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One of the most challenging questions in neuroscience is to dissect how learning and memory, the foundational pillars of
cognition, are grounded in stable, yet plastic, gene expression states. All known epigenetic mechanisms such as DNA methylation
and hydroxymethylation, histone modifications, chromatin remodelling, and noncoding RNAs regulate brain gene expression,
both during neurodevelopment and in the adult brain in processes related to cognition. On the other hand, alterations in the
various components of the epigenetic machinery have been linked to well-known causes of intellectual disability disorders (IDDs).
Two examples are Down Syndrome (DS) and Fragile X Syndrome (FXS), where global and local epigenetic alterations lead to
impairments in synaptic plasticity, memory, and learning. Since epigenetic modifications are reversible, it is theoretically possible
to use epigenetic drugs as cognitive enhancers for the treatment of IDDs. Epigenetic treatments act in a context specific manner,
targeting different regions based on cell and state specific chromatin accessibility, facilitating the establishment of the lost balance.
Here, we discuss epigenetic studies of IDDs, focusing on DS and FXS, and the use of epidrugs in combinatorial therapies for IDDs.

1. Epigenetics and Cognition

Intellectual disability disorders (IDDs) are complex mul-
tifactorial illnesses involving chronic alterations in neural
circuit structure and function as well as likely abnormalities
in glial cells. Converging evidence indicates that epigenetic
control of gene expression is pivotal to learning andmemory,
as underscored also by the range of intellectual disabilities
and behavioural deficits increasingly traced to a staggering
number of epigenetic modulators. This review focuses on
the importance of epigenomics in neuroscience, especially in
neurodevelopment and cognition. Since epigenetic mecha-
nisms are reversible, they are targets of interest in conceiving
new therapies for the treatment of IDDs. We will specifically
address two genetic intellectual disabilities, Down Syndrome
(DS), caused by trisomy 21 [1], and Fragile X Syndrome (FXS),
caused by the absence of FMRP protein upon a “CGG” triplet
expansion at the 5-UTR of the FMR1 gene [2]. Both IDDs

show epigenetic dysregulation and, despite the differences
in their neuropathological signs, share disturbances in the
molecular events that regulate the way nerve cells develop
dendritic spines.

1.1. Epigenetic Mechanisms Regulate Neurodevelopment and
Cognition. Since the first definition of epigenetics [3] the
meaning of this term has broadened to include several
mechanisms of gene expression regulation not interfering
with the DNA sequence but regulating the chromatin state.
These include DNA chemical modifications, histone post-
translational modifications, chromatin remodelling, and the
expression of noncoding RNAs (ncRNAs). Even though
these mechanisms are quite different, they have in common
interfering with chromatin compaction. Nuclear proteins
and DNA compose chromatin that can be more condensed
impairing transcription, or more loose, facilitating gene
expression. The notion that experience modulates cognitive
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Figure 1: Trends in publications in the field of neuroepigenetics.
The plot shows the number of publications on PubMed by year, nor-
malized by the total of number of articles. The 𝑥-axis represents the
years, and the𝑦-axis plots the number of articles in neuroepigenetics
per 100.000 articles.

function and development has become an accepted tenet of
modern neuroscience. However, the precisemolecularmech-
anisms by which the environment modulates neurological
development are still to be elucidated. One such mechanism
is cognitive-activity-dependent gene expression [4]. Epige-
netics mediates the interaction between the environment
and the genome and, therefore, epigenetic control of gene
expression is pivotal to learning andmemory and can explain
brain plasticity, the capacity of neurons to remodel their
structures based on external inputs. This is important for
two well-studied aspects in neuroscience: neurodevelopment
and cognition (e.g., memory and learning), two components
that are somehow interconnected as highlighted by the
commonmechanisms that underlie developmental and adult
experience/learning associated synapse addition. In neurode-
velopmental disorders such DS or FXS, problems in neural
development come alongwith the adult cognitive impairment
[1] but while dendritic spine numbers are lower and dendritic
tree is affected in DS [5], FXS appears to be the only form
of intellectual disability that exhibit increased numbers of
dendritic spines without alterations in the dendritic arbour
[6]. Recent studies established that neuronal activity triggers
local de novo synthesis of proteins in the dendrites of the
affected postsynaptic neurons, and the concept of a dynamic
proteome at the synapse is beginning to emerge [7]. In fact,
the number of papers dealing with both epigenetics and
neuroscience has started to grow steadily especially after
the establishment of next-generation sequencing techniques
in 2004, reaching over 400 publications every 100,000 on
PubMed (Figure 1). This has led to the definition of a new
emerging field termed “neuroepigenetics” [8] or “neuroepige-
nomics” [9]. Since epigenetic mechanisms are important
regulators in both neurodevelopment and cognition, we
believe that these neuroepigenomics studies will be crucial
in understanding the pathogenesis of neurodevelopmental
IDDs,where both defects in brain development and cognition

coexist. This review collects recent evidence confirming this
hypothesis, pointing out how tackling epigenetic deregula-
tion could be an ideal therapeutic approach for restoring the
phenotype in neurodevelopmental IDDs.

1.1.1. Chemical Modifications of DNA. The family of enzymes
called DNA methyltransferases (DNMTs) catalyse the most
studied modification of DNA. DNMTs transfer a methyl
group from S-adenyl methionine (SAM) to a cytosine residue
to form 5-methyl-cytosine (5mC). Cytosine methylation
occurs especially at CG dinucleotides (CpG sites) which
are underrepresented in the genome since 5mC tends to
deaminate into thymine [10]. Those sites are usually methy-
lated with the exception of CpG islands, ≈0.2–1 kb conserved
regions with higher density (>50%) of CpG sites, which are
usually found on gene promoters [11]. Generally speaking,
this modification represses transcription both by sterically
interfering with transcription factor binding and especially
by recruiting repressive complexes upon binding to proteins
with methyl binding domains [12].

In mammals, three main DNMTs exist: DNMT1 is
called the “maintenance DNMT” since it usually binds to
hemimethylated sites avoiding passive demethylation during
DNA synthesis and DNMT3a and DNMT3b are the so-
called de novo DNMTs [13]. Interestingly, DNMTs are highly
expressed in the brain not only during neurodevelopment
but also in postmitotic neurons [14], suggesting a role for
DNA methylation beyond development, which is connected
to brain functions in the adult. As a matter of fact, although
DNA methylation has been thought to be a static epigenetic
mark that could be lost only by passive demethylation during
cell division, nowadays it is known that DNA methylation
is dynamic and can be also actively regulated. TET enzymes
initially oxidize 5mC, and, in a second phase, it can be deam-
inated by AID/Apobec enzymes or further TET-oxidized.
Finally, the oxidation products are repaired by the base
excision repair (BER) [15, 16].

Several studies highlight regulation by DNAmethylation
at the promoters of key genes involved in cognition. Inter-
estingly, following contextual fear conditioning, one of the
most used models for studying memory in rodent models,
DNMTs are upregulated in the hippocampus duringmemory
formation and this results in an increase in DNAmethylation
at the promoter of the memory suppressor gene PP1 and a
decrease in the methylation at the promoter of the synaptic
plasticity gene RELN duringmemory consolidation. Accord-
ingly, inhibition of DNMTs resulted in PP1 demethylation
and problems inmemory consolidation [17].The same is true
for the BDNF gene, where DNAmethylation regulation upon
the learning task results in the specific increase in BDNF
exons I and IV mRNA transcript during consolidation of
fear memory [18]. Those changes in DNA methylation were
dynamic, acute (40minutes), and transient, being reverted in
24 hours. This finally contradicts the dogma depicting DNA
methylation as a static mark and supports the hippocampus’
role in memory formation and consolidation.

