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Abstract: Capsid-like particle (CLP) displays can be used to enhance the immunogenicity of vaccine
antigens, but a better understanding of how CLP vaccines are best formulated and delivered is needed.
This study compared the humoral immune responses in mice elicited against two different vaccine
antigens (a bacterial protein and a viral peptide) delivered on an AP205 CLP platform using six differ-
ent adjuvant formulations. In comparison to antibody responses obtained after immunization with
the unadjuvanted CLP vaccine, three of the adjuvant systems (neutral liposomes/monophosphoryl
lipid A/quillaja saponaria 21, squalene-in-water emulsion, and monophosphoryl lipid A) caused sig-
nificantly increased antibody levels, whereas formulation with the three other adjuvants (aluminum
hydroxide, cationic liposomes, and cationic microparticles) resulted in similar or even decreased
antibody responses. When delivering the soluble bacterial protein in a squalene-in-water emulsion,
4-log lower IgG levels were obtained compared to when the protein was delivered on CLPs without
the adjuvant. The AP205 CLP platform promoted induction of both IgG1 and IgG2 subclasses,
which could be skewed towards a higher production of IgG1 (aluminum hydroxide). Compared to
other routes, intramuscular administration elicited the highest IgG levels. These results indicate that
the effect of the external adjuvant does not always synergize with the adjuvant effect of the CLP
display, which underscores the need for empirical testing of different extrinsic adjuvants.

Keywords: vaccine; capsid-like particle; virus-like particle; adjuvants; AP205; route of immunization

1. Introduction

Recombinant protein expression holds promise in enabling the production of ef-
fective vaccines against many diseases [1], yet soluble proteins often fail to produce
sufficient immune protection due to intrinsic low immunogenicity [1,2]. To overcome
suboptimal immunogenicity of subunit vaccines, a number of novel adjuvant systems have
been developed to boost or modulate immune responses induced by vaccine antigens [3].
Capsid-like particles (CLPs) are promising tools for vaccine development. CLPs are highly
immunogenic due to their structural resemblance to live viruses, particularly their size
(20 nm–200 nm) allows for direct drainage into lymph nodes [4,5]. In addition, the repet-
itive surface structure promotes uptake and cross presentation by antigen-presenting
cells [6–8] and facilitates efficient B cell receptor crosslinking [9,10]. CLPs can be used as
scaffolds for the presentation of unrelated antigens. CLP display technologies exploit the
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delivery of an antigen in a particulate, multivalent, and repetitive format increasing the
immune-stimulatory activity of the antigen. In fact, many modular CLP-based vaccine
platforms have emerged [11–18] and make it possible to employ a common CLP backbone
for delivery of a vast variety of vaccine antigens [19–23].

Our group previously developed a modular CLP-based vaccine platform using the
AP205 bacteriophage CLP as a backbone for covalently attaching diverse antigens on their
surface through a tag/catcher split-protein interaction [14]. As this CLP platform is becom-
ing a generic tool for vaccine development, we sought to explore whether formulating the
CLP in extrinsic adjuvants [24,25] affects the humeral immune response to the vaccine and
whether a particular immunization route is preferable for vaccine administration.

These factors might be dependent on the specific antigen being presented on the
CLP. Nonetheless, in this study, we used the SpyCatcher-AP205-L2 vaccine [19] as a
prototype AP205 CLP vaccine displaying both a vaccine peptide (Human Papilloma Virus
(HPV) 16 L2 RG1 epitope) and a poorly immunogenic bacterial protein (SpyCatcher).
This dual-antigen CLP vaccine provided the basis for evaluating the humoral immune
response in mice obtained by using different extrinsic adjuvant formulations that are either
comparable to adjuvants already used in humans (neutral liposomes/monophosphoryl
lipid A/quillaja saponaria 21 (LMQ), squalene-in-water emulsion (SWE), monophosphoryl
lipid A (MPL), and aluminum hydroxide (AlOH)) or are promising experimental adjuvants
(cationic liposomes (CL) and cationic microparticles (MP)) (Table 1). Lastly, we compared
the immunogenicity of the CLP vaccine when using different immunization routes.

