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Abstract

Background: Lung cancer in never smokers would rank as the seventh most common cause of cancer death worldwide.

Methods and Findings: We performed high-resolution array comparative genomic hybridization analysis of lung
adenocarcinoma in sixty never smokers and identified fourteen new minimal common regions (MCR) of gain or loss, of
which five contained a single gene (MOCS2, NSUN3, KHDRBS2, SNTG1 and ST18). One larger MCR of gain contained NSD1.
One focal amplification and nine gains contained FUS. NSD1 and FUS are oncogenes hitherto not known to be associated
with lung cancer. FISH showed that the amplicon containing FUS was joined to the next telomeric amplicon at 16p11.2. FUS
was over-expressed in 10 tumors with gain of 16p11.2 compared to 30 tumors without that gain. Other cancer genes
present in aberrations included ARNT, BCL9, CDK4, CDKN2B, EGFR, ERBB2, MDM2, MDM4, MET, MYC and KRAS. Unsupervised
hierarchical clustering with adjustment for false-discovery rate revealed clusters differing by the level and pattern of
aberrations and displaying particular tumor characteristics. One cluster was strongly associated with gain of MYC. Another
cluster was characterized by extensive losses containing tumor suppressor genes of which RB1 and WRN. Tumors in that
cluster frequently harbored a central scar-like fibrosis. A third cluster was associated with gains on 7p and 7q, containing
ETV1 and BRAF, and displayed the highest rate of EGFR mutations. SNP array analysis validated copy-number aberrations
and revealed that RB1 and WRN were altered by recurrent copy-neutral loss of heterozygosity.

Conclusions: The present study has uncovered new aberrations containing cancer genes. The oncogene FUS is a candidate
gene in the 16p region that is frequently gained in never smokers. Multiple genetic pathways defined by gains of MYC,
deletions of RB1 and WRN or gains on 7p and 7q are involved in lung adenocarcinoma in never smokers.
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Introduction

Tobacco smoking is the main avoidable cause of lung cancer.

However, lung cancer also occurs in never smokers and would

rank as the seventh most common cause of cancer death

worldwide [1], [2]. In France, lung cancer in never smokers

accounted in the year 2000 for 17% and 4% of lung cancer deaths

among women and men, respectively [3].

Lung cancer in never smokers occurs more frequently among

women, and it favors the adenocarcinoma histological type [4].

One of the most striking distinctions is the observed differential

response to drugs that target the epidermal growth factor receptor

(EGFR). Compared with smokers, never smokers treated with

these agents have higher response rates to treatment [5], [6].

EGFR mutations in lung cancer are more frequent in never

smokers and are exclusive with KRAS mutations [7], [8], [9], [10],

[11]. Mutations in HER2 also target never smokers [12]. The

transversion/transition ratio and the distribution of TP53 and

KRAS mutations differ according to smoking status [13], [14], [15],

[16]. The complex mutational signatures of lung cancer cells in

smokers reflect the cocktail of carcinogens in tobacco smoke and

their proclivities for particular bases [17].
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While it is well established that specific DNA sequence

abnormalities are linked to smoking status, other oncogenomic

events are less well known among never smokers. In most genomic

studies, the proportion of never smokers is unknown or small

compared to that of smokers. Few separate studies of aberrations

in never smokers have been performed, mainly in patients from

East Asia [18], [19]. Allelic imbalances were infrequent in never

smokers with lung adenocarcinoma [20], although in Chinese

never smokers their pattern appeared distinct [18]. In Chinese

never smokers the most frequent aberration was gain of 16p [19].

In the largest study of the lung adenocarcinoma genome, never

smoker status was associated, although not significantly, with

amplification of 7p-q and 16p and deletion of 10q and 15q [21].

Preliminary studies also indicate a relationship between smoking

history and EML4-ALK fusions [22].

The catalogue of copy-number aberrations may lead to the

identification of imbalances encompassing genes that contribute to

the development or progression of lung cancer [23]. Here, we tried

to accrue knowledge of aberrations occurring in lung adenocar-

cinoma in never smokers with the goal to uncover new aberrations

that would include cancer genes.