Moreover, the brain shows particularly high levels of
two other methylation types: non-CpG methylation (mCH,
where H stands for adenine A, thymine T, or cytosine C) and
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hydroxymethylation (5hmC), suggesting a specific neural
role for these modifications [19, 20]. While mCH is absent
in the foetal cortex, it accumulates in neurons during early
postnatal development becoming the main form of DNA
methylation and repressing critical genes during develop-
ment. In this context DNMT3a seems to play a critical role.
Of note, neurons show higher mCH levels than glial cells,
but neuron-specific genes are repressed andmethylated at the
level of CH in glial cells [21]. As regards hydroxymethylation,
recent studies suggest that 5hmC is not a simple intermediate
product in the oxidative cytosine demethylation pathway as
it was initially thought, but it is involved in keeping gene
promoters ready for gene activation, preventing their DNA
methylation. In agreement with this, TET1 overexpression
resulted in impaired contextual fear conditioning during
memory formation [22], while TET1 knockout results in
defects in memory extinction and synaptic plasticity [23].

Heyward and Sweatt [51] proposed a very appealing
model according to which in basal state conditions memory
promoting genes are methylated and kept silenced while
memory suppressor genes are basally expressed. Upon learn-
ing, both TET proteins and DNMTs are induced, the former
derepressing memory promoting genes and the latter silenc-
ing memory suppressor genes. After sufficient time, the basal
state is restored probably through TET-mediated derepres-
sion of memory suppressor genes and DNMT remethylation
of memory promoting genes. However, what mechanisms
give rise to the basal state differences in gene promoter
methylation is still not known.

But how can this transient mark lead to memory storage,
where memories can last a lifetime? There should be a self-
perpetuatingmechanism.Many studies onDNAmethylation
investigated the hippocampal role in memory formation and
consolidation but not the further consolidation of this infor-
mation in remote memory. According to a well established
model, bursts of activity called “sharp-waves” would promote
cortical plasticity, transferringmemories from the hippocam-
pus to the neocortex [52]. Heyward and Sweatt speculate
that these waves would result in the epigenetic storing of
the learning event in cortical cells, probably through double
strand DNA methylation, which would be highly resistant
to erasure thanks to the self-perpetuating action of DNMT1,
which recognizes the hemimethylated helix and methylates
the unmethylated strand [51]. Supporting the role of DNA
methylation inmaintainingmemories, the CaN (calcineurin)
gene showed delayed (1 day) and persistent (>30 days)
DNA methylation in cortical neurons upon contextual fear
memory even after protein levels returned to baseline, during
the process of transition of contextual fear memory from
“transient” (hippocampus) to “remote” (prefrontal cortex)
[24].

1.1.2. Histone Modifications. Histones are the main protein
component of the chromatin and come in 4 flavours: H2A,
H2B, H3, and H4. These basic proteins strongly associate
with the DNA forming an octamer called nucleosome, along
which 147 bp of the DNA helix wrap around. Additional
compaction is performed by the H1 linker histone, which
binds the nucleosome at its entry and exit site. Importantly,

long protruding tails depart from each histone core and their
posttranslational modifications (PTMs) regulate the level of
chromatin compaction [53]. There are several PMTs acting
on histone tails such as acetylation, methylation, phospho-
rylation, SUMOylation, and ADP-ribosylation. However, we
only need a minimal set of epigenomic features to define
chromatin states and most studies focus on specific and
recurrent histone modifications [54].

Histone acetylation has a positive effect on transcription
by relaxing the chromatin compaction. The acetyl group
neutralizes the positive charges on Lysine (K) and Arginine
(R) residues, decreasing the electrostatic interactions between
the nucleosome and the DNA. The writers of this epigenetic
modification are called histone acetyl transferases (HATs),
while the erasers are called histone deacetylases (HDACs)
[27].

Histone acetylation has emerged as a key mechanism
of memory regulation. One of the first studies showed how
novel tastes induce long-lasting Lysine acetylation through
ERK/MAP pathway activation in the insular cortex [55];
the same was true for contextual fear conditioning during
memory formation [56]. Several subsequent studies showed
that global HDACs inhibitors (HDADi) improve cognitive
impairments and boost learning and memory [27]. Acety-
lation occurs in several K residues such as H3K9/14/27 and
H4K12 but also in H2B and many other sites. According
to the current view, these modifications play an important
role in establishing a permissive transcription, preparing
cells to activate gene expression upon specific stimuli [57].
Even though it was initially thought that HDAC inhibitors
enhanced gene expression globally and nonspecifically, it
is now clear that specific molecules, such as the CREB
transcription factor, regulate their action. CREB recruits the
coactivator CBP that through its HAT domain increases
acetylation at the level of the genes involved in memory
consolidation [28].

Several HDAC isoforms can regulate histone acetylation
levels in the adult brain. For instance, while HDAC5 is
important in the nucleus accumbens, the reward centre of the
brain and its disruption result in a hypersensitive response
to chronic drug abuse [30]; HDAC2 was found to negatively
deregulate memory formation and synaptic plasticity [58],
and HDAC3 inhibition enhanced long-term object memory
formation [29]. While, generally speaking, the effect of
HDAC inhibition is positive for cognitive activities, this is not
the case for the sirtuin family of HDACs, where SIRT1 oblit-
eration impairs hippocampal memory formation, a defect
that can be explained by decreased dendritic branching and
spines, which are specialized structure for cognition [59].
Subsequent studies showed also how HDCA1 is required
for fear extinction learning through a mechanism involving
H3K9 deacetylation [31] and HDAC4 is required for synaptic
plasticity and memory formation [60].

Histone acetylation often correlates with histone phos-
phorylation. For example, H3 phosphorylation at serine (S)
10 (H3S10P) together with acetylation of H3K9 is induced
during spatial memory formation and facilitates the early
gene activation (c-Fos, Erg1, and Arc) of the ERK/MAPK
pathway [61].
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The second most studied histone modification is methy-
lation. While histone acetylation always results in tran-
scriptional activation, histone methylation effects depend on
the protein complexes docking on the different modifica-
tions. For example, H3K4methylation andmonomethylation
of H3K9 (H3K9me1) result in transcriptional activation,
whereas H3K9me2 and H3K9me3 result in transcriptional
silencing. Histone methylation can occur at either Lysine (K)
or Arginine (R) and is performed by a group of proteins
containing SET domains called histone methyl transferases
(HMTs). Despite being conceived initially as a static histone
modification, whose half-life coincides with the histone turn
over itself, histone methylation has shown to be dynami-
cally regulated through the action of histone demethylases
(HDMs) such as LSD1 for H3K4me and H3K4me2 and
JMJD1a for H3K9me and H3K9me2 [62].

H3K4me3 is usually present in the proximity of the
transcription start site of active genes and it has been shown to
be induced one hour after contextual fear conditioning, acti-
vating promoter regions ofmemory genes such as ZIF268 and
BDNF, to return to baseline levels at 24 hours, underlining a
role in memory formation. A similar dynamic was observed
for the transcriptional repressive H3K9me2 mark. Interest-
ingly, mice deficient inMll, a H3K4 methyltransferase, show
defects in contextual fear memory formation [34]. In paral-
lel, GLP/G9a, an H3K9me2 methyltransferase, is extremely
important for cognition. H3K9me2 is a “switching chromatin
signal” [63], acting during both development and cognition
and modulating gene expression by recruiting reader, writer,
and eraser enzymes.This complex is required duringmemory
consolidation both in the hippocampus and in the entorhinal
cortex [35]. Moreover, H3K9me2 is induced from 1 hour
up to 25 hours upon fear conditioning, and fear memory
is enhanced when inhibiting both its demethylation (LSD1-
mediated) and its methylation (GLP/G9a-mediated) [64].
Finally, GLP/G9a is also important in adaptive behaviour
since its deficiency leads to defects in learning, motivation,
and environmental adaptation [37].

