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Myeloid cell leukemia-1 (MCL1), an antiapoptotic member of the BCL2

family characterized by a short half-life, functions as a rapid sensor that

regulates cell death and other relevant processes that include cell cycle pro-

gression and mitochondrial homeostasis. In cancer, MCL1 overexpression

contributes to cell survival and resistance to diverse chemotherapeutic

agents; for this reason, several MCL1 inhibitors are currently under pre-

clinical and clinical development for cancer treatment. However, the non-

apoptotic functions of MCL1 may influence their therapeutic potential.

Overall, the complexity of MCL1 regulation and function represent chal-

lenges to the clinical application of MCL1 inhibitors. We now summarize

the current knowledge regarding MCL1 structure, regulation, and function

that could impact the clinical success of MCL1 inhibitors.

Introduction

Myeloid cell leukemia-1 (MCL1), a member of the

BCL2 (B-cell lymphoma 2) family of proteins, was ini-

tially identified as an early gene induced in human

myeloblastic leukemia (ML-1) cells upon phorbol ester

(TPA) exposure. In this case, MCL1 upregulation trig-

gered the differentiation of ML-1 cells into monocytes or

macrophages; however, MCL1 downregulation induced

apoptosis, thereby suggesting a role for MCL1 in cell

survival. Protein homology studies provided evidence for

a primary function of the BCL2 family of proteins in

regulating cell death and, in particular, in mitochondrial

outer membrane permeabilization (MOMP) [1–3].
BCL2 proteins modulate apoptosis, a form of pro-

grammed cell death essential for the control of

homeostasis, and are characterized by the presence of

BCL2 homology (BH) domains and a carboxy-

terminal transmembrane domain (TMD) present in

most members. BCL2 proteins are classified into three

groups according to their function and the number of

BH domains—the antiapoptotic proteins (BCL2, BCL-

xL, BCLW, MCL1, A1, and BCLB), the proapoptotic

BH3-only ‘sensor’ proteins (including BAD, BID,

BIM, BMF, PUMA, and NOXA), and the proapop-

totic ‘executors’ (BOK, BAX, and BAK). A complex

network of interactions between proapoptotic and

antiapoptotic members of this protein family governs

MOMP, which first induces the release of apoptogenic

factors such as cytochrome c into the cytosol, where it
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binds to apoptosis protease-activating factor 1

(APAF1) and procaspase-9 in a macromolecular com-

plex known as the apoptosome. Subsequently, acti-

vated procaspase-9 activates the procaspase-3 effector

protease that finally dismantles the cell [4,5].

MCL1 has three confirmed BH domains (BH1–
BH3), a putative BH4 domain, a C-terminal TMD,

and a large N-terminal region [1–170 amino acids (aa)]

(Fig. 1). The large N-terminal region differs from the

other BCL2 family members and contains large num-

bers of proline (P), glutamic acid (E), serine (S), and

threonine (T) residues (or ‘PEST’ sequences). PEST

enrichment and arginine pairs represent typical features

of labile proteins; consequently, MCL1 displays a short

half-life and is highly regulated, thereby providing a

means by which MCL1 can modulate apoptosis in

response to rapidly changing cellular contexts. Intense

recent efforts have led to the description of new small-

molecule drugs that block MCL1 function in diseases

such as cancer, in which MCL1 plays an inhibitory role

in apoptosis. Importantly, MCL1 also plays important

nonapoptotic roles in mitochondrial homeostasis,

embryonic development, autophagy, and cell cycle.

Given the availability of tools that modulate MCL1

function, the coming years may provide an avalanche of

preclinical studies and clinical trials that will require a

deeper molecular understanding of this critical protein.

MCL1 structural features that impact
function and treatment strategies

The human MCL1 gene located on chromosome

1p21.2 contains three exons and encodes a 350 aa pro-

survival protein called MCL1 or MCL1L [6].

Alternative splicing generates two additional shorter

forms, MCL1S and MCL1ES (Fig. 1).

The MCL1S variant (271 aa) lacks exon two and

produces a protein without BH1, BH2, and the TMD

—as a result, MCL1S behaves like a BH3-only sensor

protein, induces apoptosis, selectively forms heterodi-

mers with MCL1L, and displays a predominantly

cytosolic localization [but exists to a lesser extent in

the endoplasmic reticulum (ER)] [7,8]. Thus, a balance

between MCL1L/MCL1S expression may regulate

the machinery controlling mitochondrial fusion and

fission [9].

The shortest MCL1ES variant (1–179 aa) possesses

a truncated exon one, which results in the loss of the

N-terminal section of the PEST sequences. MCL1ES

binds to MCL1L, localizes to the outer mitochondrial

membrane (OMM), and induces BAK- and BAX-

independent mitochondrial cell death [10,11]. Evidence

suggests that the formation of MCL1L-MCL1ES oli-

gomers triggers MOMP and apoptotic signaling.

The first reported structure of MCL1 in solution,

corresponding to residues 152–308 of mouse MCL1,

was determined in 2005 [12]. Like all MCL1 structures

published to date, it lacked the large PEST domain

located in the N-terminal region and the C-terminal

TMD; however, the publication of the human protein

structure soon after established a significant similarity

to the mouse MCL1 protein [13]. Important differ-

ences included a negative charge distribution in the

binding groove of the helix a3 region of human

MCL1, a region which is positively charged in the

mouse protein [14]. Since the publication of these stud-

ies, many MCL1 structures complexed with BH3-only

proteins or inhibitors have been described.

Fig. 1. Schematic representation of MCL1

gene, mRNAs, and protein variants. MCL1S

and MCL1ES display proapoptotic behavior

while MCL1L is antiapoptotic.
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Human and mouse MCL1 share a helical core struc-

ture consisting of eight helices [in which a set of

amphipathic helices surrounds a hydrophobic central

helix (a5)] with other BCL2 antiapoptotic proteins.

The folded structure of MCL1 generates a hydropho-

bic region known as the ‘BH3-binding groove’, which

is formed by residues from helices two, three, and

four; meanwhile, helices five and eight comprise the

groove base (Fig. 2A). The BH3-binding groove estab-

lishes interactions with BH3 domains in other BCL2

protein family members (Fig. 2B). Of note, this inter-

action has been studied in-depth due to its relevance

as a pharmacological intervention point for the modu-

lation of apoptosis.

A conserved pattern within BH3 domains, compris-

ing four positions (h1–h4) occupied by hydrophobic

residues located on the same face of the helix, controls

interactions with the BH3-binding groove (Fig. 3A).

An aspartic acid residue from the BH3 domain forms

a salt bridge with arginine 263 of the MCL1-binding

groove [15–18].
The MCL1-binding groove can also be subdivided

into four pockets (P1-P4) that interact respectively

with residues h1-h4 from BH3-only proteins (Fig. 3B).

Exhaustive structural comparisons of different protein

complexes have identified P2 and P3 pockets as the

location for the ‘hot spot’ residues for protein–protein
interactions in MCL1, which is unlike antiapoptotic

proteins such as BCL2 (P2 and P4/P1) or BCL-xL (P2

and P4) [19,20]. The structure of MCL1 P2 is shorter

and wider compared with the BCL2 P2 [20], while the

MCL1 groove displays a more open conformation

when compared to other antiapoptotic BCL2 proteins.

Moreover, the surface properties of BCL2 family pro-

teins differ significantly despite high levels of structural

homology. MCL1 has abundant lysine and histidine

residues, which generate an electropositive surface that

influences drug interactions with the binding groove.

Together, these differences explain the interaction

specificities of different BH3-only proteins and con-

tribute to the design of novel specific MCL1 inhibitors

and an appreciation of their mechanism of action.

Song et al. [21] recently identified a conserved

domain formed by residues Q221, R222, and N223

(QRN motif) in the BH3 domain of MCL1, that

undergoes a conformational switch (to a helix) follow-

ing NOXA binding that facilitates protein ubiquitina-

tion by MCL1 ubiquitin ligase E3 (MULE, also called

LASAU1, ARF-BP1, or HUWE1). Interestingly, bind-

ing of the BIM BH3 domain stabilizes the nonhelical

structure of this motif to avoid MCL1 ubiquitination

and degradation. Thus, inhibitors designed to target

the QRN motif could interfere with BH3 binding and

facilitate protein degradation, thereby increasing apop-

tosis.

