrated in figure 1. First, there is the

hierarchical nature of travelling speeds with faster transport

modes covering larger distances. Second, the framework

allows for the fact that travel between two locations in a

city typically involves a combination of transport modes

(e.g. bus þ train). The slowest mode of transportation is

given by v0 ¼ 4 km h21. A city with no transport infrastruc-

ture will be represented by a vector v ¼ (4, . . . , 4) and the

time between nodes is then the time taken to walk the spatial

separation distance. A more realistic case, where public trans-

portation modes of walking, bus and train networks are

considered, is represented by v ¼ (4, 10, . . . , 100). If private

travel is considered, different classes of roads and express-

ways traversed using bicycles or automobiles could be



walking network
edge lengths < 1 km

speed = 4 km h–1

bus-travel network
1 km < edge lengths < 2 km

speed = 15 km h–1

metro-travel network
edge lengths > 2 km
speed = 33 km h–1

multiscale mobility 
network decomposition

city interaction network

Figure 1. Multi-level mobility network decomposition of urban interaction networks. In the multilayer mobility networks, the red and green nodes represent the
origin and destination, respectively, of the particular directed edge in the city interaction network. The blue crosses indicate a transfer from one transport mode to
another (e.g. walking to metro), where each cross on a given layer corresponds to another on a different layer. Note that the spatial position of each transfer node in
each layer has no meaning other than to provide an indication of the spatial distance travelled in the corresponding mode.

Table 1. Travel speeds of four increasingly developed transport
infrastructures. v (0) represents the trivial case (i.e. no infrastructure). The
units are kilometres per hour.

v (0) ¼ (4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0, 4.0)

v (1) ¼ (4.0, 4.8, 5.8, 6.9, 8.3, 10.0, 11.9, 14.3)

v (2) ¼ (4.0, 5.6, 7.8, 11.0, 15.4, 21.5, 30.1, 42.2)

v (3) ¼ (4.0, 6.4, 10.2, 16.4, 26.2, 41.9, 67.1, 107.4)

rsif.royalsocietypublishing.org
J.R.Soc.Interface

12:20150315

5

considered. In our simulations, we considered four different

transport infrastructures, as shown in table 1.

In summary, four population sizes, five distributions,

two travelling time budgets, and three non-trivial transpor-

tation infrastructures give a total of 120 unique surrogate

cities, each given by its specified distribution of Npop points

on a square 45 � 45 km grid and a resulting Npop � Npop

travelling-time distance matrix tij.
3.2. Validation of the sampling procedure and
probability model

To validate our sampling (2.10), we compare the travelling-

time distance matrix (3.2) in our simulated cities obtained

from the whole population Npop and from a reduced sample

of Ns ¼ 150 points, as follows. Every one of the 150 � 149 ¼

22 350 possible directed ties in the sample is assigned a prob-

ability according to (2.8). The total number of ties in the sample

is obtained by summing over the probabilities, which are then

scaled up according to (2.10).

In the simulation of the full population Npop, we take the

viewpoint of each individual, and we rank the other Npop21

people in the population according to their travelling-time

distances from the individual. We consider a population

characterized by an attribute, and the individuals are inde-

pendent and identically distributed instances drawn from a

standard log-normal distribution. There are Npop(Npop21)

possible directed ties. Starting from the closest person, a

directed tie from the individual is assigned according to the
fourth modelling principle of intervening opportunities sub-

ject to the upper constraint of an upper bound tmax for the

travelling time.

The results of the comparison between the full population

and the sample are shown in figure 2a and the close match

demonstrates the validity of the probability model (2.8) as

well as demonstrating that the sampling procedure (2.10)

provides a good and unbiased approximation.