Although less studied, several other histone methylation
marks play an important role during cognitive processes.
For example, H3K36me3, marking the 3 end of transcribed
genes, is immediately induced during object recognition
memory in both the hippocampus and prefrontal cortex and
is reactivated after activation of recent (24 h) and remote
(7 days) memory, with hypermethylation of the ZIF268
promoter [36].

Future research should focus on integrative analysis
showing how those marks crosstalk and what is the precise
dynamic of their activation.

1.1.3. Chromatin Remodelling. Nucleosome remodelling
complexes (NRCs) alter nucleosome positioning in an ATP-
dependent way, promoting nucleosome sliding, eviction,
or histone variants exchange. In the brain the most studied
NRC is the neuron-specific Brg1/hBrm Associated Factor
(nBAF) complex, a multiprotein complex belonging to the
SWI/SNF family that regulates gene expression in both
development and adult cognition. Of particular importance
in neurodevelopment is the upregulation of the BAF45b and

BAF45c subunits and the switch between the BAF53a and
BAF53b, which begins at E12.5 and is exclusive to postmitotic
neurons, being essential for BRG1’s ATPase activity [65].
This complex has shown to be important in cognition
since BAF53b deficient mice showed large impairments in
long-term memory formation [46].

1.1.4. Noncoding RNAs (ncRNAs). Noncoding RNAs (ncR-
NAs) are transcripts that are not translated into a protein.
They include two broad categories: small RNAs and long
noncoding RNAs (lncRNAs). The first comprehends micro-
RNAs (miRNAs) that generally inhibit gene expression by
complementarity to their targets and PIWI interacting RNAs
(piRNAs), involved in transposon repression through RNA
mediated DNAmethylation.The function of long noncoding
RNAs is less known; while initially thought to be “transcrip-
tional noise,” recent studies suggest that lncRNAs can regu-
late gene expression by acting as “guide” or scaffold RNAs,
targeting epigenetic changes to specific genomic locations.
Many noncoding RNAs have been identified in the brain, and
approximately 40% of them are not found in other tissues
[66]. While for most of the lncRNA the mechanism remains
elusive, extensive evidences suggest they have important roles
in neural development, synaptogenesis, and synaptic plastic-
ity [67]. Notably, TUNA, RMST, and DALI regulate neural
differentiation by directing transcription factors, chromatin-
remodellingmachineries, andDNMTs to important genomic
loci [41, 68, 69].

The complex picture of epigenetic regulation in the brain
can be puzzling, with some epigenetic changes enhancing
cognition and other impairing neural activities. However the
take-home message is that every kind of epigenetic change
has been found associated with neural activity, indicating
that a correct balance of the epigenetic machinery is needed
for a proper neural function. Moreover, epigenetic changes
should not be seen as distinct and isolated events. Repressive
modifications tend to occur together and the same is true
for permissive modifications. As an example, several methyl
binding proteins recruit HDACs allowing cytosine methyla-
tion and histone deacetylation to act in concert to repress
gene transcription [70]. That means that epigenetic mecha-
nisms orchestrate the specific gene expression activated upon
brain activity.

2. Epigenetic Dysregulation in
Intellectual Disabilities

Many intellectual disability disorders arise from mutations
affecting the function of the epigenetic regulators discussed
in Section 1, underlining the importance of a correct balance
between readers and erasers of epigenetic modification for a
proper brain function (Table 1).

Besides the epigenetic syndromes arising by direct pertur-
bation in the functions of key epigenetic molecules, several,
if not all, other syndromes and IDDs have probably an
epigenetic component or origin. Epigeneticsmeans dynamics
and reversibility, and thus a lack of epigenetic coordination
may lead to defects in neurodevelopment with consequent
defects in cognition. In this context it is obvious that an
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early therapeutic intervention is preferential, but given the
reversibility of epigenetic processes, it is in theory possible to
restore a proper neuronal function ameliorating the cognitive
impairment in this developmental IDDs. To what extent
this is feasible, together with the efficacy and duration of
the effect for this approach, remains to be elucidated. The
best therapeutic strategies will likely consist in combinatorial
therapies using both neuromodulators and “epidrugs” as
cognitive enhancers.

In the end of the section we will specifically focus on
two developmental genetic disorders, DS and FXS, showing
how both development and cognition are interconnected and
how epigenetic regulation is essential in both processes as a
gateway for processing inputs received from the environment.

2.1. Cognitive Function, Synaptic Plasticity, and Epigenetics.
Epigenetic effectors involved in intellectual disability devel-
opmental disorders are likely interacting with fundamental
players in neuronal maturation. For instance, nBAF com-
plexes regulate genes essential for dendritic outgrowth and
spine formation [71], and the activity of GLP/G9A, MeCP2,
andncRNAs affects the regulation of BDNF expressionwhose
role in neuritogenesis, synaptogenesis, spine maturation, and
axonal arborisation has been thoroughly assessed and is
reviewed elsewhere [72, 73]. BDNF is of specific importance
for initiating guided branching in the cell membrane [74] and
for completing spine maturation [75].

Converging evidence indicates that epigenetic control
of gene expression is also pivotal to learning and memory
through its crosstalk with neuronal activity and synaptic
plasticity mechanisms, as underscored also by the range
of intellectual disabilities and behavioural deficits increas-
ingly traced to a staggering number of epigenetic modu-
lators. Specifically, several epigenetic modifications act as
key signalling relay in the integration of synaptic inputs, as
vividly shown for histone acetylation in CREB-dependent
changes triggered during NMDA-receptor mediated long-
term potentiation (LTP) [76], but also more recently for the
rapid surges of DNA methylation and demethylation and
5-hydroxymethylation in response to neuronal activity [21].
Some epigenetic marks, including DNA methylation and
histone methylation on Lysine 9 and Lysine 27 of histone H3,
can be stably propagated over extended periods of time, in
proliferating and postmitotic cells, implying alternative neu-
ronal activity-dependent plasticity mechanisms putatively
involved in learning and memory. Through recruitment
mechanisms still poorly understood, epigenetic modifiers
can exert genome-wide but also highly gene-specific effects.
These features have made epigenetics the focal point of the
grounding in molecular terms of how Hebbian (i.e., synapse-
specific) and non-Hebbian (i.e., neuron-wide) mechanisms
of LTP integrate information processing [77]. Indeed, one of
themost thought-provoking hypotheses recently put forward
is that genome-wide epigenetic changes may bias neurons
towards cell-wide thresholds or set points, consequently
modifying their susceptibility to Hebbian plasticity mecha-
nisms and finally orchestrating a neuron’s global response to
the variety of molecular events involved in synaptic plasticity,
suggesting a role in plasticity regulation and homeostasis

[8]. The challenge is to functionally validate the relevance of
specific epigenetic axes in learning and memory.