As noted previously, the MCL1 protein plays addi-

tional apoptosis-independent roles, including the inhi-

bition of senescence. Mutational and structural studies

have demonstrated that this senescence-inhibiting func-

tion does not depend on the BH3 binding domain [22].

Instead, a loop formed by G203, P198, K197, and

K1974 (Fig. 3C) controls the MCL1-mediated inhibi-

tion of senescence. Interestingly, peptides derived from

this so-called senescence-regulating domain counter-

acted MCL1 function in vitro and in vivo in a colon

cancer model of doxorubicin-induced senescence [23].

The complex regulation of MCL1
expression

MCL1 expression is controlled at the transcriptional

and post-transcriptional levels and the translational

and post-translational levels. Overall, MCL1 displays

low tissue and cell-specific expression and broad intra-

cellular localization. While localizing primarily to the

mitochondria membranes [24], MCL1 can be found in

light membrane fractions, such as the ER [9] and the

nucleus [25,26].

Fig. 2. Crystal structure of MCL1. (A)

Helical folding of MCL1. Helices (a1–a8)

form the helical core where the amphipathic

a5 is surrounded by the rest of helices,

thereby creating the hydrophobic BH3-

binding groove. (B) Structure of MCL1 in

complex with the BH3-only protein NOXA.

Figure was generated using Protein Data

Bank (PDB) code 2NLA.
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The dysregulation of MCL1 transcription in cancer

cells can induce resistance to apoptosis. Cytokines

(e.g., IL-3, 5, and 6), growth factors [e.g., granulocyte-

macrophage colony-stimulating factor (GM-CSF), epi-

dermal growth factor (EGF), and vascular endothelial

growth factor (VEGF)], interferon proteins, and stress

stimuli (e.g., ER stress or hypoxia) can all stimulate

the transcriptional upregulation of MCL1 through the

direct activity of crucial transcription factors (Fig. 4)

[6]. Said factors include signal transducer and activator

of transcription (STAT) proteins, cAMP response

element-binding protein (CREB), nuclear factor kappa

light chain enhancer of activated B cells (NF-jb),
hypoxia-inducible factor 1-alpha (HIF1a), transcrip-

tion factor binding purine-rich sequence (PU.1), Sp/

KLF family of transcription factor 1 (SP1), and estro-

gen receptor alpha (ERa) [27]. MCL1 transcriptional

repression following growth factor withdrawal, ultravi-

olet light exposure, or flavopiridol (a flavonoid alka-

loid cyclin-dependent kinase 9 [CDK9] inhibitor)

treatment occurs mainly through the inactivation of

the previously mentioned transcription factors or the

direct binding of E2F transcription factor 1 (E2F1) to

the MCL1 promoter [28,29].

Post-transcriptional control of MCL1 occurs at two

levels—mRNA splicing and mRNA stability. Several

spliceosome components and regulatory RNA-binding

proteins (RBPs) modulate MCL1 splicing. As an

example, the knockdown of the spliceosome compo-

nents ubiquitin-like protein 5 (UBL5), pre-mRNA-

processing-splicing factor 8 (PRPF8), squamous cell

carcinoma antigen recognized by T cells (SART), and

the U2 small nuclear ribonucleoprotein (snRNP) splic-

ing factor 3b subunit 1 (SF3B1) induce the generation

of the MCL1S variant, which sensitizes MCL1-

dependent neuroblastomas to treatment with ABT-

737, a small-molecule drug that inhibits BCL2 and

BCL-xL [30]. Members of the serine/arginine-rich (SR)

protein family of RBPs (SRSF1 and SRSF2) also par-

ticipate in MCL1 splicing (Fig. 4)—while SRSF1

knockdown increases MCL1S expression, SRSF2

knockdown in renal cancer cells decreases MCL1S

expression and inhibits apoptosis [31,32]. While we

understand little regarding the epigenetic regulation of

MCL1 expression, Khan et al. [33] have reported that

the acetylation of histones H3 and H4 within exon

two favors exon skipping and MCL1S expression. Of

note, the splicing factors regulating the formation of

MCL1ES remain unidentified.

MCL1 mRNA has a short half-life (two to three

hours average), and RNA sequence elements and the

binding of RBPs determine stability (Fig. 4). Several

cis-acting elements have been identified in the 30

untranslated region (UTR) of antiapoptotic BCL2

family members (including CU-rich, AU-rich, and

GU-rich elements) that regulate mRNA stability in an

RBP-dependent manner. Human antigen R (HuR)

binds to AU-rich elements in the MCL1 30 UTR to

stabilize mRNA and increase expression in glioma

[34]; however, RNA-destabilizing protein Tristetrapro-

lin (TTP) binds to this same motif to destabilize

MCL1 mRNA and decrease expression during

Fig. 3. Interaction sites relevant for MCL1

function. (A) Conserved positions of BH3

domains (h1–h4) required to establish

interactions with the binding groove. (B)

Crystal structure of MCL1 with the P1–P4

pockets of the binding groove highlighted.

(C) Crystal structure of MCL1 with the loop

relevant for senescence regulation

highlighted in red. The figure was generated

using PDB code 6YBJ.
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bacterial infection [35]. CUG triplet repeat, RNA-

binding protein 2 (CUGBP2) binds to the GU-rich ele-

ments in the MCL1 30 UTR to stabilize mRNA and

inhibit its translation in colon cancer cells [36]. Finally,

polypyrimidine tract-binding protein 1 (PTBP1) binds

to CU-rich elements in the MCL1 30 UTR to decrease

expression in multiple cancer cell lines [37].

miRNAs, small noncoding RNAs (sncRNAs) of

around 22 nucleotides, target the 30 UTR region of

mRNAs via base pairing to induce mRNA degradation

or translational repression. There currently exist thir-

teen validated miRNAs that target MCL1 (Table 1).

While most miRNAs only target MCL1, miR-125b,

miR-133a/b, and miR-153 also target other BCL2 fam-

ily members [38]. Long noncoding RNAs (lncRNAs),

which are generally longer than 200 nucleotides, can

regulate gene expression through diverse mechanisms,

including the prevention of miRNA binding to their

target mRNAs; therefore, lncRNAs can modulate

MCL1 mRNA stability. Twelve lncRNAs, including

metastasis-associated lung adenocarcinoma transcript 1

(MALAT1), antisense noncoding RNA in the INK4

locus (ANRIL), H19 imprinted maternally expressed

transcript (H19) (Table 1), are currently understood to

regulate MCL1 expression [27].

Endoplasmic reticulum stress, ultraviolet light, ele-

vated osmotic pressure, and arsenite treatment also

decrease MCL1 levels through the eukaryotic initiation

factor 2 (eIF2)-mediated suppression of mRNA

translation [39]. Metabolic sensors such as the mam-

malian target of rapamycin complex 1 (mTORC1) and

AMP-activated protein kinase (AMPK) also modulate

the synthesis of MCL1. MCL1 mRNA is considered a

‘weak mRNA’ as its 50 UTR possesses a robust sec-

ondary structure. Such mRNAs are translated through

a regulated cap-dependent system controlled by the

eIF4F protein complex, which, in turn, is regulated by

mTORC1 and AMPK. While mTORC1 activity

induces MCL1 synthesis [40], AMPK activation and

mTORC1 inhibition following a block in glycolysis

prompt a decrease in MCL1 synthesis [41].

Fig. 4. Summary of the main regulators of

MCL1 expression at the transcriptional,

post-transcriptional, and translational level.