Materials and Methods

Detailed methods on inclusion of patients, processing of

samples, EGFR and KRAS sequencing, oligonucleotide aCGH

analysis, genomic PCR, fluorescent in situ hybridization studies,

gene expression analysis and SNP array analysis are available in

supplementary information (Material and Methods S1).

Patients and samples
The project, referred as the Lung Genes (LG) study, involved 13

centers in France. The 60 patients were never smokers - defined

following current consensus guidelines [24], [25] as persons with a

lifetime exposure of less than 100 cigarettes. All patients had been

treated by surgery. The pathological diagnosis was reviewed and

cases for which a doubt about the primary site in the lung

remained were excluded.

The research has been approved by the Institut National du

Cancer review board as part of the Programme National

d’Excellence Spécialisé Poumon. Writen consent has been

obtained from study patients for the use of their lung samples.

Genomic DNA and RNA were extracted from frozen tumor

sections and the HCC827 cell line, obtained from ATCC. The cell

line was authenticated by comparison of its Agilent aCGH profile

with the previously published whole genome tiling path aCGH

profile [26].

Sequencing of EGFR and KRAS
EGFR exons 18, 19, 20, 21 and KRAS exons 2 and 3 were

directly sequenced in both sense and antisense directions from at

least two independent amplifications.

Oligonucleotide aCGH analysis
Genomic DNA was analyzed using 244K Whole Human

Genome (G4411B) microarrays (Agilent Technologies, Santa

Clara, CA, USA). The data are described in accordance with

MIAME guidelines and have been deposited in ArrayExpress

(http://www.ebi.ac.uk/arrayexpress) under E-TABM-926 acces-

sion number.

The threshold for gain and loss was abs(log2ratio).0.25 for a

minimum of 5 consecutive probes. Focal amplifications were

considered for aberrations showing a log2(ratio) .1.58 and

extending less than 5 Mb. Minimal common regions (MCR)

were identified with STAC v1.2 [27] and by using both the

frequency-confidence and footprint methods at lower and higher

stringencies (confidence .0.95 and .0.995, respectively). MCR

were manually reviewed to validate breakpoints and to discard

copy-number variants. For hierarchical clustering, Euclidean

distances and Ward’s construction method were used. The

bootstrap tests were performed using the R environment

package Pvclust [28]. Cluster-associated aberrations were

identified using ANOVA with P values adjusted for their false-

discovery rate using the Benjamini-Hochberg method [29] The

P values (F-test) for the association of clusters with clinicopath-

ological variables were adjusted for multiple testing using

Bonferroni correction.

Genomic PCR
Quantification of FUS genomic DNA was performed in

TaqmanH assays (Applera, Villebon-sur-Yvette, France) using

primers and probes that were designed using Primer3 software.

Fluorescence in situ hybridization (FISH) studies
FISH was performed on tumor touch-imprinted slides.

Gene expression analysis
The gene expression analysis encompassed HG-U1133 plus 2.0

Affymetrix array data in a subset of 40 samples belonging to an

ongoing study (not published). Expression of probe sets in the

16p11.2 region was compared with the t-test.

Quantification of FUS mRNA expression was performed in pre-

designed TaqmanHgene expression assays.

SNP array analysis
SNP array genotyping was carried out using the Illumina

‘‘HumanCNV370-Quad’’ array (Illumina, Inc., San Diego, CA) in

the subset of 40 samples belonging to an ongoing study (not

published). Individual cases with aCGH profiles delineating an

aberration were selected for cross-validation by SNP array profiles.

The aCGH profile in the region of aberration was compared to

the corresponding SNP array profile for each selected case using

the Integrated Genome Browser (http://www.bioviz.org/igb/).

For assessment of copy-neutral loss of heterozygosity (LOH),

only segments with at least 10 consecutive SNPs showing a LOH

and a copy number equal to 2 were considered.

Results

Clinicopathological characteristics
The clinicopathological characteristics are shown in Table S1.

The median age was 69 years (interquartile range, 59 to 77).

Patients were more frequently women (88%). Pathological stages

were stage I in 32 cases (53%), stage II in 6 cases (10%), stage III in

21 cases (35%), and stage IV in 1 case (2%). The median tumor

size was 31 mm (interquartile range, 25 to 40). The tumors were

well-differentiated in 34 cases (57%), moderately differentiated in 7

cases (12%) and poorly differentiated in 19 cases (32%). They

comprised a broncholioalveolar component in 28 cases (47%).