The amount of information obtained from cellular and
molecular neuroscience of cognitive processes is overwhelm-
ing. However, the connection between this information
and mechanistic conclusions at the cognitive level relies on
important assumptions and generalizations. For example,
while several molecular events in neurons signal plasticity
mechanisms, the link between these mechanisms and the
formation and loss of memories is only correlational. Even
so, to verify whether the studied mechanisms are involved
in cognition we still use behavioural tests in normal and dis-
eased animalmodels.Thus, critical aspects for the assessment
of rodent models of IDDs and the study of the underlying
molecular mechanisms are face and predictive validity of
the tests [78, 79]. In relation to DS and FXS, some tests
on the best characterized mouse models (Ts65Dn [80] and
Fmr1 KO [81]) stand out as widely accepted and relevant.
In relation to long-term memory acquisition, consolidation,
and retrieval, impaired in both syndromes, fear conditioning
tests [82] and the Morris water maze [83] in combination
with pharmacological interventions have shown face and
predictive validity for both syndromes [84, 85]. However,
construct validity and differences between the underlying
biological causes of the syndromes are not well understood.
To this end, more disease specific tests that provide experi-
mental tools for preclinical therapeutic studies are required.
In this regard, the development of behavioural paradigms,
such as the touch-screen based tasks, can reproduce in mice
the paradigms of The Cambridge Neuropsychological Test
Automated Battery (CANTAB), originally developed at the
University of Cambridge in the 1980s [86]. Deepening on
construct validity by the accurate assessment of cognitive
domains provided by CANTAB-based touch-screen tasks
in mice will allow not only improving the treatments of
the syndromes, but also better understanding the biological
substrates of cognition.

2.2. IDDs by Direct Mutation of Epigenetic Genes. In the last
decade, the discovery of mutations in the various compo-
nents of the epigenetic machinery (writers, erasers, readers,
and remodellers) has been linked to a number of well-
known causes of IDDs [43, 87]. Intellectual disability is
generally defined as deficits of intellectual function and adap-
tive behaviour that occur during the developmental period
(see, e.g., http://aaidd.org/) and epigenetic disturbances are
expected to have widespread downstream consequences
(Figure 2). Rett Syndrome (RTT) is one of the most studied
of such disorders, an X-linked dominant neurodevelopmen-
tal disorders, arising from mutations in a DNA methyla-
tion reader: the methyl-DNA-binding protein MeCP2. RTT
patients show, next to morphological defects, a progressive
cognitive impairment, autistic behaviour, and language and
social impairments probably due to dendritic and spine
atrophy [25]. MeCP2 normally results in transcriptional
repression due to binding to methylated CpG (mCG) or CpA
(mCA) dinucleotides, followed by HDAC recruitment [88].
However, MeCP2 can also result in transcriptional activation
when binding to the promoters of some genes in association
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with the transcriptional activator CREB1 [89]. For instance,
MeCP2 regulates the activity-dependent gene BDNF, keeping
it switched off in absence of neuronal activity. Upon brain
activity, MeCP2 gets phosphorylated and is released from
BDNF promoter, enabling its expression [90]. Interestingly,
it has been shown that longer genes have specific functions in
the nervous system and tend to have a higher density ofmCA.
As a consequence, these genes are the most upregulated by
MeCP2 knockout.

Another IDD directly arising from mutations in epige-
netic players is Rubinstein-Taybi syndrome (RTS). Most of
the RTS patients have mutations in the gene encoding for
the cyclic AMP-responsive element binding protein (CREB)
binding protein (CBP) [32], while in a minority of cases
the mutations are in the gene encoding for p300 [33]. CBP
and p300 are transcriptional coactivators with HAT activity,
involved in development and cognition [91]. Interestingly,
mouse model of RTS (CBP +/− mice) shows defects in
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synaptic plasticity due to impaired late phase long-term
potentiation, with consequent defects in long-term memory.
At the epigenetic level these mice show decreased histone
acetylation that can be reversed by HDAC inhibition ame-
liorating the phenotype [92].

Several HMTs have been associated with congenital
IDDs. A deletion containing the GLP/EHMT1 gene (euchro-
matin histone methyltransferase 1) causes Kleefstra syn-
drome, a developmental severe IDD, with defects in learn-
ing, motivation, and environmental adaptation. GLP/G9a
is essential for regulating H3K9 dimethylation levels and
regulates brain function through maintenance of the tran-
scriptional homeostasis in adult neurons [37]. In minor cases
Kleefstra syndrome is due to a de novo point mutation in
the MLL3 gene, encoding for a H4K4 HMT [38]. Impaired
H3K36 methylation is observed in two learning disabilities:
Sotos Syndrome, due to NSD1 deletion [39], and Wolf-
Hirschhorn syndrome, due to NSD2 deletion [40]. Muta-
tion for the MLL2 gene, with reduced H3K4 methylation,
is responsible for the Kabuki syndrome 1, with impaired
hippocampus-dependent memory and developmental disor-
ders [41], while de novo mutation at the EZH2 gene results in
Weaver Syndrome 2, with impaired H3K27 methylation and
consequent defects in neural differentiation [43]. Similarly,
mutations in histone demethylases result in IDDs. Impaired
H3K4me2/3 demethylation due to mutation in the KDM5C
gene causes an autistic disorder called Claes-Jensen-type
syndromic X-linked ID, with impaired brain development
and plasticity [44]. Finally, mutations in the gene encoding
the H3K9 demethylase PHF8 account for Siderius X-linked
ID syndrome [44], while mutation in the gene KDM6A,
H3K9 demethylases, gives Kabuki syndrome 2, with very
similar clinical picture to Kabuki syndrome 1 [42].

Several mutations have been described in subunits of
the nuclear remodelling complex nBAF, which are linked to
IDDs and autism spectrum disorders (ASDs) [50]. The most
affected genes belong to the SMARC and ARID families, the
first having helicase and ATPase activity, the latter conferring
DNA recognition binding sites. Examples of these IDDs
are Coffin-Siris Syndrome (CSS) [47] and the Nicolaides-
Baraitser syndrome (NBS) [48]. Another example of IDDs
arising frommutation in chromatin remodelling components
is the X-linked form of syndromic mental retardation asso-
ciated with alpha thalassemia (ATRX syndrome), caused by
point mutations in the ATRX gene, SWI/SNF chromatin
remodelling containing an ATPase/helicase domain. These
mutations have been shown to cause diverse changes in
the pattern of DNA methylation, which may provide a link
between chromatin remodelling,DNAmethylation, and gene
expression in developmental processes [49].

Since affecting epigenetic mechanisms, these mutations
would lead theoretically to the deregulation of a very broad
and nonspecific set of genes; however they surprisingly give
rise to well defined syndromes, suggesting that they con-
versely lead to specific dysregulation of key genes. However,
all these IDDs share common clinical features, indicating that
they share common molecular pathways, deregulated upon
epigenetic imbalance, which could be targeted therapeuti-
cally.

Note that even though these IDDs arise from muta-
tions/deletions in specific components of the epigenetic
machinery, the common molecular phenotype is a global
epigenetic imbalance, affecting several epigenetic mech-
anisms. Histone modification and/or DNA modifications
always occur in concert, with nuclear remodelling complexes
bringing various epigenetic players at the regulatory regions
of the genome. Moreover, several other disorders, even if not
arising from direct impairment of the epigenetic machinery,
show a strong epigenetic component, such as foetal alcohol
spectrum disorders, neurodegenerative diseases (Alzheimer
Disease, dementia, and Parkinson disease), poly-Q disorders
(Huntington disease, spinal and bulbar muscular atrophy,
and spinocerebellar ataxia type 3), autism spectrumdisorders
(ASDs), addiction, schizophrenia, stress, and Friedrich ataxia
[91, 93, 94]. This suggests that epigenetics plays an important
role in all neurological disorders characterized by defects in
neurodevelopment and/or cognition. The establishment of a
proper epigenetic balance could be the key in the treatment
of these disorders.