Table 1. Overview of the extrinsic adjuvants used in present study.

Adjuvant Full Name Composition Proposed Th1 /Th2
Phenotype

Expected Mode of Action
(Based on Comparable

Adjuvant Systems)

LMQ

Liposomes
Liposomes containing

DOPC/cholesterol with TLR4 ligand
and QS21 saponin

Th1 [26,27]

TLR4 signaling [28]

TLR4 ligand
immune cell recruitment, activation,

and priming [29]

saponin
Inflammasome activation and

antigen cross presentation
(QS21) [30]

SWE

Squalene-in-
water

Oil-in-water emulsion containing
squalene, Tween 80, and Span 85 Th1 and Th2 [31]

Immune cell recruitment [32]

emulsion

Induction of ATP release [33] causing
NALP3 inflammasome-independent

release of IL33 [34] and triggering
Myd88-dependent signaling [35]

MPL Monophosphoryl Monophosphoryl Th1 [36] TLR4 signaling [28]lipid A lipid A

CL
Cationic

DPPC (1,2-dipalmitoyl-sn-glycero-3-
phosphocholine)/DC-cholesterol

(3ß-[N-(N’,N’-dimethylaminoethane)-
carbamoyl]cholesterol

hydrochloride)

Dependent on size [37],
charge [38],

and rigidity [39]

Antigen delivery and retention [40]

liposomes Stimulation/activation of antigen
presenting- and epithelial cells [41]

AlOH Aluminum
hydroxide

Aluminum
Th2 [42]

Antigen delivery and uptake [43];
immune cell recruitment [44]

Uric acid [45], DNA [46],
and heat-shock protein 70 [47]hydroxide NALP3 inflammasome

induction [48]

MP Cationic
microparticles

PLGA (poly
(DL-lactide-co-glycolide)/CTAB (cetyl

trimethylammonium bromide)
Th1 and Th2 [49] Antigen delivery [49], retention,

and uptake [50]

2. Materials and Methods
2.1. Design, Expression, and Purification of SpyCatcher-AP205-L2

SpyCatcher-AP205-L2 was designed, recombinantly expressed, and purified as de-
scribed in [19]. Briefly, the RG1 epitope of the minor capsid protein (L2) of Human Papil-
loma Virus (HPV) 16 (QLYKTCKQAGTCPPDIIPKVEG) was attached by PCR amplification



Vaccines 2021, 9, 131 3 of 14

to the 3′ end of the SpyCatcher-AP205 construct [14]. The SpyCatcher-AP205-L2 con-
struct was inserted into a pet-15b vector, expressed in One Shot® BL21 Star™ (DE3) cells
(Thermo Scientific), and purified on Optiprep™ (Sigma-Aldrich, Denmark) step gradients,
as previously described [14,19,22]. Throughout this article, the above described SpyCatcher-
AP205-L2 CLP vaccine is referred to as the “CLP vaccine”.

2.2. Design, Expression, and Purification of SpyCatcher and HPV16 L2 Control Antigens

To produce the recombinant SpyCatcher control antigen, a flexible Glycine-Glycine-
Serine (GGS) linker, followed by a hexahistidine (6xHis)-tag was added to the C-terminus
of SpyCatcher. SpyCatcher was produced in One Shot® BL21 Star™ (DE3) cells (Thermo
Scientific) and purified using ion metal affinity chromatography as well as ion exchange
chromatography. This protein was used as the coat for anti-SpyCatcher IgG ELISA and as
the control antigen in mouse immunizations (described below)

The RG1 epitope of HPV16 (QLYKTCKQAGTCPPDIIPKVEG) was attached by overlap
extension PCR to the 5′ end of a biologically irrelevant carrier protein (accession num-
ber WP_057363222, amino acid 44-338). The HPV peptide/protein fusion was expressed
in One Shot® BL21 Star™ (DE3) (Thermo Scientific) and purified using ion metal affin-
ity chromatography as well as size exclusion chromatography (HiLoad Superdex 75pg,
GE Healthcare). This protein was used for coat protein in the anti-HPV peptide ELISAs.