Central fibrosis was present in 19 cases (32%). Tumor expressed

the NKX-2 protein in 57 cases (95%).

Genome complexity
The percentages of aberrant genome (AG) were calculated for

each case (mean 17%, median 16%, range 0 to 64%). The

percentages of gains (mean 9%, median 7%, range 0% to 31%)

and of losses (mean 8%, median 6%, range 0% to 41%) were
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similar and correlated (R2 = 0.102, P = 0.01). Those percentages

were not correlated when cases with low levels of AG (,5%)

belonging mainly to cluster A1 (see below) were excluded

(R2 = 0.002, P = 0.84) (Figure S1).

Partition of tumors into clusters
A non supervised hierarchical clustering analysis revealed two

main classes A and B, which could be further subdivided into 2

clusters A1 (n = 16) and A2 (n = 11) for A and into 3 clusters B1

Figure 1. Aberrations using aCGH analysis in 60 never smokers with lung adenocarcinoma. Panel A. Heat map of gains (green color) and
losses (red color) by chromosome generated by non supervised hierarchical clustering. Small blue or yellow dot indicate gains with log2(ratio).1.5
and losses with log2(ratio),21.5, respectively. Blue star (*): two outliers (37875 between classes A and B and 37569 between clusters B1 and B2).
Panel B. Distribution of gains (green color) and losses (red color) along the genome.
doi:10.1371/journal.pone.0015145.g001
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(n = 9), B2 (n = 9) and B3 (n = 14) for B (Figure 1). An assessment

of the uncertainty in hierarchical clustering is provided in

Figure S2.

Clusters differed by their AG percentages (P,0.001; Figure S3)

and their aberration patterns. Cluster A1 was characterized by few

aberrations, which comprised recurring gains on 5p, 7p, 14q and

20q, and losses on 8p (Table S2). In cluster A2 the level of AG

(mean 12%, range 2 to 18%) was higher than in cluster A1 (mean

2%, range 0 to 4%). The aberration pattern in cluster A2 was

different from the patterns of clusters B1, B2 and B3, indicating

that cluster A2 was not a cluster belonging to class B with reduced

amplitude in the aberrations. Cluster A2 had more losses (9%)

than gains (7%), while cluster B1 had twice more gains (13%) than

losses (6%). Notably, cluster B1 was characterized by the

occurrence in every case of a gain on 8q. Cluster B2 was

characterized by more losses (21%) than gains (10%) with a

distinctive combination of numerous and frequent losses on 3p, 8p

and 13. Cluster B3 was defined by gains on 7p and 7q, together

with gains on 17q, 21, and less frequently X. One outlier between

class A and class B was characterized by a uniquely high level of

AG (64%), which was distributed in both gains (23%) and losses

(41%); another outlier between cluster B1 and B2 displayed a gain

of the whole chromosome 12.

By ANOVA, gains including oncogenes and losses including

tumor suppressor genes were significantly associated after

adjustment for their false discovery rate with particular clusters

(Table S3). MYC at 8q24.21 was gained in 100% of cases in cluster

B1 (adjusted P = 6.00E-05). BRAF was included in a region

extending 1.27 Mb at 7q34 that was gained in 64% of cases in

cluster B3 (adjusted P = 0.001). Other gains on 7q including ELN,

HIP1, CREB3L2 and KIAA1549 were associated with cluster B3.

The gains on 7p containing CARD11, ETV1 and IKZF1 were

observed in 78% to 92% of cases of cluster B3. Several regions on

13q that included CDX2, BRCA2, RB1 and ERCC5 were lost in

77% to 88% of cases in cluster B2. WRN at 8p12 was the single

gene present in a deleted region in 88% of cases in cluster B2

(adjusted P = 0.002).

The five clusters differed by their association with a central scar-

like fibrosis (P = 0.03 after Bonferroni correction), which was more

frequent in cluster B2 (7/9 cases) compared to other clusters (12/

50 cases). They did not differ with regard to other clinicopath-

ological characteristics.

Relationships of clusters with abnormalities in EGFR and
KRAS

Forty tumors (67%) harbored EGFR mutations (Table S4). The

four KRAS mutations were observed in four EGFR wild-type cases.