2.3. Down Syndrome: A Global Epigenetic Perturbation.
Down Syndrome (DS) is the most common genetic intel-
lectual disability arising from the total of partial trisomy of
chromosome 21, leading to a developmental disorder char-
acterized by various defects, including impairments in lan-
guage, memory, learning, and a higher frequency of devel-
oping Alzheimer Disease (AD) [1]. While DS would the-
oretically lead to 1.5-fold upregulation of all HSA21 genes,
transcriptomic studies revealed that genes were differentially
expressed on all chromosomes forming the so-called gene
expression dysregulation domains (GEDDs), pattern of chro-
mosome regions showing up- or downregulation of tran-
scription in the trisomic cell along the whole genome. Inter-
estingly, in DS actively transcribed regions are less expressed,
while lowly transcribed regions are more expressed, leading
to “flattening” of gene expression profiles. Further analysis of
these data (GSE55504 [95]) has shown that even though the
trisomic chromosome shows the highest fraction of deregu-
lated genes, DS genes are distributed among all chromosomes
(Figure 3(a), Ilario De Toma).

Epigenetic deregulation due to triplicated genes could
explain the genome-wide change of gene expression, as chro-
mosome 21 contains genes regulating all epigenetic aspects
discussed in Section 1, and their overexpression due to the
trisomy would easily affect the epigenetic balance, as will be
reviewed in the following paragraphs.

2.3.1. DNA Chemical Modifications in DS. DNMT3L is
encoded on chromosome 21 and stimulates the activity of
DNMT3a and DNMT3b [96]. Several studies have shown a
deregulation in DNAmethylation patterns in DS individuals,
with a genome-wide hypermethylation [97–99], probably
due to DNMT3L overexpression [100]. Some of the dif-
ferentially methylated genes actually correlated with the
cognitive impairment level in DS patients, such as TSC2,
which has also been associated with the tau pathology in
Alzheimer Disease [99]. The same widespread DNA hyper-
methylation was observed also in DS placenta, underlining
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the importance of epigenetic balance already at the foetal
stage [101]. Conversely to the genomic hypermethylation,
mitochondrial hypomethylation was seen in DS, probably
due to reduced levels of the methyl donor SAM, leading
to mitochondrial dysfunction [102]. Interestingly, mitochon-
drial dysfunctionmight affect histonemodifications since the
mitochondria are the source of high energy intermediates
which are necessary for histone acetylation, deacetylation,
methylation, and phosphorylation [103]. Finally, TET pro-
teins are downregulated in DS by DNA methylation of
the promoter of the genes from which they are encoded
[97], resulting in a decrease in 5hmC levels and genomic
hypermethylation [101].

2.3.2. Histone Modifications and Chromatin Remodelling in
DS. Many HSA21 genes influence specific histone modifica-
tions. An example is the phosphotyrosine kinase DYRK1A,
which is able to regulate several proteins involved in epi-
genetic mechanisms. It promotes both histone deacetylation
by phosphorylating SIRT1 [104] and histone acetylation by
phosphorylating the CREB transcription factor, resulting
in its binding with the HAT CBP [105]. DYRK1A also
interferes with chromatin remodelling by binding nBAF and
reducing the levels of the NRSF/REST neuron-restrictive
silencing factor which is essential for neural differentiation
[106]. Other HSA21 genes regulate the same key proteins:
ETS2 [107] and the constitutive chromatin protein HMGN1
[108] influence the activity of CBP enhancing the H3K14
activity, while the activity of nBAF is modulated also by
BRWD1 [109], a bromodomain containing protein recruiting
nBAF to acetylated histones, and RUNX1 [110], which forms
complexes that are associated with the active mark H3K4me3
and H4 acetylation. Moreover, HMGN1 not only interferes
with histone acetylation, but inhibits phosphorylation of
H3S10 and H3S28 [108] and inhibits the methyl binding
protein MeCP2 by modifying the chromatin structure at the

level of its promoter [111]. Finally, HSA21 encodes for two
histone pseudogenes (H2AFZP andH2BFS)whose roles have
not been elucidated yet, and the chromatin assembly factor
1B (CHAF1B) that forms a complex with the methyl-CpG
binding protein MBD1 and the heterochromatin protein HP1
to favour chromatin repression through 5mC and H3K9me3
[112].

2.3.3. ncRNAs in DS. HSA21 encodes for five miRNAs:
mir-99a, mir125b2, mir155, mir802, and let-7c. Interestingly,
mir155 and mir802 downregulate the methyl binding protein
MeCP2 [113]. Furthermore,mir155 is also involved in synaptic
dysfunction since it results in the downregulation of SNX27,
a key component in the endosomal pathway that assures the
glutamate receptor recycling [114]. Of note, mir125b levels
increase also in AD brains [115]. Thus, besides the well-
known role of APP overexpression, epigenetics could directly
link AD and DS since a disturbance of epigenetic balance
has also been observed in AD [116], partly explaining the
higher frequency of early-onset AD in DS patients [1]. As
regards long noncoding RNAs they constitute almost 35% of
HSA21 annotated genes (GRCh38 assembly), making HSA21
the second chromosome with the highest percentage of long
noncoding RNA after HSA18 (Ilario De Toma, personal
communication). Future studies are needed to elucidate the
role in epigenetics and cognition of these long noncoding
RNAs [117].

Summing up, even though DS is caused by a precise
genetic defect (trisomy 21), epigenetic mechanisms are glob-
ally dysregulated through various mechanisms. One of the
main problems for obtaining a complete picture of epigenetic
contributions in DS is that different studies performed
analyses on different cell types and tissues, in different devel-
opmental stages (embryonic fibroblasts, neurons, blood cells,
etc.). Since epigenetics is involved in differentiation and cell
fate, this has led to different results that are often difficult to
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compare, as the epigenetic differences related to development
and cell differentiation could mask the differences due to the
trisomy.

2.4. FXS: Not Only Local Epigenetic Perturbation. Fragile X
Syndrome (FXS) is the most common monogenic cause of
intellectual disability, where a “CGG” triplet expansion at the
5-UTR of the FMR1 gene is responsible for the loss of the
Fragile X mental retardation protein (FMRP), a synaptically
expressed RNA-binding protein regulating translation [2].
FMRP acts on its RNA targets in various ways: it influences
RNAs stability, preventing or sustaining mRNA decay [118];
it transports RNAs from the cell body to synapses [119];
and it inhibits mRNA translation both by stalling ribosomes
on their target mRNAs [2] and by inhibiting translation
initiation [120].

When the CGG repeat expands between 56 and 200
(permutation), the FMR1 gene is upregulated with increased
histone acetylation in the promoter [121], while in full
mutation patients (>200 repeats) the FMR1 locus is transcrip-
tionally repressed through cytosine methylation directed
towards the repeats and the nearby sites constituting the CpG
island. This results in demethylation and deacetylation of
H3K4, methylation of H3K9 and H4K20, and trimethylation
of H3K27 [122], with final transcriptional repression of the
whole region.The failure in the heterochromatinization of the
FMR1 locus in subjects with over 200 repeats translates in the
complete lack of penetrance of the syndrome. These healthy
carriers are called unmethylated fullmutation (UFM) carriers
and have a normal epigenetic profile (with the exception of
partial H3K9methylation), with a 30–40% increase in FMRP
levels (as in permutation carriers) [123].