2.3. Design, Expression, and Purification of SpyTag-MS2 and Preparation of SpyCatcher-MS2

To raise the antibody titers against SpyCatcher and SpyTag in mice, a different CLP
backbone than AP205 was required. For this reason, the MS2 CLP was used to make
SpyTag and SpyCatcher presenting MS2. SpyTag-MS2 was designed to include the SpyTag
(AHIVMVDAYKPTK) at the N-terminus of the MS2-CLP gene (PDB 1U1Y). This gene
was subcloned into a pet-15b vector and transformed into One Shot® BL21 Star™ (DE3)
cells (Thermo Scientific) for expression. The assembled SpyTag-MS2 CLP was purified on
Optiprep™ (Sigma) step gradients, as described for AP205.

SpyCatcher-MS2 CLP were created by incubating SpyTag-MS2 CLPs with SpyCatcher-
ggs-His control antigen (production described above) at a 1 to 5 molar ratio for 16 h at 4 ◦C.
Excess SpyCatcher was removed by dialyzing against 1 × phosphate buffered saline (PBS)
using 1000 kDa molecular weight cut-off (MWCO) tubing (SpectraPor).

2.4. Removal of Endotoxins

Triton X-114 was used in order to remove endotoxins from the CLP vaccines (prototype
AP205 CLP vaccine and the MS2 CLP vaccines used to raise preexisting antibodies) as well
as control antigens, as described in [51].

2.5. Vaccine Formulation

The CLP vaccine was diluted to 0.1 µg/µL and formulated under sterile conditions
1 h prior to immunization in the following extrinsic adjuvant formulations: aluminum
hydroxide (alhydrogel/AlOH), squalene water emulsion (SWE), a mix of neutral liposomes
(DOPC–cholesterol)/monophosphoryl lipid-A/quillaja saponin 21 (QS21) (together called
LMQ), cationic microparticles (MP), cationic liposomes (CL), or monophosphoryl lipid-A
(MPL), as indicated in Table 2. The amount of each compound included in the different
adjuvant formulations is shown (per dose of 50 µl) in Table 3. Control vaccines consist-
ing of soluble SpyCatcher formulated in either LMQ or SWE were administered using a
similar antigen dose (i.e., similar copy number of SpyCatcher) to that used for immuniza-
tions with the SpyCatcher CLP vaccines. The neutral liposomes, SWE, CL, and MP were
manufactured at the Vaccine Formulation Laboratory. QS21 and MPL-A (via sonication
in aqueous buffer) solutions were resuspended at the Vaccine Formulation Laboratory
(1 mg/mL). LMQ adjuvants were mixed immediately prior to formulating with the CLP or
the control antigen.
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Table 2. Formulation protocol for the capsid-like particle (CLP) vaccine in adjuvants.

Name Adjuvant Suspension Antigen Solution Injection Volume

Adjuvant PBS (µL) (µL) (µL)

SWE 175 µL Squalene Water
Emulsion 35 140 50

AlOH 61.8 µL Alhydrogel 148.2 140 50

LMQ
70 µL Liposomes

140 5070 µL MPL-A
70 µL QS21

CL 70 µL Cationic Liposomes 140 140 50

MP 175 µL Microparticles 35 140 50

MPL 70 µL MPL-A 140 140 50

Table 3. Amount of compounds used in the extrinsic adjuvant formulations.