The prevalence of EGFR mutations differed with clusters

(P = 0.004), gains on 7p (P = 0.04) and AG percentages

(P,0.001). EGFR mutations remained associated with clusters

after adjustment for AG percentages and gain on 7p (P = 0.05).

Cluster B3 was characterized by the highest frequency of gains on

7p (93%), and the highest frequency of EGFR mutations (93%),

although these abnormalities did not coincide. Most gains on 7p

(80%) and every case with an amplification spanning EGFR were

associated with EGFR mutation. Nineteen EGFR mutations were

seen in cases with no gain on 7p.

While every gain on 7p included EGFR, only 5 of 14 gains on

12p included KRAS either wild-type (3 cases) or mutated (2 cases).

The distribution of mutations or gains involving EGFR or KRAS is

displayed in Figure S4. The 10 cases without abnormality

involving EGFR or KRAS belonged to clusters A1 (9 cases) or A2

(1 case with 2% AG). Amplifications of MET and ERBB2 occurred

with a gain on 7p and an EGFR mutation, respectively.

Distribution of recurrent aberrations
Recurrent gains were observed on 1q, 5p, 7p, 8q and 16p in

.20% of cases and on 5q, 6p, 7q, 14 q, 16q, 17q, 20q, 21q and

Xq in 10% to 20% of cases (Figure 1). Recurrent losses were

observed on 8p, 9p, 9q, 13q and 18q in .20% of cases and on 3p,

6q, 12p, 15q, 17p, 18p, 20p, Xp and Xq in 10% to 20% of cases.

The proportion of tumors harboring gains on 5p or 7p and losses

on 8p or 9p exceeded 40%. A comparison with previously

reported large aberrations is shown in Table S5.

Minimal common regions
MCRs of gain were identified on 1q, 2p, 5p, 5q, 7p, 7q, 8q, 12p,

12q, 14q, 18p and 20q (Table 1). Their mean width was 879 Kb

(range 109 to 2927). The maximum log2(ratio) ranged from 0.53

to 3.13. The twenty-two MCRs contained 152 coding genes,

including BCL9, ARNT, MDM4, NSD1, EGFR, MYC and MDM2,

as well as 6 miRNA. The highest frequency of recurring gains (62%)

was noted at 5p13.33 that contained TERT and CLPTM1L. The

MCR containing EGFR was involved in 43% of cases. A 171 Kb

MCR at 20q13.33 contained only mir-646. Nine MCR contained

between 1 and 5 coding genes, five MCR between 7 and 9 coding

genes, and four MCR more than 10 coding genes. The MCR of

gains were compared to previously published regions of gain in

four representative studies [21], [30], [31], [32]. As shown in

Table 1, out of eight MCR that did not overlap with previously

reported gains, one MCR contained a single gene (MCOS2) and

two MCR contained only three genes.

MCRs of loss were identified on 1p, 3q, 6q, 8q, 9p, 16q and 20p

(Table 2). Their mean width was 560 Kb (range 20 to 1703). The

minimum log2(ratio) ranged from 20.43 to 21.19. In four cases it

was ,21. The nine MCRs contained 18 coding genes, including

CDKN2B for which the highest frequency of losses (53%) was

noted. Five MCRs contained only one coding gene, and three

MCRs between 3 and 6 coding genes. As shown in Table 2, six

MCR of loss did not overlap with previously reported losses. Four

of these MCR contained a single gene (NSUN3, KHDRBS2, SNTG1

and ST18) and one MCR contained four genes.

Top focal amplifications
Twenty-seven focal (extending less than 5 Mb) amplifications

were observed on 2q, 3p, 3q, 5p, 7p, 7q, 9p, 12p, 12q, 14q, 16p,

17q, 20q and Xq (Table 3). Their mean width was 643 Kb (range

14 to 4567 Kb). The maximum log2(ratio) ranged from 1.61 to

4.37. The 27 focal amplifications contained 114 coding genes,

including MET, KRAS, CDK4, FUS and ERBB2, as well as two

isolated miRNA and a cluster of 14 miRNA. Twenty-four

amplifications were observed once. The three amplifications

containing TRIO, DKFZp564N2472 and CDK4 were observed

twice. Nine amplifications contained between 1 and 3 coding

genes, ten between 4 and 6 coding genes, and three .10 coding

genes. Eleven amplifications overlapped with previously reported

gains.