3.3. Comparison with power-law scaling models
Using real-world data from US cities, we compare the predictive

abilities of our model and that of power-law scaling models

[17]. We begin by generating travelling-time distance matrices

on sampled representations of 102 US Metropolitan Statistical

Areas (MSAs). The detailed information available3 on the

population distributions in these MSAs allows us to construct

sample distance matrices that are representative of the full

population-scale distance matrices. We then plot the com-

puted number of social ties T (as a function of the

travelling-time budget tmax) from our model against two

measures of urban activity U: the 2011 GDP and HIV infec-

tion rate.4 We also make the comparison with the

corresponding power laws against population density. As

shown in figure 2, the model is, on its own, well supported

by the data with a linear log U– log T relationship with

slope � 1. Our social-tie model provides an equally good fit

for the GDP case (R2 ¼ 0.92 (social ties) versus 0.91 (power

law)) and has a significantly stronger statistical support com-

pared to the power-law fit to population density in the HIV

infection rate case (R2 ¼ 0.94 versus 0.70). Much of this

improvement stems from the shift from counting people to

counting ties—specifically ties between HIV-positive and

negative individuals (see the electronic supplementary

material). It is the overly broad category of a city’s economic

output and the lack of specificity in the nature of such

relationships that explain the relatively marginal improve-

ment in statistical support in the GDP example. Together,

the examples support the view that the fundamental units

of a city are not its inhabitants but the social relationships

that exist between them.
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Figure 2. Validation of sampling procedure and empirical validation with HIV infection rates and GDP of 102 US Metropolitan Statistical Areas. (a) Comparison of the
total number of ties empirically counted according to the interaction model ( y-axis), with the number of ties estimated from population samples of 120 simulated
cities, according to (2.10) and (2.8) (x-axis). The four colours (red, blue, green and purple) indicate population sizes of 300, 500, 800 and 1200, respectively. Further
variations in the cities are created by imposing different population distributions, maximum travelling-time budgets and transport infrastructure. The circles indicate
the mean of 30 simulations and the vertical lines +2 s.d. As shown, the sampling procedure provides a reasonably good estimate of the total number of ties.
(b,e) Power-law fits of urban indicators to population density. (c,f ) Linear fits of urban indicators to tie-density with tmax set at the maximum-likelihood values (as
indicated by the blue circles in d,g). (d,g) Coefficient of determination of tie-density fits as a function of maximum travelling-time budget tmax. The error values on
the slope parameters indicate +2 s.d. We note that for both urban indicators, the fits to total tie-density outperform the fits to population density.
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3.4. Evidence for the attribute-dependence of the
travelling-time budget

In addition to its predictive performance shown above, and

because of its agent-driven construction, our model can also

shed light on the mechanistic origin of social interactions. For

instance, the two examples above (GDP and HIV infection) high-

light a marked difference in the underlying social dynamics

across the two attributes considered, as seen from the corre-

sponding maximum-likelihood estimates of tmax. We obtain

tmax ¼ 2.43 h (95% CI [0.36 h, 5.42 h]) for the GDP output

versus a markedly lower value of tmax¼ 0.94 h (95% CI

[0.36 h, 1.52 h]) for HIV infection rates. The confidence intervals

are given by quantiles from bootstrapped samples of the original

dataset (see the electronic supplementary material).

Ignoring for the moment the small range of variation in

R2 values with tmax, there are two immediate interpretations.

First, our fits indicate that, in contrast to economically pro-

ductive activities, it is unlikely that one would be willing to

travel for more than 1.5 h to engage in activities associated

with HIV transmission. Second, as expected, GDP stems

from a wide range of activities leading to a more variable

tmax. Recognizing and quantifying such differences in inter-

pretable parameters and their variances, which would be

missed by simple scaling arguments, is of relevance in efforts

to build both prosperous and healthy cities.

Nevertheless, despite the bootstrapped analysis giving

confidence intervals for our tmax estimates, the small range

of variation in R2 suggests a level of redundancy in our

model with the constant of proportionality a in (2.13) afford-

ing too much freedom. In order to increase the robustness of

the model when applied to real data, we eliminate the pro-

portionality parameter a by considering relative increases of

indicators, i.e. we consider the ratio U1/U2 of the economic

indicators. This is illustrated in the next section, where we

provide two examples of the application of this approach.
4. Applications of the social-tie model
To illustrate the applicability of our model, we examine two

examples of large-scale transportation projects in the UK:

High Speed 2 (HS2) and London Crossrail.