Formulation µg per Dose of 50 µL

SWE squalene 1000 µg
AlOH AlOH 90 µg

LMQ
MPL: 10 µg
QS21: 10 µg

CL
DPPC: 46 µg

DC-Chol: 34 µg

Microparticles PLGA: 250 µg
Dextran: 125 µg

TLR4 bacterial source MPL: 10 µg

2.6. Mouse Immunization Studies

Adjuvant formulation study: In one study, female, 8-week-old BALB/c mice (Janvier
Labs, France) were immunized twice (week 1 and 3) with 2 µg of CLP vaccine formulated
in extrinsic adjuvants (as described above and in Table 2, n = 6 per adjuvants group) or
without (n = 6). Mice were immunized intramuscularly (IM) in the thigh muscle (50 µL per
dose). The IgG ELISA determination included n = 6 mice for the LMQ, SWE, MPL, and CL
groups; n = 5 for the no adjuvant group and MP groups; and n = 4 or n = 5 for the AlOH
group (anti-SpyCatcher or anti-HPV respectively).

Route of Immunization Study

In another study, female BALB/C mice (8 weeks of age) were also immunized with
2 µg of CLP vaccine formulated without extrinsic adjuvants and using alternative routes of
injection (n = 6 per immunization route). Mice received 30 µL per dose using intradermal in-
jections (ID, on the back, shaved prior to injection), subcutaneous injections (SC, in the neck
fold), intramuscularly (in the thigh muscle), and intra nasally (IN). For immunizations into
the peritoneal cavity (IP), 100 µL injection volume was used. Mice receiving intradermal,
subcutaneous, and intranasal immunizations were briefly anesthetized using isoflurane.

For both abovementioned studies, blood samples were collected on week 8. Serum pu-
rified from these blood samples was used for antigen-specific IgG ELISA and IgG iso-
type subtyping.

2.7. Antigen-Specific Serum Immunoglobulin Levels

In order to detect the level of anti-SpyCatcher and anti-L2 (HPV16 RG1 epitope)
IgG, following the immunization of mice with the CLP vaccine, a standard enzyme-linked
immunosorbent assay (ELISA) was employed as described previously [19]. Briefly, to detect
SpyCatcher-specific IgG titers, 96-well microtiter plates (Nunc MaxiSorp were incubated
with 0.1 µg per well SpyCatcher-ggs-His or HPV16 L2 RG1 antigen; 1 × PBS buffer was
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used for all serum dilutions, and 1 × PBS + 0.5% skim milk powder (w/v) was used for
blocking the plates. Secondary goat anti-mouse IgG-horseradish peroxidase (Novex) was
used along with 3,3′,5,5′-Tetramethylbenzidine (TMB) as a substrate for developing the
plates. The reaction was stopped with 0.2 M H2SO4, and the color signal was measured
at O.D. 450 nm. A control sample containing high levels of antigen-specific IgG was used
across all ELISA plates for normalization. The antibody titers were measured as area under
the curve values for both SpyCatcher or HPV16 L2 IgG using an y-axis cutoff calculated as
follows: mean (O.D. 450 nm of background wells) + 3× standard deviation (O.D. 450 nm
of background wells).

2.8. Serum IgG Subclass Profiling by ELISA

The relative proportions of mouse IgG isotypes following immunization with the
CLP vaccine formulated in different extrinsic adjuvants (or without) was determined by
ELISA as described previously [14]. First, the IgG was normalized by dilution, according
to a predetermined O.D. 450 nm value (i.e., obtained by a serum dilution in a standard
ELISA described above). Hereafter, secondary HRP-conjugated antibodies targeting mouse
total IgG (Novex), IgG1 (Invitrogen), IgG2a (Invitrogen), IgG2b (Thermo Fischer), or IgG3
(Thermo Fischer) were used for detection of the different subpopulations of antibody
isotypes. Each serum sample was measured in triplicate and developed for 7 min with
o-phenylenediamine substrate. The enzymatic reaction was stopped by adding of 2 M
H2SO4. Optical density was measured at 490 nm. To determine the % IgG subclass of total
IgG, the obtained O.D. 490 nm value measured following incubation with the antibodies
targeting different IgG subclass was divided by the O.D. 490 nm value obtained by mouse
total, SpyCatcher-specific, IgG (Novex). For the no adjuvant group and MP, n = 3; for the
remaining groups, n = 6.