Copy-neutral loss of heterozygosity
Forty-five of regions of interest which had been identified by

aCGH (Tables 1, 2 and 3) could be evaluated by SNP analysis in

40 tumors. Thirty-nine regions were cross-validated by the SNP

array profiles. An example is shown in Figure S5.

The SNP arrays could be analyzed for detection of copy-neutral

LOH in 23 cases. The 17 remaining samples were not informative

for LOH. Two-hundred and five regions displayed recurring copy-

neutral LOH. MCR of recurring copy-neutral LOH with a

frequency .20% are shown in Table S6. Among tumor

The Lung Adenocarcinoma Genome in Never Smokers
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suppressor genes that were present in losses identified by aCGH,

RB1 and WRN were also present within copy-neutral LOH

MCRs.

The 16p11.2 region harboring the oncogene FUS
The short arm of chromosome 16 displayed high-level focal

amplifications in case 37817. There were two distinct regions of

amplification that were separated by .4 Mb and extended

0.92 Mb and 1.20 Mb at 16p12.1 and at 16p11.2, respectively

(Table 3). Each region comprised three peaks, which extended

36 Kb to 185 Kb and were spaced by 140 to 670 Kb. The

16p11.2 amplicons shown in Figure 2 harbored FUS, 12 other

coding genes, and one long non-coding RNA gene. Nine

additional cases demonstrated gains of a smaller amplitude

encompassing FUS.

Real-time quantitative PCR assays in case 37817 showed a

strong increase (.30 times) in FUS copy number compared to

AQP8 and AMPD2, which were located in copy-neutral regions.

The 16p11.2 region was explored by FISH by using two BAC

clones (RP11-388M20 and RP11-347C12). The former complete-

ly covered FUS, while the latter was 745 Kb telomeric to it in the

region ,30,109–30,290Mb. (Figure 2). Both BAC were co-

hybridized on normal metaphases and nuclei, and the signals were

superposed. When co-hybridized on tumor cells from case 37817,

two independent gene amplification homogeneously staining

region (HSR) patterns appeared (Figure 2), demonstrating that

the breakpoint of an unknown chromosomal translocation

separated the two amplified segments (the telomeric amplification

revealed by RP11-347C12 was not apparent in the aGGH results

as this region was not covered by Agilent oligoprobes). Then, the

amplicon containing FUS was characterized using RP11-388M20

together with the Vysis break apart probe. The BAC probe was

stained in the same color as the centromeric part of the Vysis

probe, but in a color different from that of the telomeric part. The

probes were found amplified with a HSR pattern and co-localized

in tumor cells, delimiting the previous breakpoint from 30,27 to

30,50 Mb. Furthermore, the co-localization suggested that the two

amplicons ,30,71–30,90Mb. and ,31,09–31,21. were physi-

cally linked, as the 0,2Mb region ,30,90–31,09Mb. was not

amplified.

As shown in Figure S6, analysis of gene expression array data

showed that four probe sets (1565717_s_at, 200959_at, 215744_at

and 217370_x_at) interrogating FUS were significantly overex-

pressed in the subgroup of 10 tumors harboring a 16p gain

compared with 30 tumors without such gain.

Real-time PCR gene expression assay established that FUS

mRNA relative levels were 4 times higher in tumor 37817 (mean

DCT 2.6) compared to NCI-HCC827 cell line (mean DCT 4.6),

which displayed no gain on 16p.

Discussion

We used a high-resolution aCGH to analyze aberrations that

occurred in lung adenocarcinoma in 60 never smokers. We

identified new MCR of gain or loss and new amplifications.

Furthermore, unsupervised hierarchical clustering showed that

tumors could be classified into clusters exhibiting different levels

and pattern of aberrations, which contained cancer genes. Clusters

differed by their tumor characteristics.

Fourteen MCR of gain (eight regions) or loss (six regions) did

not overlap with regions that were previously reported in four

representative studies [21], [30], [31], [32]. Out of our newly

described MCR, five contained a single coding gene (MCOS2,

NSUN3, KHDRBS2, SNTG1 and ST18) and may be considered as

high-priority regions for further studies. Somatic mutations in

genes within narrow MCR, including FLT4, MAPK9, SPO11 and

KHDRBS2, have been reported in cancers (COSMIC v48 release).