4.1. The High Speed 2 project
HS2 is the proposed high-speed rail network connecting the

major cities in Britain, from London in the south to the north-

ern cities of Leeds, Manchester and beyond. In this section, we

focus on the first-phase link between London and Birmingham

that would reduce the one-way travel time from the current 84

to 50 min. We treat the two cities as a single conurbation and

omit the influence of the neighbouring regions; the results

presented here should be interpreted in the light of this geo-

graphical treatment. In figure 3, we plot the total and

percentage increases in the number of ties as a function of

tmax. If we take the value of tmax ¼ 2.43 h, which we inferred

previously for the GDP-related travelling-time budget, the

average economic boost induced by the presence of HS2

across the two cities would be �0.96%. A more robust

approach is to consider a range of possible time budgets to

evaluate the effect of uncertainty in tmax (see the electronic

supplementary material). For instance, assuming a uniform

distribution over 1 , tmax , 3, we obtain an increase in GDP

of 0.80%. Interestingly, we observe a middle ‘sweet spot’ at

tmax � 2 h: at the lower tail, the journey times are insufficiently

short to tempt one to travel further, while at the upper tail, the

efforts are wasted on a population already willing to endure

long commutes.

4.2. London Crossrail
Crossrail is a high-frequency railway linking east and west

London currently under construction. Under the same tmax

assumptions as for HS2 above, the projected impact of
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Figure 3. High Speed 2 (Phase 1) and its impact on the connectivity of UK cities. (a) HS2 (Phase 1) route and the population densities of London and Birmingham.
The blue line indicates the published proposed route of the first phase of HS2 (as of December 2013). The red diamonds indicate the locations of the rail stations in
each city. The contour maps are derived from kernel density estimates of 1000 and 129 sample points in London and Birmingham, respectively. The ratio of the
number of samples is chosen to reflect the relative sizes of the two cities. (b,c) Impact of HS2 (Phase 1) on the connectivity of UK cities. The black curve indicates the
connectivity without HS2. The red curves indicate the connectivity according to the planned improved travel times (50 min between London and Birmingham). The
grey curves in (c) indicate hypothetical travel times of 30, 40 and 60 min.

rsif.royalsocietypublishing.org
J.R.Soc.Interface

12:20150315

7

Crossrail on the London economy is a 0.3% increase in the

city’s GDP (with an increase of 0.61% for the uniform distri-

bution of tmax; figure 4). The percentage increases may

appear small (less than 1%), but are by no means unexpected

for two reasons. First, the stated investment cost is itself a

small fraction of London’s GDP. Second, the modest boost

is simply a reflection of the highly concentrated population

density in the central regions and the extensive transport

infrastructure already in place.

The availability of precise local geographical data allows us

to further interrogate the model to determine the spatial distri-

bution of local connectivities Ti (2.11). Indeed, it is important to

note that neither the current local connectivity levels nor the

impact of Crossrail are evenly distributed or felt across the

city (figure 4). As would be expected, the largest increases

are found near railway stations, especially in London’s sub-

urbs. As we explore further (see electronic supplementary

material, figure S5), there is a concentration of newly possible

connections along the east–west extent of the city. More sur-

prisingly, however, we observe a decrease across large areas

along the orthogonal north–south axis driven by falls in their

relative accessibility—the rising tide of connectivity does not

lift all boats. This effect may be unavoidable, but the ability
to quantify and map its spatial extent allows one to anticipate

and, possibly, alleviate its impact.

There is a mooted north–south extension—Crossrail
2—which is currently under study (see the electronic supple-

mentary material for details). In similar fashion to Crossrail,

the expected additional boost to GDP can be calculated and

is shown in figure 4. Crucially, in line with one’s intuition,

the negative local impact is now distributed outside the

areas surrounding the Crossrail 2 rail line.
5. Discussion
Unlike typical social network and epidemiological studies

that assume a fixed and known network structure within

which various dynamical processes (e.g. spread of diseases)

are constrained, our approach obtains interaction networks

as induced structures that emerge from the application of

our set of principles to different cities. In this sense, these

interaction networks are unobserved structures, much like

genealogical trees in population genetics [34]. Unlike

random geometric graphs emerging in models of cities

with uniform population distributions [35], our model
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incorporates agent-driven optimization principles and phys-

ical constraints from the geometry and topology of each

city. Hence, rather than functioning as input features for

our model, these resulting networks capture and are confi-

ned by the make-up of the demographic and transport

infrastructure data under study.