Table 1. Summary of the main identified ncRNAs regulating MCL1.

miRNAs lncRNAs

Name References Name References

miR-29 [173] MALAT1 [174,175]

miR-30 [176] ANRIL [177]

miR-101 [178] circHIPK3 [179]

miR-125b [180] H19 [181]

miR-133a [182] HULC [183]

miR-133b [184] LINC00152 [185,186]

miR-153 [187] MYOSLID [188]

miR-181 [189] PMS2L2 [190]

miR-193a [191] SNHG12 [192]

miR-302b [193]

miR-320 [194]

miR-512 [195]
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Post-translational modifications such as cleavage,

phosphorylation, and ubiquitination regulate the avail-

ability of MCL1, which is a short-lived protein (Fig. 5).

MCL1 possesses two weak and two strong PEST

motifs in the N-terminal region, which function as sig-

nals for degradation and induce rapid turnover. Thus,

MCL1 becomes degraded by the proteasomal machin-

ery by both ubiquitin-independent and ubiquitin-

dependent pathways [42]. The unstructured N-terminal

region of MCL1 promotes proteasome recognition and

degradation in a ubiquitin-independent manner [43];

therefore, proteins interacting with this region may

interfere with proteasome binding and contribute to

MCL1 stabilization. While the proapoptotic BH3-only

family members [13] and translationally controlled

tumor protein (TCTP) [44] have been also identified as

MCL1 modulators that function by regulating degrada-

tion, however, the mechanisms involved remain incom-

pletely understood.

Ubiquitination plays a vital role in the turnover of

MCL1—fourteen Lys (K) residues have been identified

as putative ubiquitination sites, and several ubiquitin

ligases and deubiquitinases can modulate MCL1 stabil-

ity. The BH3 domain of MULE, a K48 ubiquitin ligase

that polyubiquitinates and targets MCL1 for degrada-

tion [45], interacts with the MCL1 BH3 groove and

competes with the binding of other BH3-only proteins.

Knockdown of membrane-associated RING-CH

protein 5 (MARCH5) reduces degradation of MCL1;

however, whether this occurs through a direct

ubiquitination-associated mechanism remains unclear.

The E3 ubiquitin-protein ligase parkin (Parkin) also

directly ubiquitinates MCL1, as do the E3 ligases beta

transducing-containing protein (b-TrCP) and F-

Box and WD repeat domain containing 7 (FBXW7)

polyubiquitinate MCL1, although they require the pre-

vious phosphorylation of MCL1 by glycogen synthase

kinase 3 (GSK3) to mediate recognition [46]. The K63

ubiquitin ligase tumor necrosis factor receptor-

associated factor 6 (TRAF6) also regulates MCL1 by

preventing its interaction with the proteasome. Of note,

all Lys residues subjected to K63 ubiquitination local-

ize to the C-terminal region of the protein [47]. Several

deubiquitinases, including ubiquitin-specific peptidase 9

X-linked (USP9X), ubiquitin carboxyl-terminal hydro-

lase 13 (USP13), ubiquitin carboxyl-terminal hydrolase

24 (USP24), ubiquitin carboxyl-terminal hydrolase 17

(DUB3), Josephin domain containing 1 (JOSD1), and

X-ray repair cross-complementing protein 6 (Ku70),

also play roles in controlling MCL1 ubiquitination

[27]; however, we require additional studies to fully

understand how the interplay between E3 ligases and

deubiquitinases regulates MCL1 levels and function.

The phosphorylation of MCL1, the most common

post-translational modification, usually implies protein

degradation, although the role of all phosphorylated

residues has yet to be experimentally confirmed

[27,48]. The N-terminal region of MCL1 contains ten

putative phosphorylation sites (Fig. 5) that can be

modified in a cell context-dependent manner by a

range of kinases to produce site-specific outputs. S64

phosphorylation by cyclin-dependent kinase 1 and 2

(CDK1 and 2) and c-Jun N-terminal kinase (JNK)

occurs during the G2/M phase of the cell cycle;

Fig. 5. Schematic diagram of MCL1

highlighting the main residues involved in

protease cleavage (black), phosphorylation

(orange), and ubiquitination regulation (red

and green). The main proteins responsible

for these post-translational modifications are

also named in the figure.
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however, these modifications fail to impact MCL1

half-life [49]. Extracellular signal-regulated kinase

(ERK)-mediated phosphorylation of T92 stabilizes the

interaction of MCL1 with peptidyl-prolyl cis/trans iso-

merase 1 (PIN1), blocks the association of MCL1 with

protein phosphatase 2A (PP2A), and precedes phos-

phorylation of other residues (such as S121, S159, and

T163). Overall, T92 phosphorylation is considered a

priming signal for the subsequent phosphorylation and

degradation of MCL1 [50]. Phosphorylation of T163

by ERK results in the increased stability and antiapop-

totic activity of MCL1; however, phosphorylation of

T163 combined with the phosphorylation of T92,

S121, and S159 targets MCL1 for ubiquitination and

proteasomal degradation.

Finally, MCL1 proteolysis and cleavage also occur

during apoptosis. Several groups have identified D127,

D157, and D117 as cleavage sites in the N terminus of

the protein for executioner caspases and Granzyme B

(Fig. 5). Although the function of the resultant frag-

ments remains under investigation, MCL1 cleavage

impedes interactions with other members of the BCL2

family and compromises antiapoptotic activity [51–53].

The survival role of MCL1 in apoptosis

As an antiapoptotic BCL2 family member, MCL1 pro-

motes cell survival by interfering in the cascade of the

events that cause MOMP and trigger cell death. Under

steady-state conditions, the proapoptotic BAX protein

remains in an inactive state in the cytosol, with the C-

terminal domain sequestered within a hydrophobic

surface groove [54]. Therefore, antiapoptotic proteins

perform two complementary prosurvival functions:

binding and neutralizing the BH3-only ‘sensor’ pro-

teins and inhibiting BAX and BAK effector proteins.

When cells sense proapoptotic stimuli, the upregula-

tion of BH3-only proteins produces changes in interac-

tion equilibria among BCL2 family members. The

insertion of BH3-only proteins into the hydrophobic

groove formed by the BH1, BH2, and BH3 domains

of antiapoptotic members [12,55–57] decreases the pro-

portion of prosurvival proteins available to inhibit

BAX/BAK activity. Moreover, BH3-only proteins

interact directly with and activate BAX and BAK [58].

During activation, the C-terminal hydrophobic domain

of BAX becomes released and interacts with the mem-

brane to promote BAX and BAK proteolipid pore for-

mation to induce MOMP, apoptogenic factor release,

apoptosome formation, caspase-3 activation, and

apoptosis.

MCL1 prevents cell death by inhibiting the

oligomerization of the BAX and BAK effector

proteins; thus, MCL1 degradation prompts increased

BAK and BAX activity [59]. While studies have estab-

lished the existence of a direct MCL1–BAK interaction

under various conditions, any direct interaction

between MCL1 and BAX remains unreported or unde-

tectable [59–61]. Supporting the relevance of MCL1–
BAK interactions, Moulding et al. [62] reported that

apoptosis induced by the specific loss of MCL1 expres-

sion occurred alongside an increase in BAK expres-

sion; however, BAX expression remained unaltered.

Additionally, ABT-737 (a BCL2 and BCL-xL inhibi-

tor) triggers apoptosis in BAK-null HCT116 cells;

however, BAX-null HCT116 cells displayed ABT-737

resistance [63]. BAX and BAK are regulated differ-

ently. While BAX is mainly cytosolic in healthy cells

and needs to go through conformational changes to

localize to the mitochondria, as explained above, BAK

resides inactive on the outer membrane of mitochon-

dria thanks to a double negative regulation mecha-

nism. BAK BH3 domain binds the hydrophobic

groove of MCL1 and also the groove of BCL-xL.

Release of BAK from both proteins is required for

apoptosis [59]. Thus, inhibition of both mechanisms

has to be considered for therapeutic modulation of cell

death [64].

MCL1 also interacts with BOK [65,66], another

proapoptotic effector of the BCL2 family. Hsu et al.

[65] described physical interactions between MCL1

and BOK using double hybrid experiments, while

more recent studies confirmed this interaction by coim-

munoprecipitation [67]. Significantly, MCL1 interacts

with BOK in a unique manner from the other BCL2

family members, using transmembrane fragment inter-

actions [68] to afford control over BOK-induced apop-

tosis [67].