Among single genes encompassed by MCR of loss, ST18 was

present in a 48 Kb MCR. ST18 was found lost, hypermethylated

and its mRNA downregulated in breast cancer [33].

Some newly uncovered aberrations contained oncogenes such

as FUS at 16p11.2 and NSD1 at 5q35.2–q35.3, whose association

with lung cancer has hitherto not been reported. A gain on 16p

has been previously associated with lung cancer in never smokers,

although the association was not significant after multiple testing

[19], [21]. We note that the association with never smoker status

may be confounded by ethnicity or sex [34]. We found that the

oncogene FUS was present in a high-level narrow amplification at

16p11.2 in one tumor (37818). It should be noted that nine other

tumors displayed gains encompassing FUS, although the gene was

first identified from a single patient. Furthermore, in the gene

Table 2. Minimal common region of loss in lung adenocarcinoma in 60 never smokers.

Cytoband Start* End
Width
(Kb)

Genes
(n)

Log2
ratio1 Frequency Coding genes&

miRNA
genes

Previously reported
overlapping region$

1p22.1 92942530 93381319 439 3 20.43 18% EVI5 MTF2 FAM69A - Tonon et al.

3q11.2 95327585 95416019 88 1 20.74 15% NSUN3 -

6q11.1 62484326 62985285 501 1 20.8 12% KHDRBS2 -

8q11.22 50928921 51329519 401 1 21.19 20% SNTG1 -

8q11.23 53446319 53494813 48 1 21.16 15% ST18 -

9p21.3 21998396 22018473 20 1 21.18 53% CDKN2B - Tonon et al.; Weir et al.;
Zhao et al.

9q21.13 74982746 75362791 380 0 20.56 28% - -

16q23.1 76281180 77681228 1400 4 20.43 10% WWOX VAT1L NUDT7 CLEC3A -

20p12.1 13515731 15279357 1763 6 21.05 22% FLRT3 ESF1 TASP1 C20orf7
SEL1L2 MACROD2

- Weir et al.

*hg 18 assembly;
1Minimum value;
&Tumor suppressor genes according to the 2010 april Cancer Gene Census38 are in bold characters;
$Weir et al.21; Tonon et al.30; Kim et al.31; Zhao et al.32

doi:10.1371/journal.pone.0015145.t002
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Figure 2. Amplicons on 16p11.2 in case 37817 using aCGH and FISH analyses. Panel A. aCGH analysis. Below: chromosome 16 diagram;
the blue line limits the 16p11.2 region represented above. Above: aCGH profile for the enlarged 16p11.2 region showing the complex amplification.
The dots are individual oligonucleotides that are in green when they are gained; a brown color, enhanced by an horizontal line, show the region of
copy-number alteration segmented by the algorithm. The p telomere is to the left, the centromere to the right. The location and color of probes used
for FISH are indicated as red or green squares at the upper part of the aCGH profile. Panel B. Examples of FISH results for the 16p11.2 region. (a)
Normal chromosome 16 from a normal blood mitosis, in DAPI inversed colors showing the specific heterochromatin secondary constriction of the
long arm. Although separated by less than a 1 Mb, RP11-347C12 (red) is slightly more telomeric than RP11-388M20 (green), although they are fused
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expression analysis the mean FUS expression level was compared

between the 10 tumors displaying the 16p gain and 30 tumors

without such gain. As FUS was found overexpressed in the

subgroup with 16p gain, it was identified as a candidate gene from

10 tumors. Originally described as the result of translocations in

myxoid liposarcoma [35], FUS encodes a TET protein that exerts

roles in transcription and splicing and functions in several aspects

of growth control and DNA repair [36]. Here, the aberration in

tumor 37818 consisted of three closely spaced amplicons,

suggesting amplification through breakage-fusion-bridge cycles

[37]. Furthermore, FISH showed that the amplicon containing

FUS was joined with the next telomeric amplicon in a HSR. The

whole 16p11.2 region appeared highly rearranged as shown by the

lack of FISH co-localization of the BAC covering FUS with a

farther telomeric BAC. Among genes present in the 16p11.2

amplicon only FUS has until now been reported as altered by

somatic simple mutation in cancer (Cosmic v48 release). While our

data are consistent with FUS as a candidate gene in lung

adenocarcinoma in never smokers, they do not prove that FUS is

the functional target of the amplification. It is essential to

systematically analyze using functional assays the whole 16p11.2

region.