Although the unobservable nature of the underlying con-

nectivity networks poses challenges for the direct validation

of our model, the recent availability of large-scale location

data from mobile phones appears to offer a wealth of possibi-

lities for testing some of the model assumptions, e.g. the

existence of travelling-time budgets tZ
max, and their assumed

uniformity across the population for each attribute. However,

there are specific conditions that such empirical studies must

fulfil. In particular, one should be able to identify, with

reasonable certainty, the purpose and deliberateness of both

single journeys and social ties observed. In this context, the

growth of location-based and, crucially, activity-specific,

social networking services could provide valuable infor-

mation [36], in contrast to simply relying on proximity

information for social tie prediction [37].

As shown above, the overall connectivity T is, on its own,

a strong predictor for several urban indicators and we have

concentrated on this aspect in this paper. This is reassuring

given the known ability of mean-field theory to capture

basic trends [38] on networks. Nevertheless, further details

and statistics (e.g. heterogeneity) of the obtained networks

could be studied, as the mechanistic and constructive

nature of our model provides the necessary information for

extracting these additional features. We provide a short

illustration of this process in the electronic supplementary
material. An extension of our model will be to propose and

test the analogue of (2.13) with different network statistical

measures in place of T.

The generic nature of the proposed framework and the

increasing availability of geo-location and travel data ensure

a broad and growing array of applications. This includes gau-

ging the robustness of a city to traffic congestions and

measuring the cost of weather-related disruptions. Methodo-

logical extensions to the model might include, for instance,

replacing travel time with a cost function incorporating

spatial distance, financial cost and the time of day.

Our focus for most of this paper has been on the city as

defined by civil administrative conventions. Since studies of

cities are sensitive to the exact definition of a city itself

[39,40], there is the option of adopting one of the more

nuanced alternative definitions that do not include any arbi-

trary geographical boundaries [41]. However, the model itself

is actually agnostic as to the source of the population vari-

ables Npop or the travelling-time distance matrices tij, as

indeed we have shown by treating the two cities of London

and Birmingham as a single entity in our analysis above.

Our approach can thus be applied to reflect the connectivity

among geographical entities both on a larger scale (countries

or larger geographical regions) and a smaller scale (buildings

or campuses). On such smaller scales, this approach can

inform design to maximize the creative, social and economic

benefits resulting from human encounters. Regardless of the

context of application, it is not the actual spatial size but

the extent perceived via travelling times that determines the

connectivity of a system. Large cities may be great, but

great cities most certainly look small.
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West GB. 2007 Growth, innovation, scaling,
and the pace of life in cities. Proc. Natl Acad.
Sci. USA 104, 7301 – 7306. (doi:10.1073/pnas.
0610172104)

18. Pan W, Ghoshal G, Krumme C, Cebrian M, Pentland
A. 2013 Urban characteristics attributable to
density-driven tie formation. Nat. Commun. 4, 1961.
(doi:10.1038/ncomms2961)

19. Bettencourt LMA. 2013 The origins of scaling in
cities. Science 340, 1438 – 1441. (doi:10.1126/
science.1235823)

20. Bettencourt L, West G. 2010 A unified theory of
urban living. Nature 467, 912 – 913. (doi:10.1038/
467912a)

21. Stumpf MPH, Porter AMA. 2012 Mathematics.
Critical truths about power laws. Science 335,
665 – 666. (doi:10.1126/science.1216142)

22. Nee S, Colegrave N, West SA, Grafen A. 2005 The illusion
of invariant quantities in life histories. Science 309,
1236 – 1239. (doi:10.1126/science.1114488)

23. Arbesman S, Kleinberg JM, Strogatz SH. 2009
Superlinear scaling for innovation in cities. Phys.
Rev. E 79, 016115. (doi:10.1103/PhysRevE.79.
016115)

24. Toole JL, Herrera-Yaqüe C, Schneider CM, González
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