Interestingly, DNA demethylation with demethylating
agents such as 5-azadeoxycytidine (5-azadC) reactivates
FMR1 transcription in fullmutation patients, with restoration
of euchromatic marks (H3K4 methylation and acetylation)
and partial reduction of the repressive H3K9 methylation
[124, 125]. Even though 5-azadC was enough to reactivate the
FMR1 locus, costimulation with HDAC inhibitors revealed
synergic effect, yet ineffective alone [124]. However, inhibit-
ing specifically the class III HDAD SIRT1 is effective in reac-
tivating the FMR1 locus with an increase in H3K9 andH4K16
acetylation, while leaving unaltered DNA methylation. Since
DNA demethylation leads to acetylation of H4K16 but not
H3K9, it could be that H3K9 deacetylation is an early event,
which is followed by DNA methylation and H4K16 deacety-
lation [126]. Similarly to some other long noncoding RNAs,
the FMR1 transcript plays a direct role in gene silencing by
directing the recruitment of repressive complexes like PRC2
to the locus, with consequent histone H3K27 methylation.
This could be important in the beginning of the process of
FMR1 repression [122]. The mechanism is still not known
but could involve R loops made by the FMR1 transcript,
particular conformations due to the repeat expansion [127].

One of the most debated questions is if this epigenetic
deregulation has a genome-wide effect or affects only the
FMR1 locus. A recentwork succeeded in detecting differential
DNA methylation only at the FMR1 locus, which is wholly
affected. However, the study does not discriminate DNA

methylation and hydroxyl-methylation (which are often dia-
metrically regulated) and used the HumanMethylation450
BeadChip kit, taking into account just a specific subset of the
genome [128].

Indeed, a global deregulation is possible since a lot of
FMRP target mRNAs are involved in chromatin remodelling
such as HDAC4/5, NCOR1–3, and CBP [2] and several
ncRNAs [129, 130], whose transcript and protein levels are
presumably altered by FRMP absence. Moreover, in the com-
plex FMR1 locus, several ncRNAs are encoded, but most of
themhave not been characterized yet. One of these ncRNAs is
FMR4, which is switched off similarly to FMR1 in full-length
expansions. This lncRNA regulates target genes at distal
locations such as the methyl-CpG-binding domain protein
4 (MBD4), hampering neural differentiation in FXS [131].
Interestingly, FMRP target genes are enriched in long genes
and significantly overlap with MeCP2-repressed genes. As
we said these genes are enriched in mCA and are important
for brain function [90]. Once again this is emblematic of
the molecular pathway commonalities across IDDs involving
epigenetic mechanisms (in this case FXS and RTT).

FMRP has been shown to be involved in dendritic
mRNA localization, synaptic protein synthesis, and synaptic
plasticity. The mechanism relies on mGluR signalling in
glutamatergic postsynaptic sites. When mGluR channels are
active in a synapse, a phosphorylation cascade is triggered
that affects the LTP pathway and triggers rapid local protein
synthesis of preexisting dendritic mRNAs, including FMRP,
around the active synapse [132]. As a result of FMRP reg-
ulation, proper tuning of the translation dynamics involved
in mGluR-dependent LTD is established in active synapses.
Even though the mechanism of dendritic spine maturation
is not fully elucidated, recent observations suggest that the
proper pruning and maturation of synaptic spines (impaired
in FXS) rely on the interplay between local dendritic BDNF
mRNA translation and secretion, with FMRP playing a key
role in the regulation of these local events [133]. How the
inactivation of FMRP and its effects on local translation
interact with actin polymerization, or proteins such as cofilin,
myosin, Arp2/3, and profilin [134] is an open question.

2.5. DS and FXS, Differences and Similarities. DS and FXS
show striking similarities and differences. Both intellectual
disabilities are common genetic developmental disorders
characterized by specific defects in structural and synaptic
plasticity due to alterations in specific molecular pathways.
However, those alterations are often opposite, with the
common final outcome of cognitive impairment [135]. DS
patients show reduced dendritic branching and complexity
in pyramidal neurons along with fewer and abnormal spines
with enlarged heads that could explain the cognitive deficits
[5]. This goes along, at the molecular level, with alterations
in synaptic plasticity molecular pathways: long-term poten-
tiation (LTP), the ability of the neuron to strengthen its
synapses, is suppressed in DS mouse models [136], while
long-term depression (LTD), the ability to weaken unused
synapses, is enhanced [137]. Conversely, in FXS patients the
cognitive impairment goes along with an increased density of
thin and elongated spines in the same neurons [138]. Looking
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at the regulation ofmolecular pathways in FXS, while the role
of LTP is controversial [139, 140], LTD is strongly induced,
due to the overactivation of glutamate receptors [132].

Although presenting opposite phenotypes, DS and FXS
share defects in dendritic spine morphology due to alter-
ations in local protein synthesis. Both HSA21 RCAN1 and
FMRP regulate calcineurin (CaN) activation, which is impor-
tant for cofilin dephosphorylation. RCAN1 normally keeps
calcineurin inactive; this increases phosphorylated cofilin
that facilitates actin polymerization at the spine level. The
enlarged spine heads observed in DS patient are probably
due to RCAN1 overexpression. As a matter of fact, RCAN1-
overexpressing mice show a phenotype similar to DS, with
reduced volume and neuron number in the hippocampus,
defective neurogenesis, enlarged spine heads, enhanced local
protein synthesis of dendra, and impaired LTP [141, 142].
On the contrary in FXS patients, the silencing of the FMR1
locus results in the increase of the FMRP target PP2AC
[143], phosphatase that dephosphorylates cofilin. This leads
to the formation of long and thin filopodia-like spine heads,
hallmark of FXS, due to defective actin polymerization.
Calcineurin activates also local protein synthesis by dephos-
phorylating FMRP and allowing in this way the translation
of the FMRP targets required for local protein synthesis and
synaptic plasticity such as 𝛼CaMKII [142]. The ability of
RCAN1 to bind and inhibit CaN is modulated also by the
HSA21 gene DYRK1A, a serine threonine kinase important
for synaptogenesis and spine actin dynamics [144]. This
further links DS and FXS deregulation in the pathway of local
protein synthesis.

Recent analyses from our group (Ilario De Toma, per-
sonal communication) show the link between DS deregu-
lated molecular pathways and affected proteins in FXS by
comparing 324 genes found to be consistently deregulated
in DS in a published meta-analysis [145], with a list of
FMRP targets [2]. The overlap was extremely significant (𝑝 <
0.0005, hypergeometric test) and included 9 HSA21 genes.
Among those genes, APP is involved in Alzheimer Disease,
which as we already stated has an early onset in DS patients
[146, 147]; SYNJ1/synaptojanin regulates neurotransmission
together with two other HSA21 genes, intersectin/DAP160
and RCAN1 [148], and is involved in learning and memory;
Tiam1 and Ttc3 are involved in neurogenesis [149]; and
NRIP1 is needed for cognition and recruits HDACs [150]
(Figure 3(b)). Finally, even though not present in our list
of genes consistently deregulated in DS, the HSA21 gene
DSCAM is a FMRP target and is involved in neural devel-
opment [151].

One interesting question that needs to be unravelled
is whether the epigenetic deregulation is upstream of the
deregulation of those molecular pathways. This would allow
a common therapy for both disorders to rescue the epigenetic
imbalance at the base of their aetiology.

3. Restoring a Balanced Epigenetic State for
the Treatment of ID

Historically the treatment of DS and FXS has focused on
restoring the neurotransmitter balance that is compromised

in the two disorders or on replacing deficits in differ-
ent systems. As mentioned before, in FXS there is global
hyperexcitation due to overactivation of the glutamatergic
pathway, while in DS there is an overinhibition due to the
predominance of the GABA inhibitory pathway.Therefore in
the attempt to restore the neurotransmitter balance, agonist
and antagonist for both glutamate and GABA receptors
have undergone clinical trials. However results have been
unsuccessful by now, due to lack of efficacy and or safety
[152, 153]. For instance, inhibiting the GABA pathway in DS
may increase the susceptibility of DS patients to epileptic
seizures, together with side effects in various developmental
processes [154].