3. Results

The CLP-based vaccine, SpyCatcher-AP205-L2, was employed. This vaccine is based
on recombinant expression in E. coli of an AP205 capsid protein containing an N-terminal
SpyCatcher protein and a C-terminal tail of 23 peptides corresponding to the RG1 epitope
of the L2 protein of Human Papilloma Virus (HPV) 16. These genetically modified struc-
tural AP205 proteins spontaneously form CLP, presenting the SpyCatcher protein and the
HPV peptide on protrusion from their surface [19]. In this study, the SpyCatcher protein
serves as a model vaccine antigen, although the intended function is to spontaneously
form a covalent bond with a recombinant protein carrying a SpyTag. This allows for a
simple conjugation reaction resulting in the formation of a covalent bond between two
components, i.e., a protein vaccine antigen and the AP205 particle [19]. Groups of six mice
were vaccinated twice, three weeks apart, with the CLP vaccine in phosphate buffered
saline or in the presence of one of six adjuvants (see Figure 1 for an overview and Table 1
for details). As a control, two groups of mice were vaccinated with recombinant soluble
SpyCatcher not displayed on CLP but formulated in LMQ or SWE.

3.1. Comparison of Humoral Responses Induced by Prototype CLP Vaccine Formulated with
Different Extrinsic Adjuvants

The responses were compared by measuring SpyCatcher protein or HPV peptide-
specific immunoglobulin G (IgG) levels, measured as the area under the curve (AUC) in
serum collected five weeks after the last immunization (Figure 1). The control vaccines
(SpyCatcher without CLP display) adjuvanted with LMQ or SWE elicited limited or no
anti-SpyCatcher IgG (Figure 2a). By contrast, displaying the antigen on the surface of the
CLP and formulating in the same adjuvants resulted in significantly higher levels of anti-
SpyCatcher IgG (7-fold log increase and 6-fold log increase for LMQ (p = 0.0095) and SWE
(p = 0.0043), respectively), in all vaccinated animals. Administering the CLP vaccine with
LMQ, SWE, or MPL significantly boosted anti-SpyCatcher IgG levels (p = 0.009, p = 0.02
and p = 0.03 for LMQ, SWE, and MPL, respectively) compared to the non-adjuvanted
CLP vaccine (corresponding to about 1–1.5 log increase in endpoint titers, Supplementary
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Figure S1). Mice receiving the CLP vaccine with CL, AlOH, or MP had similar (CL and
AlOH) or lower (MP, p = 0.02) antibody levels compared to mice receiving the CLP-based
vaccine without adjuvant (this corresponds to a one-log drop in endpoint titer for MP,
Supplementary Figure S1).
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were immunized intramuscularly (IM) with all CLP formulations in a prime-boost regimen at
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specific IgG levels measured as the area under the curve (AUC) (AUC = the optical density (O.D.) at 450 nm multiplied by the
dilution factor) following immunization with the SpyCatcher-AP205-L2 (+CLP) vaccine formulated in different adjuvants.
Specifically, mice were immunized with liposomes/MPL/QS21 (LMQ, purple, n = 6), squalene water emulsion (SWE, blue,
n = 6), monophosphoryl lipid A (MPL, green, n = 6), no adjuvants (none, white, n = 5), cationic liposomes (CL, yellow, n = 6),
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soluble SpyCatcher protein formulated in either LMQ or SWE (−CLP, black, n = 6 for both groups) using a similar antigen
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there was a statistic significant difference between two or more groups ((a) SpyCatcher p < 0.0001 and (b) HPV peptide
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to the non-adjuvanted group are presented in the graph. See Supplementary Figure S2 for all p-value calculations.