To pinpoint cancer genes, we used a census that is conducted

with relatively conservative criteria [38]. It is remarkable that we

found many cancer genes that were previously reported in

aberrations in lung cancer, including BCL9, ARNT, MDM4,

EGFR, MYC, MDM2, CDKN2B, MET, CDK4, and ERBB2. Large

aberrations are also consistent with the literature [19], [21], [23],

[26], [31]. The gain containing TERT was reported as the most

frequent event (78%) in early lung cancer [39]. TERT was

included in this study within a MCR of gains with a high

frequency (62%). At 5p15.2 TRIO was previously identified in a

focal amplification and was found differentially expressed in early-

stage lung cancer [40]. At 5p13 GOLPH3 was recently established

as a new oncogene that was gained in lung and other cancers [41].

It was frequently gained in our study without being included in a

MCR or a focal amplification. At 14q13.2–14q21.1 we found a

MCR of gain containing MBIP, NKX2-1, NKX2-8 and PAX9,

whose cooperation is involved in lung tumorigenesis [42].

Overlapping with previously reported regions, other MCR were

often delineated with better precision. We identified a 390Kb

MCR at 20q13.2, reported by Zhao et al. [32], that contained two

genes of which ZNF217 was found mutated in lung cancer.

Another MCR at 20q13.33, reported by Tonon et al. [30],

contained only mir-646.

We used hierarchical clustering to determine whether tumors

were heterogeneous and whether there were cluster-specific

aberrations, which could have been hidden in the study of the

whole cohort. Tumors could be classified into five clusters that

differed by their AG percentages and aberration patterns.

Interestingly, the compendium of cancer genes that were present

in cluster-associated recurring aberrations was to a large extent

different from the list of MCR-associated cancer genes except for

MYC. Present in a MCR in the whole cohort, MYC was also

strongly associated with one cluster (cluster B1), where it was

gained in every case. As point mutations in MYC do not occur in

lung cancer, the gain of MYC could be important for lung cancer

classification in never smokers. The tumor suppressor gene WRN,

which encodes a helicase, was the single gene present in a narrow

region at 8p12 that was frequently lost in cluster B2. WRN has

been reported to undergo epigenetic inactivation through CpG

island promoter hypermethylation in about one-third of non-small

cell lung cancer [43]. Other losses associated with cluster B2 were

located on 13q and included RB1, which is frequently altered in

lung cancer [16], and three other tumor suppressor genes. Another

gain that was associated with cluster B3 included BRAF, whose

mutation has been reported in 3% of non-small cell lung cancer

[44]. There were other noteworthy gains on 7p and 7q, however,

among which that of ETV1 was the most strongly associated with

cluster B3. The results presented here support heterogeneity in the

genetic pathways in lung adenocarcinoma in never smokers. This

view is strengthened by the association of cluster B2 with scar-like

tumor fibrosis, a desmoplastic reaction which is common in

localized peripheral lung adenocarcinoma, and of cluster B3 with

the highest rate of EGFR mutation (93%) as well as the highest rate

of the co-occurrence of EFGR mutations and gains or amplifica-

tions on 7p (86%).

EGFR mutations were found in 68% of cases in our study, a

high rate similar to those reported in never or former light smokers

in two recent studies [45], [46], while mutations in KRAS were

infrequent. EGFR mutations were exclusive of KRAS mutations, a

consistent observation suggesting that EGFR and KRAS mutations

signal through a common pathway. The fact that every gain on 7p

included EGFR supports that the gene is a likely target of those

gains. In the absence of a gain on 7p, cases wild-type for both

EGFR and KRAS either demonstrated amplification of KRAS or

were characterized by low levels of aberrant genome. The

targeting of EGFR or KRAS appears a nearly constant finding

when tumors display genomic instability. However, it has been

shown that the molecular subsets defined by EML4-ALK, EGFR, or

KRAS mutations are distinct [47].