MCL1 also associates with the PUMA, BIM, and

NOXA BH3-only ‘sensor’ proteins [13,69]. Analysis

using truncated proteins reported the interaction of

MCL1 with BID and BMF, although with significantly

lower affinity [70,71] (Fig. 6). Of note, binding affinity

estimations using soluble proteins fail to consider that

interactions generally occur within mitochondrial

membranes, thereby suggesting the careful considera-

tion of these results. PUMA, BIM, and NOXA inter-

fere with the binding between MCL1 and BAK to

promote apoptosis [59,64,72,73]. NOXA binds to

MCL1 with a much higher affinity than other anti-

apoptotic BCL2 family proteins [70]. Additionally,

unlike the rest of the BH3-only proteins, NOXA pos-

sesses a C-terminal region that interacts with the QRN

motif in the MCL1 BH3 domain [13,21]. Therefore,

this interaction destabilizes BAK and MCL1 binding

and promotes MCL1 degradation. Gomez-Bougie
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et al. [74] reported that the USP9X deubiquitinase and

MULE ubiquitinase participate in this process,

although the precise mechanism involved requires fur-

ther investigation.

Most studies of the interactions between MCL1 and

other BCL2 family members have been conducted with

protein fragments and a membranous environment.

Efforts made with other members of the family, such as

BCL-xL, to understand membrane interactions [75] may

help to better understand the role of MCL1 in the regu-

lation of MOMP and, in particular, the relevance of its

interactions with BOK. This knowledge may be espe-

cially relevant, as we now appreciate that TMDs of

these proteins, far from having a passive role, intervene

in those interactions that modulate apoptosis [67,76,77].

The nonapoptotic functions of MCL1

Other than apoptosis, MCL1 also plays controlling

roles in processes such as embryonic development,

mitochondrial homeostasis, mitochondrial bioenerget-

ics, autophagy, cell cycle control, and senescence.

MCL1 in embryonic development

Rinkenberger et al. [78] first revealed the fundamental

role of MCL1 in mouse embryonic development by

demonstrating preimplantation lethality following

MCL1 knockout. MCL1-null blastocysts failed to dis-

play any evidence of apoptosis; however, their delayed

maturation and lack of cell culture adhesion indicated a

defect in trophectoderm development. Furthermore, the

survival of neural precursor cells (NPCs) decreased dra-

matically in MCL1 conditional knockout embryos, sug-

gesting a role for MCL1 in developmental neurogenesis

[79]. Finally, Fogarty et al. established the dependence

of NPCs on MCL1 as neurogenesis commences and

then on BCL-xL as neurogenesis proceeds (Table 2).

Although this role of MCL1 has been considered inde-

pendent of its apoptotic function, no strict evidence has

been published. Studies showing whether the loss of

MCL1 leads to embryonic lethality in the absence of

BAX/BAK will be needed for further understanding.

In relation to MCL1 functions during development,

studies with knockin and conditional knockout mouse

models have also demonstrated the requirement of

MCL1 expression for medullary epithelial cell survival,

maintenance of thymic architecture, and positive selec-

tion in thymocyte differentiation during development

[80] (Table 2). The elevated level of MCL1 expression

in long-term hematopoietic stem cells (HSCs) and its

subsequent decline in HSC-derived progenitor popula-

tions suggested that the antiapoptotic function of

MCL1 may play a significant role during the earliest

stages of hematopoiesis [81]. Interestingly, the condi-

tional knockout of MCL1 in a mouse model resulted

in rapid, fatal, multilineage hematopoietic failure [82–
85] (Table 2).

MCL1 in mitochondrial homeostasis and

bioenergetics

The expression of MCL1 increases during the genera-

tion of induced pluripotent stem cells (iPSCs), with

MCL1 localizing to the mitochondrial matrix [86]. As

MCL1 interacts with mitochondrial fission and fusion

regulators, dynamin-related protein 1 (DRP1), and

OPA1 mitochondrial dynamin-like GTPase (OPA1)

(see more below), the regulation of mitochondrial

dynamics through MCL1 may help to maintain stem

cell pluripotency. Mitochondria lacking MCL1 exhibit

alterations in the tubular mitochondrial network,

increased reactive oxygen species (ROS) production,

defective cristae structure, lower respiratory chain effi-

ciency, and decreased ATP levels and oxygen con-

sumption rate [87]. These observations provide further

evidence for the role of MCL1 in the regulation of

mitochondrial homeostasis and bioenergetics.

The translocation of MCL1 between the OMM and

the mitochondrial matrix [87] occurs through the

Fig. 6. Diagram representing interactions described among the

members of the BCL2 family. Red triangles show proapoptotic

members; blue hexagons: antiapoptotic group; green rectangles:

BH3-only activators, and orange rectangles: BH3-only sensors.
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activity of a translocase (TIM/TOM) complex from

the outer/inner membrane that involves the proteolytic

cleavage of the first 50–80 aa, creating a truncated N-

terminal form [87–89]. This ‘matrix form’ of MCL1

promotes oligomerization of the F1 and F0 domains

of ATP synthase; however, MCL1 depletion alters

ATP synthase oligomerization resulting in a disorga-

nized cristae membrane, reduced ATP levels, lower

mitochondrial membrane potential, and elevated ROS

production [87]. However, the interaction between

MCL1 and ATPase subunits (direct/indirect) remains

undefined.

The matrix form of MCL1 also directly interacts

with very-long-chain acyl-CoA dehydrogenase

(VLCAD), an essential enzyme of the mitochondrial

fatty acid b-oxidation pathway, suggesting a functional

role for MCL1 in lipid metabolism. The MCL1–
VLCAD complex prevents hyperactivity of the fatty

acid b-oxidation pathway, maintains normal acetyl-

CoA levels, and optimizes substrate consumption. Fur-

thermore, MCL1 interacts with VLCAD in a non-

canonical conformation that exposes the MCL1 BH3

helix [90].

As mentioned previously, MCL1 also interacts with

mitochondrial proteins related to mitochondrial

dynamics and remodeling networks such as DRP1 and

OPA1. Thus, MCL1 modulates mitochondrial fission

at the OMM and fusion at the IMM [86]. OPA1

locates to the inner mitochondrial membrane (IMM)

and regulates mitochondrial fusion and oxidative phos-

phorylation, while MCL1 stabilizes and maintains

OPA1 function. DRP1-mediated mitochondrial fission

in response to stress can be protective or detrimental

[91,92]. MCL1 exercises antiapoptotic activity within

the OMM by inhibiting BAK activation to prevent

MOMP and by inducing recruitment of DRP1 to the

mitochondria. Thus, the MCL1–DRP1 interaction

may allow cells to adapt to stress and induce survival

independent of its antiapoptotic role [9,93]. As the

MCL1 BH3-binding groove mediates OPA1 and

DRP1 interactions, small-molecule inhibitors directed

against the canonical MCL1 BH3-binding groove

interfere with DRP1–MCL1 and OPA1–MCL1 inter-

actions without influencing fatty acid oxidation

[86,90].

Deficiencies in the respiratory chain and ATP pro-

duction together with increased ROS production could

explain the cardiotoxic phenotype observed following

MCL1 deletion in cell and animal models [48,94].

While cardiotoxicity represents an important consider-

ation when designing MCL1 inhibitors, the selective

targeting of MCL1 (and leaving other proteins of the

BCL2 family, e.g., BCL-xL, unaffected) may improve

drug tolerability in cardiomyocytes [95] (Table 2).

Table 2. Main identified animal models and their application in the study of MCL1.