When comparing yjr IgG responses to the HPV peptide, similar results to that for the
SpyCatcher CLP were seen (Figure 2b). Mice receiving the CLP vaccine adjuvanted with
LMQ, SWE, or MPL had higher IgG AUC levels (corresponding to approximately one log
higher endpoint titers, Supplementary Figure S1) against the HPV peptide compared to
mice receiving the CLP vaccine without adjuvant. However, this trend was only significant
for LMQ and MPL (p = 0.009 and 0.004 for LMQ and MPL, respectively). Likewise, for the
anti-HPV peptide response, the mice receiving the CLP vaccine adjuvanted with CL, AlOH,
or MP had similar antibody levels compared to mice receiving the CLP without adjuvant.

3.2. Induction of IgG Subtype Profiles by CLP in Different Adjuvant Formulations

To further evaluate how the extrinsic adjuvants modify the immune response gener-
ated by the CLPs, the serum levels of (anti-SpyCatcher) IgG subclasses were measured eight
weeks after the first immunization. Figure 3 shows the relative amount of IgG subclasses
produced (i.e., normalized against the total level of anti-SpyCatcher IgG). Mice accinated
with the CLP vaccine produce high relative levels of both IgG1 (Figure 3a) and IgG2a
(Figure 3b) and to a lesser extent IgG2b (Figure 3c) and IgG3 (Figure 3d) (geometric means
of 18%, 27%, 9%, and 6.5%, respectively). Administering the CLP in LMQ, SWE, MPL,
CL, or MP does not alter the overall IgG subclass distribution produced by the CLP alone.
However, mice vaccinated with CLP formulated in LMQ, SWE, or MPL had produced
higher overall IgG levels and, therefore, in absolute measures, produced higher levels of
each of the respective IgG subclasses. Also, mice receiving CLP formulated with MP pro-
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duced higher proportions of IgG1 (nonsignificant trend). Mice receiving the CLP vaccine
with AlOH produced distinctly higher IgG1 levels (Figure 3a, p = 0.02 compared to no
adjuvant) as well as a markedly lower IgG2a levels (nonsignificant trend) in comparison to
the unadjuvanted CLP group.
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Figure 3. Characterization of vaccine-induced IgG subclasses. To characterize the IgG responses
induced by the SpyCatcher-AP205-L2 vaccine formulated in the different extrinsic adjuvants, the rel-
ative proportions of IgG subclasses were normalized against the total vaccine-induced IgG. The four
panels show the relative amounts of IgG1 (a), IgG2a (b), IgG2b (c) and IgG3 (d). The geometric
mean is displayed along with the geometric standard deviation (SD). Kruskal–Wallis test showed
that there was significant differences between two or more groups ((a) p = 0.0016, (b) p = 0.0085,
(c) p = 0.0380, and (d) p = 0.0052). Hereafter, uncorrected, pairwise Mann–Whitney analysis was con-
ducted to assess statistically significant differences between each of the different adjuvant groups
and the un-adjuvanted group (none). Significant differences are indicated in the graph.

3.3. Comparison of IgG Responses Induced by Prototype CLP Vaccine Delivered via Different
Routes of Immunization

To investigate the immunogenicity after delivering the un-adjuvanted prototype
CLP vaccines using different routes. A total of 2 µg of the CLP vaccine was immunized
intramuscularly (IM), subcutaneously (SC), intradermally (ID), or intranasally (IN) in
30 µL volume as well as 100 µL intraperitoneally (IP). IM vaccination elicited the highest
geometric mean IgG levels (measured as the area under the curve (AUC), corresponding
to 1–2 log higher endpoint IgG titers (Supplementary Figure S3). However, robust anti-
SpyCatcher IgG levels were also found in mice vaccinated by the other routes (Figure 4a).
In all animals, the levels of anti-HPV peptide IgG levels were markedly lower following
all routes of immunization (Figure 4b), and the previously observed advantage of IM
immunization was no longer apparent.
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4. Discussion

The ultimate goal of vaccination against infectious diseases is to raise long-lived,
protective immune responses with as few administrations and side-effects as possible.
CLPs have gained increasing interest as vaccine vehicles as they share many characteristics
with live-attenuated vaccines that are capable of inducing long-lived protective immunity
after a single immunization [52]. The modular approach for covalent attachment of antigens
to AP205 CLP using split-protein technology has established itself as a potent and versatile
vaccine platform [14]. To further characterize the platform, this study measured humoral
responses to a prototype AP205 CLP vaccine (displaying a protein and a peptide antigen)
with different extrinsic adjuvants and immunization routes.