In the US, commercial formulations aimed at ameliorat-
ing the DS phenotype are composed mainly of antioxidant
and folates. The rationale behind this is that DS patients
overexpress two HSA21 encoded enzymes, SOD-1, leading to
an increase in reactive oxygen species production, and cys-
tathionine 𝛽-synthase, resulting in folate deficiency. However
clinical trials showed that this approach is ineffective [155].

None of these traditional approaches have been revealed
as safe and effective in the treatment of IDs. However, a
possible future therapy based on the direct or indirect mod-
ulation of epigenetic mechanisms is promising. Restoring
a balanced epigenetic state will be key to renormalize the
altered expression in master regulator genes involved in the
cognitive problems (Figure 4).

3.1. Environmental Enrichment: An “Epigenetic” Treatment.
As we have previously pointed out in this review, the envi-
ronment is a main driver of epigenetic modifications. During
development, the microenvironment allows the genome to
be interpreted differently by different cell types and in
different developmental stages and contexts. The effect of the
environment on gene expression is particularly evident in the
case of monozygotic twins that are genetically identical but
phenotypically and epigenetically different, especially when
grown apart [156]. Environmental Enrichment (EE) is an
effective protocol used in rodentmodels to boost learning and
memory.Theparadigmconsists in keeping laboratorymice in
a so-called enriched environment with respect to laboratory
standards: larger cages, larger groups, various stimulatory
objects such as toys of all sort, and running wheels. The aim
is to provide the animals every kind of sensory, cognitive,
and motor stimuli such as the possibility to establish more
complex social interactions, to explore and play with new
objects, and the opportunity for voluntary physical activity.
Interestingly, EE improves learning and memory, enhancing
long-term potentiation [157], and delays or rescues deficits
in a variety of mouse models of neurological disorders [158].
Of note, EE is effective in both FXS and DS models. In
Fmr1 KO mice, EE rescued behavioural and neuronal abnor-
malities, activating the glutamatergic signalling and increas-
ing dendritic branching, spine number, and maturation.
Interestingly, EE acts independently of FMRP expression
in Fmr1 KO mice, as it did not affect FMRP levels [159],
but translates in reduced FMRP protein in mouse model of
fragile X premutation [160]. Similarly, EE protocols increased
dendritic branching and spines in DS models [161], probably
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Figure 4: Reestablishing a balanced epigenetic state to rescue the cognitive impairment in Down Syndrome (DS) and Fragile X Syndrome
(FXS). Cartoon representation of a DS (left) and FXS (right) pyramidal neuron. In both syndromes alterations in synaptic plasticity, local
protein synthesis, spinemorphogenesis, andmemory and learning contribute to the cognitive impairment. However the structural phenotype
is distinct: DS neurons have large and stubby spines, while FXS neurons have long immature filopodia-like spines. Key genes involved in these
pathways (e.g., APP, SYNJ1, TIAM1, and TTC3) are commonly deregulated due to epigeneticmodifications at the chromatin level.The cartoon
shows the repression of “memory” genes by DNA methylation (red circles) and H3K9 and H3K27 trimethylation (violet squares) in DS and
FXS, with consequent chromatin compaction. Conversely, epigallocatechin gallate (EGCG) and Environmental Enrichment (EE) or directly
epidrugs can reactivate the chromatin state at the level of “memory” gene by DNA hydroxymethylation (blue circles), H3K4 methylation
(green triangles), and histone acetylation (yellow squares), rescuing the cognitive deficits.

by normalizing DYRK1A levels [162]. Epigenetic mechanism
could be involved in the effects of EE in IDDs, since EE-
induced benefits are long-lasting (at least 3-4 weeks) and are
supported by a specific EE-dependent transcriptional profile,
which is likely activated through epigenetic mechanisms
[163]. Four-week housing in EE conditions, while rescuing
impaired memories in both contextual fear conditioning and
water maze assays, was associated with enhanced histone
acetylation on several residues. This effect was mimicked
by daily injection of HDAC inhibitors in the murine peri-
toneum [164]. Another interesting experiment used mice
deficient in CBP, a transcriptional coactivator with histone

acetyltransferase activity. EE improved some defects in
behaviour and cognition caused by CBP deficiency and
promoted synaptic growth. However, its ability to enhance
spatial navigation and pattern separation and to induce neu-
rogenesis was severely compromised in absence of CBP, with
attenuation of the transcriptional profile normally associated
with EE due to decreased acetylation of the promoter regions
of genes involved in cognition [165], suggesting that CBP
contributes to EE ability to activate gene expression through
histone acetylation.

Understanding the full epigenetic, genetic, andmolecular
mechanisms of Environmental Enrichment will guide the



Neural Plasticity 13

development of a new class of therapeutics called “envi-
romimetics” for the treatment of IDDs. Enviromimetics are
compounds aimed to mimic the beneficial effect of EE on
cognition. An important unanswered question is how EE
results in mouse models relate to human living experience,
since most humans already do experience high levels of
complexity and novelty in their natural environments. How-
ever, individuals vary widely for the kind and amount of
mental exercise and physical activity performed. It will be
extremely important in order to improve existing therapeutic
approaches to closely reproduce in animal models the envi-
ronmental factors relevant to human conditions [158]. More-
over research on EE paves the way for nonpharmacological
treatment with promising outcomes in disorders such as DS
and FXS if used in synergy with other cognitive enhancers.

3.2. Epigenetic Drugs in Intellectual Disabilities. It is now
increasingly thought that approaches aimed at reestablishing
a proper gene expression profile, especially of key genes
impaired in cognitive disabilities, are the future of therapy
[152, 153]. An efficient way to induce long-lasting transcrip-
tional changes is to modulate epigenetic players, a field that
is booming in cancer research [166]. Epigenetic changes
are reversible and therefore are suitable to alleviate certain
features in IDDs that originate from epigenetic alterations.
Insights from cancer research could directly be conveyed
to new “cognitive epigenetics.” As a matter of fact, FDA
has approved four epidrugs against cancer, two DNMT
inhibitors (5-azacytidine and decitabine) and two HDAC
inhibitors [167]. Moreover valproic acid, which has already
been used against epilepsy and bipolar disorders, has shown
HDAC inhibitory and anticarcinogenic activity, being the
first epidrug approved for neurological disorders [168]. One
of the concerns related to the use of epidrugs is their potential
genome-wide and nonchromatin effect, since, for example,
HDACs can also act on nonhistone proteins. Although these
unwanted effects are less severe than one might expect,
a technology currently in development called “epigenetic
editing” will allow specifically targeting epigenetic drugs to
the gene(s) of interest, thanks to the usage of DNA binding
domains such as zinc finger proteins [169].