Model type Application Reference

Knockout MCL1 Absolute KO�/� Development/

Hematopoiesis

Survival of stem cells [78]

Conditional KO�/�

tissue-specific

Hematopoiesis Maintenance of lymphocytes [85]

Survival of hematopoietic lineages [82,196]

Megakaryocytic lineage [83]

Development Neurogenesis [79]

Pathology Chronic liver disease and liver tumorigenesis [121–123,197–200]

Breast cancer [201]

Pancreatic b-cell survival [120]

Neutrophil regulator in cerebral stroke [118]

Conditional KO�/�

tissue-specific inducible

Hematopoiesis Survival of stem cells [84]

Survival plasma cells [202]

Pathology Acute myeloid leukemia [203]

Liver disease [204]

Mitochondrial homeostasis and heart disease [95,205]

Conditional KO+/�

tissue-specific inducible

Hematopoiesis Activated B-cell survival and B-cell memory [206,207]

Pathology Lymphomas [208]

Neurodegeneration [209]

Neutrophil regulator in cerebral stroke [118]

Knockin MCL1 KI human MCL1 Comparative biology Orthologous proteins [210,211]

KI humanized MCL1 mice Pharmacological role Drug efficacy [158]

Breast cancer [159]

Pathology Allergy and inflammation [119]

KI degradation resistant Pharmacological role Colon cancer [212]
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In agreement with a role in bioenergetics, MCL1

tightly regulates Ca2+ flux. MCL1 interacts with the

inositol trisphosphate receptor (IP3R) in the ER

through its C-terminal region with the same affinity as

BCL2 and BCL-xL and increases the release of Ca2+

from the ER to the mitochondria at a rate that

improves mitochondrial bioenergetics and inhibits

apoptosis [96]. Furthermore, overexpression of the

proapoptotic MCL1S isoform prompts mitochondrial

hyperpolarization, increased mitochondrial Ca2+ accu-

mulation, and apoptosis due to DRP1-dependent mito-

chondrial hyperfusion [9]. Thus, both MCL1 protein

content and MCL1L/MCL1S isoform ratio modulate

Ca2+ and mitochondrial network homeostasis.

MCL1 also binds to voltage-gated anion channel pro-

tein (VDAC) in the mitochondria to stimulate Ca2+

uptake and, as a consequence, increase ROS generation

[97]. Interestingly, Ca2+-dependent ROS production

promotes lung cancer cell migration without affecting

cell proliferation [97]. Furthermore, studies reported

that ROS production depends on the MCL1–VDAC

interaction, as VDAC-based inhibitor peptides decrease

ROS production in cells expressing MCL1; however,

MCL1 knockdown failed to induce an effect. These

findings are controversial when considering the previ-

ously discussed evidence regarding how the MCL1

matrix form impacts ROS production [87]. As there

exists evidence that VDAC and IP3R act on the same

signaling pathway [98], further investigations will be

needed to clarify the connections between IP3R, VDAC,

and the OMM- and matrix-forms of MCL1 forms.

In addition to this, Cen et al. [99,100] described

recently the interaction of MCL1 with microtubule-

associated 1A/1B light chain 3A (LC3A) protein to

promote mitophagy. The chemical inhibition of MCL1–
BAK interaction releases MCL1 allowing MCL1 to

interact with LC3A. Interestingly, authors showed that

mitophagy could be a potential target for neurodegener-

ative diseases and in particular, in Alzheimer’s disease

(AD). In AD, the impaired mitochondria trigger ener-

getic stress, calcium imbalance, and accumulation of

amyloid-b deposits in the brains of AD mouse models.

Mitophagy is also compromised in AD and contributes

to regulation of named mitochondrial alterations. Fur-

ther studies are needed to understand the whole picture

of MCL1 controlling mitochondria homeostasis.

MCL1 in autophagy

Autophagy, the process of degradation and recycling

of intracellular content, intervenes in modulating the

equilibria between cell survival or death. The role of

MCL1 in autophagy depends on the cellular context.

Several studies have described MCL1-driven inhibition

of autophagy through the binding of the BECLIN1

BH3 motif to the BH3 binding groove of MCL1 and

the inhibition of autophagosome formation [101]. The

ER and mitochondria both provide the lipids required

for autophagosome formation [102]; therefore, MCL1

may regulate the mitochondrial pathway of

autophagosome formation with evidence for this path-

way existing in neurons [103]. The MCL1–BECLIN1

interaction may also explain why the oxidative stress-

triggered increase in BOK expression leads to induc-

tion of autophagy in preeclamptic placentas [104].

Increased BOK protein levels can sequester MCL1,

thereby releasing BECLIN1 to promote autophagy.

A second explanation for MCL1-driven autophagy

inhibition arises from studies that established how

MCL1 downregulation leads to increased BECLIN1

levels and the induction of basal autophagy. MCL1

and BECLIN1 compete to bind to the same region of

the USP9X deubiquitinase; therefore, the displacement

of BECLIN1 by MCL1 could induce the consequent

increase in ubiquitination and proteasomal degrada-

tion. The inverse correlation of these proteins supports

the development of certain tumors, given that levels of

BECLIN1 decrease and MCL1 increase during tumor

progression [105]. However, David Vaux work showed

that MCL1, among others antiapoptotic proteins, inhi-

bits autophagy pathway by affecting BAX/BAK levels,

suggesting an indirect role. In a cellular context where

BAX and BAK are not present, inhibition of MCL1

does not increase autophagy rates [106]. In addition,

MCL1 exerts a proautophagic function in specific cel-

lular contexts. Thomas et al. [48] reported that MCL1

deletion impairs autophagy in cardiomyocytes, with

mitochondrial dysfunction, decreased ATP production,

and increased ROS production all observed. Thus, the

role of MCL1 in autophagy remains controversial.

MCL1 may also control apoptosis and autophagy in a

context-dependent manner, according to cellular condi-

tions and depending on the relative dominance of

autophagic or proapoptotic factors.

Nuclear roles of MCL1

MCL1 also localizes to the nucleus and plays promi-

nent regulatory roles during various stages of the cell

cycle. MCL1 accumulates during the cell cycle and

reaches a peak around the late G2 phase [107], where

it stimulates checkpoint kinase 1 (CHK1) phosphoryla-

tion, a regulator of DNA damage response [108]. As

CHK1 phosphorylation mediates G2/M arrest, MCL1

plays a G2/M checkpoint protein role and provides

time for DNA damage repair [26,109].

6218 The FEBS Journal 289 (2022) 6209–6234 ª 2021 The Authors. The FEBS Journal published by John Wiley & Sons Ltd on behalf of

Federation of European Biochemical Societies

MCL1: more than an antiapoptotic BCL2 protein M. Sancho et al.



A study by Jamil et al. detected the interaction

between a short nuclear form of MCL1 with cyclin-

dependent kinase 1 (CDK1), which inhibited kinase

activity and cell cycle progression through G2/M

phases. Of note, the MCL1–CDK1 association did not

depend on interactions of CDK1 with cyclins [110].

Another study established that CDK1 binding to mito-

tic cyclin B induces the phosphorylation of MCL1 at

T92, with phosphorylation and polyubiquitylation pro-

moting MCL1 degradation and inducing apoptosis

[107]. Interestingly, if MCL1 levels fall below a critical

level as occurs in the mitotic arrest state, cell death

occurs via the intrinsic apoptotic pathway [111]. Thus,

the inhibition of CDK1 and CHK1 activities makes

MCL1 a significant player at the G2/M checkpoint;

however, the MCL1S pro-apoptotic isoform counter-

acts G2/M checkpoint function, accelerates cell cycle

progression through mitosis, and promotes DNA dam-

age accumulation [112]. MCL1 also interacts with the

S phase cell cycle regulator proliferating cell nuclear

antigen (PCNA) to inhibit cell cycle progression [25].

The interaction between MCL1 and cyclin-dependent

kinase 4 inhibitor C (P18INK4C), an inhibitor of

CDK4/6, promotes G1/S progression by avoiding the

inhibitory activity of P18INK4C on CDK4/6. Conse-

quently, CDK4/6 interacts with retinoblastoma (RB1)

facilitating S phase entry [113]. MCL1 causes depletion

of P18INK4C protein levels; therefore, the accumula-

tion of cells in G2/M after MCL1 overexpression may

represent a consequence of increased cell cycle entry

promoted by MCL1–P18INK4C interactions. Intrigu-

ingly, MCL1 interacts with cyclin-dependent kinase

inhibitor 1B (CDKN1B) in the nervous system to con-

trol cell cycle progression through the G1 phase to pro-

mote the differentiation and survival of NPCs [114].