An important confirmation was that CLP display could dramatically improve the
immunogenicity of a protein antigen (SpyCatcher), whereas formulation of the same anti-
gen with extrinsic adjuvants alone had minimal effects. Similar results were previously
reported for other antigens (e.g., the malaria protein Pfs25 [14]) showing that CLP dis-
play can activate different or additional immune mechanisms compared to the tested
extrinsic adjuvants.

Interestingly, formulation of the prototype AP205 CLP vaccine with different extrinsic
adjuvants was capable of either increasing or decreasing the immunogenicity of the CLP-
displayed antigens. Specifically, formulation with LMQ, SWE, and MPL increased antibody
responses, whereas formulation with CL, AlOH, and MP resulted in similar (AIOH/CL) or
decreased (MP) antibody levels compared to immunization with AP205 CLP alone.

A particle size range of 20–200 nm allows for draining to secondary lymphoid or-
gans [4,5]. By contrast, large micron-sized particles are dependent on dendritic cells (DCs)
for transport to the draining lymph node and typically remain at the site of injection [53].
It is possible that lymph node drainage of the AP205 CLP was prevented by adsorption on
MP, which offers an explanation for the reduced endpoint antibody responses of the AP205
CLP/MP vaccine formulation. The LMQ and MPL adjuvants increased the IgG elicited by
the CLP vaccine. Both adjuvants include a TLR-4 agonist (corresponding to monophospho-
ryl lipid A [28]); a possible explanation could be that auxiliary immune stimulation of the
B cell, through engagement of TLR4 together with rigid, high-density, and oriented antigen
display could cause the observed synergistic increase in antigen-specific antibody levels.
The question remains whether this observation can be translated to the clinic, since TLR4 is
constitutively expressed on murine B cells but not in human [54]. However, clinical studies
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comparing the immunogenicity of different HPV CLP formulations, containing either
AlOH or AlOH plus the TLR4 agonist, revealed that the latter formulation elicited higher
levels of neutralizing antibodies as well as a higher frequency of memory B cells [55,56].
Comparable results have also been reported for the enveloped Hepatitis B surface Ag
virus-like particle (VLP) vaccine [57]. Recombinant AP205 CLPs (and other bacteriophage
CLPs) contain encapsulated host RNA from their production in E. coli. The bacterial RNA
significantly boosts the immunogenicity of the CLP via TLR7/8 activation [58]. Further-
more, multiple studies have demonstrated that co-delivery of TLR4 and TLR7/8 agonists
potently and synergistically enhances antigen-specific immune responses [59–61]. This is
evidenced by increased cytokine secretion leading to intensified germinal center formation,
including antibody class switching [59–61]. Accordingly, the increased immunogenicity
observed by formulation of the prototype AP205 CLP vaccine with LMQ or MPL alone
is likely caused by the described synergistic interplay between the TLR-4 and TLR7/8
activation pathways. A related example of adjuvants working in synergy is documented by
studies on AS01, which shares similar immune potentiators as those included in the LMQ
adjuvant (MPL-A and QS21) [26,62]. These studies showed that a novel IFNgamma-related
pathway was engaged only when both immune-modulating components were present and
that this pathway appears crucial for optimal activation of DCs as well as Th1 response
induction [26,62]. However, since immunizing with SWE also increases the overall im-
munogenicity, the observation could also simply be an additive adjuvant effect. Future
experiments could decipher TLR involvement by immunizing TLR knockout mice.

The relative production of IgG antibody subclasses after vaccination can act as an
indication of the type of elicited immune response. In mice, production of the IgG1 subclass
is correlated with having more engaged Th2 type responses whereas the production of
IgG2a, IgG2b, and IgG3 is more indicative of a Th1 bias [63–65].