MCR of gains outnumbered MCR of loss, although the

proportions of gained and lost genome were similar, suggesting a

greater dispersion of losses. The predominance of gains is observed

in most studies [21], [30], [32]. It is likely that other mechanisms

inactivate tumor suppressor genes. Copy-neutral LOH may be

such a mechanism. Copy-neutral LOH (also known as uniparental

disomy)—wherein the retained homolog is duplicated so as to

preserve two total copies per cell—is quite common in some

cancers [48]. The SNP array analysis revealed recurrent copy-

neutral LOH. Among tumor suppressor genes altered by copy-

number losses, RB1 and WRN were also present in regions of

recurrent copy-neutral LOH. This observation may be meaningful

as copy-neutral LOH can be biologically equivalent to the second

hit in the Knudson hypothesis. The variety of different genetic

events underlying LOH at the RB1 locus in retinoblastoma seems

to occur in lung cancer [49]. On the other hand, at less than 75%

tumor DNA in heterogeneous samples an allelic duplication event

and an allelic LOH bear resemblance to each other [50]. A

comparison between smokers and never smokers with lung

carcinoma is required to determine whether LOH is less frequent

in never smokers as suggested by the early work of Sanchez-

Cespedes et al. [20].

In conclusion, new regions of interest, some of which contained

cancer genes or few potential candidate genes, were uncovered.

Our results do not establish that the new regions were

characteristic of never smoker status, but provide interesting

insights into genomic imbalances in lung cancer. Amplicons at

16p11.2 were joined in a HSR including FUS, which was over-

expressed when the gene was included in 16p11.2 gains. We also

for a large part. (b) The same probes on case 37817 cells showing a distinct pattern of amplification. (c) Combination of Vysis FUS probes with RP11-
388M20 (red) that show a co-localization of the three probes on the amplicon even in decondensed HS.
doi:10.1371/journal.pone.0015145.g002
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showed heterogeneity in lung adenocarcinoma in never smokers

with MYC as important in the classification. Genetic alterations

targeting the EGFR signaling pathway appear nearly constant in

tumors with genomic instability.
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Figure S1 Correlations between percentages of gain and
percentages of loss in the whole genome in never
smokers with lung adenocarcinoma. R2: Pearson correla-

tion coefficient. Panel A. Correlation among the 5 clusters A1, A2,

B1, B2 and B3. Panel B. Correlation among the 4 clusters A2, B1,

B2 and B3 after exclusion of cases with low levels of aberrant

genome (,5%) belonging to cluster A1.

(TIF)

Figure S2 Cluster dendogram with adjusted unbiased
(AU) and bootstrap (BP) values (%) in 60 never smokers
with lung adenocarcinomas using the R environment
package Pvclust. Distance: euclidean. Cluster method: Ward.

BP values (right, green color), AU values (left, red color), and

cluster labels (bottom). The AU value may be lower than the BP

value when the similarities involve a small proportion of the data.

An example is provided by cases 37818 and 37892 belonging to

cluster B1, whose region of similarity (8q) was narrow as shown in

the heatmap.

(TIF)

Figure S3 Percentages of aberrant genome in each
cluster. Mean and standard deviation bars. P value: F test.

(TIF)

Figure S4 Distribution of mutations or gains involving
EGFR or KRAS in 57 never smokers with lung adeno-
carcinoma and available EGFR and KRAS sequencing
data.

(TIF)

Figure S5 Example of the results of the comparison
between aCGH and SNP array profiles in the 7p12.1 region
displaying an amplification including DKFZp564N2472.
Lanes from top to bottom: Illumina SNP array profile (log2ratio,

slide 35), Agilent aCGH profile (log2ratio, slide 37492), location of

Illumina SNP probes, location of Agilent aCGH probes, human

genes (plus strand), cytoband and coordinates, human genes

(minus strand).

(TIF)

Figure S6 Box plots of expression levels of 4 Affymetrix
probe sets interrogating FUS. Gain0: no gain of the 16p11.2

region; gain+:gain of the 16p11.2 region. Horizontal line: median;

solid circle: mean; upper/lower whiskers: Max/Min value. P

values: Student’s t test.

(TIF)
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