Widden et al. also described the interaction of

MCL1 with p73, which plays a role in modulating the

expression of target genes associated with the DNA

damage response and cell cycle progression [115]. p73

directly interacts with the MCL1 BH3-binding pocket

in the nucleus to inhibit the DNA-binding ability of

p73. Therefore, MCL1 promotes cell cycle progression

by blocking the transcriptional activity of p73 [116].

Overall, MCL1 interacts with various cell cycle pro-

teins to induce divergent outcomes; further research

may disentangle the exact mechanisms by which

MCL1 modifies cell cycle progression.

Senescence

Finally, MCL1 inhibits chemotherapy-induced senes-

cence and can enhance tumor growth independent of

its apoptotic function. As described before, a domain

located outside the classical BH regions mediates this

senescence-inhibiting function, which could also be

implicated in, for example, the ability of MCL1 to

interfere with ROS production [22,23,117]. Overall, the

MCL1-mediated inhibition of apoptosis and senes-

cence through distinct molecular domains should be

considered when evaluating current developing MCL1

inhibitors.

MCL1-related pathologies

Given the wide range of cellular functions associated

with MCL1, investigations into a range of pathological

processes have also established crucial links to MCL1

dysregulation.

The relevance of MCL1 in heart disease has

emerged as a significant concern regarding the use of

MCL1 inhibitors in the clinic. In cardiomyocyte-based

models, MCL1 deletion produces cardiotoxicity,

thereby decreasing cell survival and impairing contrac-

tile function [94], a phenotype attributed to the roles

of MCL1 in the control of mitochondrial homeostasis

and autophagy. In agreement with in vitro cell-based

findings, mice lacking cardiomyocyte-specific MCL1

expression exhibited signs of heart disease, manifested

as a loss of cardiac contractility, defects in mitochon-

drial structure and mitochondrial respiration, and

lower ATP production compared with wild-type

[48,95].

MCL1 also plays a prominent role in the outcome

of cerebrovascular disorders. For example, MCL1-

deficient stroke model mice presented with less harmful

lesions in the ischemic area with an almost complete

absence of neutrophil recruitment compared with wild-

type or heterozygous animals [118]. Therefore, this

study provides evidence that small-molecule inhibitors

of MCL1 may represent a possible therapeutic avenue

for treating ischemic stroke in human patients. Addi-

tionally, Felton et al. [119] linked the overexpression

of the human form of MCL1 in mice with the exacer-

bation of allergic airway inflammation, with increased

cellularity of bronchoalveolar lavage fluid, eosinophil

number, total protein, and airway mucus production

observed.

Analysis in type I diabetes model has uncovered a

pancreas-specific decrease in MCL1 expression [120].

MCL1 knockout mice did not display alterations to

the development and function of pancreatic islets;

however, the loss of MCL1 expression did affect pan-

creatic b cells, making them more susceptible to apop-

tosis mediated by proinflammatory cytokines. b-cells
from the pancreas of MCL1 knockout mice also exhib-

ited hyperglycemia and low pancreatic insulin content
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after toxic stimuli. In conclusion, maintaining MCL1

homeostasis may represent an exciting strategy for

treating type 1 diabetes patients [120].

Chronic liver disease patients suffer from an ele-

vated risk of developing hepatocellular carcinoma,

with epithelial cell apoptosis frequently observed in cir-

rhotic livers [121]. Hypothetically, the genetic depletion

of MCL1 may increase apoptosis and inhibit tumorige-

nesis; however, the livers of mice with a hepatocyte-

specific knockout of MCL1 displayed increased mild

tissue fibrosis, oxidative stress, and inflammatory cyto-

kine release, all of which can support cancer develop-

ment. The role of MCL1 in cell cycle progression,

DNA repair, and ROS production may explain the

described phenotype [121–123].
MCL1 dysregulation occurs in many types of can-

cers and often correlates with poor prognosis and ther-

apeutic resistance. In fact, genomic data analysis from

The Cancer Genome Atlas shows high MCL1 protein

expression in at least 22 cancer types [124]. Interest-

ingly, MCL1 is located in a focal amplification peak

region of the chromosome 1qS with other eight genes

that shows amplifications in 10.9% of cancers in multi-

ple tissue types. This is considered a common mecha-

nism for cancers, to increase cell survival that could be

targeted. In particular, in lung cancer it has been

shown that MCL1 amplification is required for sus-

tained survival and its inhibition delays tumor progres-

sion [124,125].

In colon adenoma and carcinoma patients [126],

MCL1 protein levels directly correlate with tumor

grade/stage and the presence of metastasis [127]. Inter-

estingly, the MCL1 expression pattern correlates with

responses to 5-fluorouracil (5-FU)—those patients with

perinuclear MCL1 expression responded more fre-

quently to treatment [128]. High MCL1 expression

correlates with poor survival for patients with stage III

ovarian carcinomas, with diffuse MCL1 expression

correlating with advanced clinical stage, high histologic

grade, and poor survival [129]. In gastric carcinoma

patients, the detection of elevated MCL1 levels by

tumor immunohistochemistry correlates with a signifi-

cantly worse prognosis than patients lacking tumor

MCL1 expression [130,131]. In multiple myeloma,

MCL1 mRNA and protein overexpression in patient

samples correlated with disease severity and shorter

event-free survival times [132]. The mechanisms that

multiple myeloma cells employed to survive involved

the stabilization of MCL1 by PP2A-mediated dephos-

phorylation [215]. High MCL1 levels appear at high

frequency in non–small-cell lung cancer (NSCLC)

cohorts, and retrospective studies have provided evi-

dence of the significantly worse five-year survival rate

in those patients with elevated tumor MCL1 expres-

sion [133]. Moreover, NSCLC patients with high

MCL1 expression display a high cellular proliferation

index and lower overall survival rates than patients

with low MCL1 expression [134]. MCL1 expression

also correlates with protein kinase B (AKT) activity in

NSCLC tumors, with interactions between the MCL1

PEST domain and the pleckstrin homology domain of

AKT forming at least part of the underlying mecha-

nism. This interaction leaves the AKT kinase site in an

active conformation, thereby promoting cell survival

[135]. Interestingly, the MCL1 deletion or inhibition of

MCL1 activity (with the MCL1 antagonist S63845)

caused a significant reduction in tumorigenesis [124].

MCL1 overexpression also occurs in metastatic malig-

nant melanoma [136]; antisense therapies, gene silenc-

ing, or inhibitor administration alone or in

combination with other chemotherapeutic agents sig-

nificantly decreased tumor growth [137–140]. In breast

cancer patients, MCL1 high expression correlates with

poor prognosis, high tumor grade, and poor survival

[141–143]. As EGF or ER activation upregulates

MCL1 expression [144–146], targeting MCL1 repre-

sents the mechanism of action for many breast cancer-

targeted drugs [147–150]. In the aggressive triple-

negative breast cancer (TNBC) subtype, inhibiting

MCL1 sensitized breast cancer cells to apoptosis by

conventional chemotherapy [142,151].

By contrast, the hepatocyte-specific loss of MCL1

increased the frequency of liver tumors [152]. This

unexpected response depended on the apoptotic func-

tion of MCL1, as elimination of BAK decreased

tumorigenicity. The increased frequency of tumors

appears to correlate with excessive apoptosis in

MCL1-deficient livers, which prompted higher levels of

TNF-a production and increased oxidative stress to

sustain a protumorigenic liver environment [121].

Induced hepatocyte compensatory liver regeneration as

a consequence of excessive apoptosis contributes to

liver carcinogenesis [123]; however, liver cancer

patients exhibited MCL1 overexpression [153] and

studies have demonstrated that specifically inhibiting

MCL1 reduces the survival of hepatocellular cancer

stem-like cells [154]. Therefore, extensive liver cancer

studies with novel specific MCL1 inhibitors may sup-

port the design of appropriate pharmacological strate-

gies that will eliminate cancer cells but inhibit

detrimental hepatic regeneration mechanisms to

improve patient outcomes.