For many vaccines (e.g., against intracellular pathogens), it would be necessary to
induce cellular immune responses [66]. The intrinsic features of CLP make them very
efficient at raising both humoral and cellular immunity [67,68]. Host RNA encapsulated
in the lumen of E. coli-produced bacteriophage CLPs further promotes cellular immunity
through Th1-type responses (evidenced by antibody class switching to IgG2 and IgG3
subclass in mice) via TLR7/8 activation [69,70].

This study shows the AP205 CLP vaccine platform produces both IgG1 and IgG2
subclass antibodies, suggestive of a mixed Th1 and Th2-type response, which confirms
previous findings using this platform [22]. Overall, adding extrinsic adjuvants to the CLP
vaccine platform does not appear to affect the relative proportions of IgG subclasses.
While extrinsic adjuvants such as LMQ, SWE, and MPL did not affect the overall propor-
tions of IgG subclasses, it is important to emphasize that these adjuvants were capable of
raising the overall immunogenicity of the antigen and thus amplifying the production of
the IgG1 and IgG2 subclasses in terms of absolute antibody amounts.

AlOH (and to some extent MP) stand out, since they can skew the antibody production
towards increased proportions of IgG1 and, with respect to AlOH, lower proportions of
IgG2a, indicative of an increase in Th2-type responses. This result may be expected as
AlOH is known to elicit Th2-type responses characterized by an increased production of
Th2 cytokines (IL-4 and IL-13) and transcription factors, which leads to the attenuation of
Th1-type responses and Ig class switch to IgG1 and IgE [71,72]. In general, caution needs
to be taken when interpreting the IgG subclass results, as vaccine-induced responses are
partly species- and even mouse strain-specific [73]. In line with this, the mouse strain used
in this study, Balb/c, is known to have an intrinsic Th2 polarized immune response [73].
Additionally, this study looks exclusively at the humoral immune response induced after
immunization. While the ratio of IgG subclasses can be used as surrogate markers, future
studies should look further into how the CLP vaccines activate the cellular arm of the
immune system and how this may be affected by the use of different adjuvants.

When comparing the elicited IgG responses to the CLP vaccine administered with-
out an adjuvant, we found that IM immunizations resulted in the highest levels of anti-
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SpyCatcher IgG whereas the IgG response against the HPV L2 peptide was similar across
the different immunization routes. In general, systematic studies investigating the immuno-
logical effects of using different immunization routes is lacking. Today, most vaccines used
in humans, including the licensed VLP-based vaccines, are administered IM. However,
the preference for IM over SC is not based on clinical data showing improved immune
responses after IM delivery [74]. Similarly, mouse studies testing different immunization
routes for VLP vaccines show no clear immunological advantage of using IM over SC
delivery. A specific study using simian-human immunodeficiency virus-like particles
provided evidence to suggest that intradermal vaccination may be superior to other routes
of immunization [5], but it is unclear to what extent the presented data was antigen-specific.
Finally, a previous study testing SC versus IN delivery of another bacteriophage-derived
CLP (Qbeta) showed that delivery via the IN route resulted in induction of the mucosal
IgA and IgG whereas SC immunization could only elicit mucosal IgG. Therefore, in cases
were a mucosal IgA response is essential, there may be an actual need for the mucosal
immunization route [75].

5. Conclusions

The results highlight that the AP205 CLP platform by itself is efficient at inducing high
antibody levels with an IgG subclass distribution that is sought after in many indications.
Certain routes of immunization and extrinsic adjuvants can further boost immunogenicity
either through synergistic interplay or an additive adjuvant effect. Further work is needed
to elucidate and optimize CLP vaccine-induced cellular immune responses. Finally, it is
of utmost importance to test if modular CLP vaccines can generate high, fast, durable,
and immune-tolerance breaking antibody responses in humans, as seen in preclinical studies.

Supplementary Materials: The following are available online at https://www.mdpi.com/2076-393
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