3.3. Epigallocatechin-3-gallate (EGCG): Panacea for IDDs?
The flavonoid epigallocatechin-3-gallate (EGCG) is the most
abundant polyphenol extracted from green tea. Strikingly,
this molecule is effective in both mouse models of AD and
DS. In AD mice, EGCG decreased beta-amyloid levels and
plaques via ADAM10-mediated promotion of the alpha-
secretase proteolytic pathway and modulates tau-profiles
with final cognitive improvements [170]. Similarly, in DS
models, EGCG recovered cognitive and neural plasticity
phenotypes, a result that was replicated in a pilot clinical
trial in humans [171]. Strikingly, a pilot clinical trial is un-
dergoing for EGCG treatment of FXS individuals (https://
clinicaltrials.gov/ct2/show/NCT01855971). EGCG has a
plethora of different effects and has thus been investigated
in studies from various research areas, including cancer
research [172]. However, the heterogeneous effects make
it difficult to fully identify and understand the underlying

molecular therapeutic mechanisms. Among its properties,
it has antioxidant and anti-inflammatory effects and is
able to regulate several enzymes by modulating their
kinase activity. Moreover, EGCG interferes at various
levels with epigenetic mechanisms, affecting the chromatin
state. EGCG inhibits both DNA methyltransferases [173]
and class I histone deacetylases (HDAC 1, 2, 3, and 8)
[174, 175]; it reduces the level of H327me3 and H2AK119
ubiquitination by reducing polycomb protein levels [176]
and affects miRNAs expression [177]. The property of
EGCG of modulating epigenetic changes makes it an ideal
candidate for the treatment of IDDs including DS and FXS.
Its widespread epigenetic effect might reestablish the lost
epigenetic balance, acting in a context specific way and
resulting in being effective in several IDDs, even if the source
and kind of epigenetic dysregulation are different. Many
properties of EGCG would contribute to its efficacy. For
instance, besides its epigenetic effect, EGCG inhibition of
DYRK1A kinase activity results in normalization of this gene
which is crucial for DS pathology [178]. In addition, EGCG
could also act by rescuing DS mitochondrial dysfunction
as it stimulates mitochondrial biogenesis and rescues
oxidative phosphorylation [179]. Remarkably, DYRK1A
is also involved in epigenetic regulation (see Section 2),
suggesting that EGCG could both directly and indirectly
regulate the epigenetic state. This interconnection is even
stronger if we consider that, similarly to EGCG effect,
enriched environments rescue defects in DS, normalize
DYRK1A levels, and modulate epigenetic modifications.
EGCG can thus be considered an “enviromimetics.” Of note,
a recent study showed that the combination of EE and EGCG
acts synergistically in ameliorating learning alterations and
age-related cognitive decline in DS [180], underlining the
potential of combinatorial therapeutic approaches.

4. Conclusion and Future Perspectives

Developmental disorders are often characterized by intel-
lectual disability due to defects in structural and synaptic
plasticity, with impaired activity-dependent cognitive-related
molecular processes such as local protein synthesis, long-
term potentiation, and long-term depression. In this con-
text, it is difficult to discern what can still be rescued in
cognitive developmental disorders and what is irreversibly
lost. Epigenetics is not only indirectly needed for cognition
by regulating neurodevelopment, but, as we amply discussed
in this review, directly regulates experience-based cognitive
processes. Epigenetics intercalates in development, cognition,
and aging/neurodegeneration, playing a key regulatory role
in all these processes. For instance, DNA methylation allows
cells to be “programmed” and differentiate during develop-
ment, is dynamically regulated during cognitive processes,
and increases gradually with aging. In contrast to genetic
alterations, epigenetic modifications are reversible and this
gives a great therapeutic potential to epigenetic drugs to at
least partially revert the phenotype associated with IDDs.We
have reviewed how epigenetic treatments restore cognitive
deficits in various models of cognitive impairment, restoring
a correct balance among writers and erasers of epigenetic
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modification. Of course an early treatment will maximize the
efficacy of epidrugs, since themore differentiated a tissue, the
less reversible the phenotypes.

Two main concerns are associated with epigenetic treat-
ment: genome-wide nonspecific effects and toxicity. As
regards the genome-wide effects, it would be worth conceiv-
ing ways to deliver epigenetic drugs such as DNMTi and
HDACi to the cell types that actually show the epigenetic
imbalance. Moreover, the epigenetic editing approach might
be a promising solution, allowing directing the epigenetic
drug to the loci of the key genes involved in the IDD.
Noticeably, the genome-wide action of epigenetic drugs may
also be an advantage, since it makes it possible to restore the
epigenetic balance in disorders such as DS and FXS, where
a similar cognitive impairment is originated by different
morphologic phenotypes affecting common altered synaptic
plasticity pathways. In this case the same molecule will
work in a context specific manner on different loci, since
the “substrate” of their action (the syndromic chromatin
state) will be different in both cases, restoring the impaired
epigenetic balance.

However, the epigenetic reversibility property is a double-
edged sword. Since epigenetic changes are reversible, some
epigenetic drug formulations are simply not long lasting.
That would, for example, account for what has been found
in the pilot clinical trial involving EGCG and the rescue
of the cognitive impairment in DS patients, where stopping
EGCG treatment leads to the reappearance of the impaired
phenotype [171]. To overcome this problem the future of
therapeutic treatment for cognitive disorders should focus in
potentiating and extending the effect of epidrugs, while at
the same time reducing the toxicity associated with chronic
treatment. In this sense, combinatorial therapy could play an
important role, having synergic effect as it has been shown in
mousemodels for EE andEGCG[180] or in the synergic effect
of DNA demethylation and histone hyperacetylation in the
reactivation of the FMR1 gene in human cell cultures [124].
Moreover this approach could be combined to conventional
treatments, such as neuromodulators aimed at restoring
the neurotransmitter balance in DS and FXS. Tackling the
epigenetic deregulation from many sides, together with the
targeting of specific molecular pathways, will allow both to
reduce the dose and thus the toxicity of the drugs in the
formulation and to extend their efficacy.

To this end a deeper understanding of all the epigenetic,
transcriptional, and molecular cascades activating upon cog-
nition in both physiological and pathological contexts is
needed. Future integrative studies will combine epigenetic
data, transcriptional data, and molecular data to get new
insights into the pathogenesis of IDDs, focusing both on
common altered pathways and to specific mechanisms. The
development of new technologies and the increase in high-
throughput data will allow in a near future elucidating the
cognitive processes that are dysregulated in IDDs. Most has
yet to come. For instance, as regards DNA methylation, one
of the first epigenetic modifications that has been studied,
it would be important to discriminate among 5mC and
5hmC, since both are highly present in the adult brain
and have opposite outcomes on transcriptional regulation.

A new technique called TET Assisted Bisulfite sequencing
(TAB-seq) in conjunction with bisulfite sequencing, allows
discerning between 5mC and 5hmC at single base resolution
[181]; however very few datasets of this kind are available by
now due to cost-related issues.

The main problem with previous studies is that they
lack cell-specificity. For example, many studies on DS focus
on different types of cells (e.g., blood cell, fibroblast) and
different animal models, taking cells at different develop-
mental stages, with results that are difficult to compare.
Moreover, the brain is probably the most complicated organ,
where several different cell types such as excitatory pyramidal
cells, inhibitory interneurons, and glial cells compose even
a reasonably delimited part, such as the hippocampus. Since
epigenetic changes are responsible for cell fate, the epigenetic
variations associated with cell type determination will sum
up to the epigenetic changes associated with the syndromic
state or to the cognitive processes, and this will dramatically
reduce the power of the studies. Differences in cell type
composition in compared samples of complex tissues will
result in difficulties to distinguish treatment or disease
specific changes from “epigenetic noise” caused by cell type
specificmarks varying based on cell type fractions.Therefore,
cell type specific studies using techniques such as cell sorting
to focus on single cell populations will have an increased
power in detecting epigenetic differences and underpinning
new key mechanism of regulation.

We speculate that epigenetic drugs, such as EGCG in
combination with other cognitive enhancers and specific
drugs interferingwith the cell and disorder specificmolecular
targets, will allow the recovery of the epigenetic balance lost
in IDDs such as DS and FXS, making the healing of the
cognitive impairment possible.
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