In summary, MCL1 participates in cancer progres-

sion, malignancy, and therapeutic resistance in several

tumor types. Therefore, the clinical development of

specific inhibitors will provide an opportunity
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to understand tumor biology better and, more

importantly, provide patients with new therapeutic

strategies.

Therapeutical strategies: MCL1
inhibitors in clinical trials

The critical role of MCL1 in different pathological

scenarios has driven the search for pharmacological

modulators of MCL1 function. Accordingly, the phar-

maceutical industry has focused its attention on the

prosurvival effect of MCL1 expression in tumor cells

and its involvement in chemotherapy resistance, which

has led to the discovery and clinical development of

selective MCL1 inhibitors that target the BH3 binding

groove and modulate interactions with other BCL2

members.

We now summarize the small molecules designed to

neutralize the antiapoptotic activity of MCL1. Table 3

summarizes the small-molecule inhibitors currently

under clinical evaluation.

S64315/MIK665

Structure-guided optimization of S63845, a previously

reported small-molecule MCL1 antagonist [155], led to

the development of S64315/MIK665, a potent and

selective MCL1 inhibitor. Structural studies of S64315/

MIK665 complexed with MCL1 revealed that the

molecule fills the P2 pocket and the P4-P5 region of

MCL1 [156]. Compared with its predecessor, S64315/

MIK665 demonstrated improved affinity and cell-

based activity. S64315/MIK665 presented low-affinity

binding for BCL2 and BCL-xL (58 and 237 lM,
respectively) [157] and displaced BAX and BAK pro-

teins (but not their antiapoptotic relatives) from

MCL1 [156]. As for other MCL1 inhibitors, S64315/

MIK665 increased MCL1 protein accumulation in a

dose-dependent manner and induced BAX/BAK-

mediated apoptosis in tumor cells. Hematological

cancer-derived cell lines displayed high susceptibility

(IC50 < 100 nM) to S64315/MIK665, while intravenous

dosing of S64315/MIK665 for five consecutive days

elicited dose-dependent antitumor activity in a multiple

myeloma (MM) xenograft model. S64315/MIK665

also induced similar tumor growth inhibition in animal

models treated once a week or treated daily for four

weeks, highlighting the safety and tolerability of this

drug.

Given that S63845 displayed a higher affinity to

human MCL1 than mouse MCL1, Brennan et al. [158]

evaluated efficacy and tolerability in a mouse model

expressing human MCL1. Engineered mice displayed

greater sensitivity to S63845 treatment (as evidenced

by its ability to inhibit tumorigenesis) than wild-type

mice but did prompt the transient reduction in B cells

in the blood, spleen, and bone marrow. In addition,

the study also noted a nonsignificant reduction in neu-

trophil levels in the bone marrow [158].

Based on its favorable preclinical evaluation, intra-

venous S64315/MIK665 has entered clinical trials to

treat relapsed and/or refractory MM, lymphoma,

acute myeloid leukemia (AML), and myelodysplastic

syndrome (MDS) (NCT02979366 and NCT02992483).

In addition, S64315/MIK665 combined with Veneto-

clax is also under evaluation for AML treatment

(NCT03672695).

AMG-176 and AMG-397

Amgen optimized a series of spiromacrocyclic mole-

cules guided by a small-molecule conformational

restriction strategy that led to the development of

AMG-176 [159]. AMG-176 (and the analog AM-8621)

have a picomolar affinity for human MCL1. AM-8621

has been used as a molecular tool to characterize the

molecular mechanism of AMG-176 in cellular assays.

AM-8621 disrupted MCL1 interactions with BAK and

BIM and induced both MCL1 stabilization and BAX/

BAK-dependent apoptosis. Hematologic cancer cell

lines displayed greater sensitivity to AM-8621 than

solid tumor lines, with the most significant sensitivity

displayed by MM, AML, B-cell lymphoma, and sub-

sets of acute lymphocytic leukemia and Burkitt lym-

phoma cell lines. Breast cancer cells displayed the

most significant sensitivity among solid tumor cell

lines. In OPM-2 mouse xenografts (a model of MM),

oral administration of AMG-176 activated BAK,

cleaved caspase-3 and poly (ADP-ribose) polymerase

(PARP), and induced apoptosis and tumor regression.

This study also reported a synergistic effect of

AMG-176 with Venetoclax in an AML orthotopic

model, where twice-weekly AMG-176 and daily Vene-

toclax treatments prompted tumor inhibition and

regression. Mice carrying human MCL1 were also

used to evaluate AMG-176 efficacy and tolerability.

The dosing regimen of AMG-176 required for tumor

growth inhibition resulted in reduced numbers of B

cells, monocytes, and neutrophils in blood and bone

marrow; however, AMG-176 failed to induce systemic

toxicity based on body weight change. In the ortho-

topic AML model, combined MCL1 and BCL2 inhibi-

tion by AMG-176 and Venetoclax were well tolerated,

and no overt toxicity was determined; however, the

study did note a decrease in peripheral blood B cells

and monocytes.
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Clinical evaluation of AMG-176 has been initiated

in a phase I clinical trial (NCT02675452) in patients

with relapsed or refractory MM and AML, and pre-

liminary results have been disclosed [160]. Although

the maximum tolerated dose was not reached for

relapsed MM patients, predominant side effects

included hematological (anemia and neutropenia) and

gastrointestinal (nausea and diarrhea) problems.

Table 3. Summary of MCL1 inhibitors under clinical trials.

Compound, chemical structure,

and institution Potency (TR-FRET) Clinical trialsa Study Administration Indication References

AZD5991

AstraZeneca

MCL1 Ki = 0.2 nM

BCL2 Ki = 6.8 lM

BCL-xL Ki = 18 lM

BCLW Ki = 25 lM

BFL1 Ki = 12 lM

NCT03218683 Phase I,

monotherapy,

and combination

IV Refractory

Hematological

malignancies

[213]

AMG-176

Amgen

MCL1 Ki = 0.06 nM

BCL2 Ki = 0.95 lM

BCL-xL Ki = 0.7 lM

NCT02675452 Phase I,

monotherapy

IV Relapsed or

refractory

MM/AML

[159]

NCT03797261 Phase I,

monotherapy

with venetoclax

IV AML/

Lymphoma

AMG-397

Amgen

Not disclosed NCT03465540 Phase I,

monotherapy

Oral MM/AML/NHL [214]

S64315/MIK665

Servier/Novartis

MCL1 Ki = 1.2 nM NCT02979366 Phase I,

monotherapy

IV AML/MDS [156]

NCT02992483 Phase I,

monotherapy

IV MM/Lymphoma

NCT03672695 Phase I,

combination

with venetoclax

IV AML/MDS

NCT04629443 Phase II,

combination

with azacitidine

IV AML

NCT04702425 Phase I,

combination

with VOB560

IV NHL/AML/MM

Structure not disclosed

ABBV-467

AbbVie

Not disclosed NCT04178902 Phase I,

monotherapy

IV MM Not disclosed

Structure not disclosed

PRT1419

Prelude Therapeutics

Not disclosed NCT04543305 Phase I,

monotherapy

Oral Refractory

Hematological

malignancies

Not disclosed

NCT04837677 Phase I,

monotherapy

IV Relapsed or

refractory solid

tumors

aFrom www.ClinicalTrials.gov.
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Nevertheless, disease status remained stable in 11 out

of 26 patients. Another phase I clinical trial is also

currently evaluating AMG-176 in combination with

Venetoclax in patients with AML and non-Hodgkin

lymphoma (NCT03797261).

From the same molecular family as AMG-176,

AMG-397 (the first oral MCL1 inhibitor used in the

clinic) has been evaluated for the treatment of patients

with MM, AML, and non-Hodgkin lymphoma

(NCT03465540); however, the FDA halted these trials

due to cardiac toxicity (ASHClinicalNews. FDA places

trials of MCL1 inhibitor on clinical hold (2019).

www.ashclinicalnews.org/news/latest-and-greatest/fda-

places-trials-MCL1-inhibitor-clinical-hold/). As described

previously, MCL1 may be essential for normal mito-

chondrial activity in cardiomyocytes [95]. The side

effects that may relate to AMG-397 on-target activity

may limit the therapeutic scope of AMG-397 (and that

of other MCL1 inhibitors) [86].

AZD5991

AstraZeneca researchers applied structure-based drug

design to a series of previously reported indole-2-

carboxylic acids (WO2008130970A1, WO2008131000A2,

and Ref. [161]) to develop AZD5991, a selective and

potent macrocyclic MCL1 inhibitor. AZD5991 selec-

tively binds to MCL1 over other antiapoptotic proteins

due to its specific interactions with and the flexibility of

the MCL1 BH3-binding groove. Furthermore, as

reported for other selective MCL1 inhibitors, AZD5991

stabilized MCL1 in a concentration-dependent manner,

disrupted MCL1–BAK interactions, and induced apop-

tosis in a BAK-dependent manner.

AZD5991 preferentially induced cell death in hema-

tological cell lines and subsets of breast cancer and

NSCLC lines. AZD5991 also promoted apoptosis in

MM primary cells and mouse models. Results sug-

gested the overall tolerability of a single intravenous

infusion of AZD5991 (i.e., acceptable body weight

changes) and demonstrated complete tumor regression

at the highest doses. MCL1 inhibition with AZD5991

also exhibited a dose-dependent antitumor activity in

mouse and rat AML models.

The combination of AZD5991 with the proteasome

inhibitor bortezomib provided for synergistic antitu-

mor activity in a MM mouse model. In addition,

AZD5991 combined with Venetoclax also induced

enhanced tumor growth inhibition in subcutaneous

MM and AML xenografts.

AZD5991 also demonstrated potent antitumor activ-

ity and increased survival in MCL1-dependent T-cell

lymphoma patient-derived xenografts in mice when

combined with CHOP chemotherapy (cyclophos-

phamide, doxorubicin hydrochloride, vincristine sul-

fate, and prednisone) [162].

The antitumor activity of AZD5991 has also been

demonstrated in solid tumor models. AZD5991

restored sensitivity to regorafenib, a multi-kinase inhi-

bitor for colorectal cancer treatment, during in vitro

assays with colorectal carcinoma cell lines [163], while

AZD5991 combined with BRAF inhibitors (BRAFi)

or MEK inhibitors (MEKi) inhibited the clonogenic

survival of melanoma cells. A synergistic effect of

between BRAFi/MEKi with AZD5991 was also

observed in melanoma animal models, including

melanoma xenografts, BRAF-mutant patient-derived

xenografts, and BRAFi- and/or MEKi-resistant mela-

nomas. In addition, combination therapy induced

tumor regression or total growth inhibition and over-

came BRAFi- and MEKi-acquired resistance [138].

AZD5991 was selected as a clinical candidate and is

currently under evaluation in a phase I clinical trial as

a monotherapy for relapsed/refractory chronic lym-

phocytic leukemia, AML/myelodysplastic syndromes,

and MM patients. In addition, a combination therapy

with Venetoclax is also being evaluated in patients

with relapsed/refractory AML/MDS (NCT03218683).

Two undisclosed MCL1 inhibitors (PRT1419 and

ABBV-467) have also entered clinical trials. Prelude

Therapeutics employed a structure-based design to

identify PRT1419, a selective and potent oral MCL1

inhibitor. Once-weekly dosing of PRT1419 prompted

tumor regression in mouse models of MM and AML,

and diffuse large B-cell lymphoma in preclinical stud-

ies. Moreover, mouse models display enhanced antitu-

mor activity in combination with Venetoclax in a

model of AML. PRT1419 is currently in a phase I

clinical trial to treat relapsed/refractory hematologic

malignancies (NCT04543305). In addition, AbbVie has

also started a phase I clinical trial with ABBV-467 as

monotherapy for MM patients (NCT04178902).

MCL1 therapeutics under
development

The Fesik group recently reported on the development

of two MCL1 inhibitors: VU661013, which has a pico-

molar affinity for MCL1 with no detectable binding

for BCL-xL and BCL2, and Compound 42 [164].

VU661013 demonstrated potent cytotoxic activity in

AML cell lines, Venetoclax-resistant AML cells, and

AML patient-derived xenograft models. Furthermore,

the combination of Venetoclax with VU661013 further

enhanced antitumor activity in murine models of

AML [164]. Meanwhile, Compound 42 potently
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inhibited MCL1 activity and demonstrated in vivo effi-

cacy in xenograft models derived from hematologic

and TNBC cell lines [165].

Alternative approaches have also been developed to

target the antiapoptotic function of MCL1. For exam-

ple, complex 14, a copper (II) complex containing b-
carboline ligands, disrupted MCL1 binding to BAX

and BAK, induced BAX/BAK-dependent apoptosis,

and inhibited tumor growth in NSCLC xenografts

[166].

The downregulation of MCL1 gene expression also

represents a promising therapeutic strategy, with flavo-

noids the most well-known regulators of MCL1 tran-

scription. Certain flavonoids inhibit CDKs, which

ultimately leads to decreased levels of short-lived pro-

teins such as MCL1. As CDK9 inhibitors, Voruciclib

and AZD4573 have proven antitumor activity through

indirect MCL1 suppression in hematologic cancer

models [167,168].

Other chemical compounds achieve MCL1 inhibi-

tion by blocking mRNA translation. For instance,

Norcantharidin upregulated miR-320d, a negative reg-

ulator of MCL1 expression, and induced apoptosis in

prostate cancer cells [169]. In addition, simultaneous

silencing of MCL1 and the efflux pump P-glycoprotein

by two specific short interfering RNA (siRNAs) in

doxorubicin-resistant breast cancer cells efficiently

reduced protein levels and induced significant levels of

apoptosis [170].

Proteolysis-targeting chimeras (PROTACs) represent

a powerful technology that can increase the proteaso-

mal degradation of MCL1. PROTACs are engineered

bifunctional molecules comprising two components: an

MCL1-binding ligand and an effector ligand that

recruits an E3 ubiquitin ligase to trigger proteasomal

degradation. A first example employed the A1210477

MCL1 inhibitor as a target ligand and 4-

hydroxythalidomide as an effector ligand to recruit to

the E3 ligase cereblon (CRBN) [171], while a second

example linked another MCL1 inhibitor to the cere-

blon–ligand pomalidomide. Both PROTACs induced

MCL1 degradation at nanomolar concentrations and

induced apoptosis [171].

Finally, cell-penetrating ‘Alphabodies’, single-chain

polypeptides featuring antiparallel triple-helix coiled-

coil fold, have been developed to target MCL1. The

beta-helix of the CMPX-321A and CMPX-383B

Alphabodies bind to the MCL1 BH3 groove to induce

selective high-affinity MCL1 inhibition. As a result,

CMPX-321A displayed cell-penetrating capacity and

induced BAK-mediated cell death in MCL1-dependent

cancer cell lines, while CMPX-383B possessed an

extended serum half-life and exhibited a potent

antitumor activity that reduced tumor burden in MM

xenograft mice [172].

While most of the described strategies targeting

MCL1 modulate its antiapoptotic function, there

remains the potential to compromise the nonapoptotic

functions of MCL1, which remain poorly understood.

This risk makes it essential to describe the specific inter-

action sites involved in MCL1’s various roles, design

selective MCL1 inhibitors against these interaction sites,

and inhibit a specific function of MCL1 without affect-

ing the others, thus preventing potential toxicities

related to the unspecific targeting. Deciphering the inter-

acting domains that MCL1 utilizes to execute its prosur-

vival and nonapoptotic roles represents an important

future direction and would allow the development of

safe and effective MCL1 inhibitors and the successful

clinical translation of anti-MCL1 therapies.
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