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Macromolecular structure classification from cryo-electron tomography (cryo-ET)

data is important for understandingmacro-molecular dynamics. It has a wide range

of applications and is essential in enhancing our knowledge of the sub-cellular

environment. However, a major limitation has been insufficient labelled cryo-ET

data. In thiswork,weuseContrastive Self-supervised Learning (CSSL) to improve the

previous approaches formacromolecular structure classification from cryo-ET data

with limited labels. We first pretrain an encoder with unlabelled data using CSSL and

then fine-tune the pretrainedweights on the downstream classification task. To this

end, we design a cryo-ET domain-specific data-augmentation pipeline. The benefit

of augmenting cryo-ET datasets is most prominent when the original dataset is

limited in size. Overall, extensive experiments performed on real and simulated

cryo-ET data in the semi-supervised learning setting demonstrate the effectiveness

of our approach in macromolecular labeling and classification.
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1 Introduction

Cryo-electron tomography (cryo-ET) is a revolutionary imaging technology with

notable applications in the field of cell and structural biology (Gan and Jensen, 2012; Lučić

et al., 2013; Zhang, 2013). Our understanding of the structures and accompanying

functions of key components of the cellular microenvironment have been significantly

expanded by cryo-ET (Grünewald et al., 2003; Cyrklaff et al., 2005; Koning and Koster,

2009). Furthermore, cryo-ET has provided new insights into human disease states

including mitochondrial diseases and, most recently, COVID-19 where the structure

and function of SARS-CoV-2 was determined in infected host cells (Klein et al., 2020).
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Another major advantage of cryo-ET is that high-resolution 3D

images of subcellular structures (e.g., organelles and

macromolecules) are acquired in their near-native states in

contrast to earlier approaches that require fixation, sectioning

and dehydration steps that may distort or alter cellular

architecture (Oikonomou and Jensen, 2017). The 3D images

are referred to as tomograms and the small subvolumes of the

tomograms that visualize individual macromolecule are termed

subtomograms. 3D visualization by cryo-ET enables resolution

of the structures of the subcellular components and their spatial

interactions in situ within single cells.

To understand macromolecular interactions and dynamics,

classifying individual macromolecular structures from the

subtomograms is a crucial step (Murata and Wolf, 2018). The

classification implies identifying the target macromolecules from

subtomograms. However, due to the crowded and heterogeneous

cellular environment, each subtomogram closely packs several

neighboring potentially unrelated macromolecules alongside the

target macromolecule of interest (Best et al., 2007). Thus, the

closely packed structures in a single subtomogram makes

macromolecular classification challenging (Best et al., 2007).

Due to its resemblance to 3D image classification, several

deep classification models have been deployed to perform

macromolecular classification. VP-Detector (Hao et al., 2022),

which uses 3D multiscale convolutional neural network, is one of

the recent approaches for cryo-ET classification. However, most

of these classification methods are supervised and sample-

inefficient. For cryo-ET, availability of labelled data is limited

due to the rigorous annotation process. Furthermore, the

performance of deep supervised classification models relies on

the number of labelled cryo-ET subtomograms (Frazier et al.,

2017). One strategy to tackle the scarcity of labelled data is to

generate simulated cryo-ET data on which supervised models

will be trained - an approach used by several previous studies that

simulated cryo-ET subtomogram data (Pei et al., 2016; Liu et al.,

2020a,b). There is also a recent study using simulated data for

supervised training followed by application to experimental data

(Moebel and Kervrann, 2022). Nevertheless, models trained

using simulated data often perform poorly when analyzing

actual experimental data due to domain shift. In contrast,

semi-supervised approaches have the capability to deal with

lack of labelled data and avoid the problem of domain shift in

simulated data. Thus several approaches (Yu et al., 2020; Du

et al., 2021) have been developed that utilise both labelled and

unlabelled data for subtomogram classification (Chapelle et al.,

2009). However, the accuracy obtained from these approaches is

yet to reach near the accuracy from supervised approaches. As a

result, improvement of these semi-supervised approaches for

subtomogram classification continues to remain a problem.

Recently, self-supervised learning (SSL) (Noroozi and

Favaro, 2016; Pathak et al., 2016; Zhang et al., 2016;

Komodakis and Gidaris, 2018) has been proven to be an

effective unsupervised technique to learn data representations

by solving auxiliary tasks on input data, which does not require

any human-defined annotations. Contrastive Self-supervised

Learning (CSSL) (Hadsell et al., 2006), as a subcategory of

SSL, has been widely used to learn better representations of

images and has been successful in achieving state-of-the-art

results in various domains of image classification (He et al.,

2020; Tian et al., 2019; Chen et al., 2020a; Caron et al., 2020;

Misra and Maaten, 2020). CSSL learns image representations by

optimizing the contrastive loss using positive and negative pairs,

where positive pairs refers to pairs of images which are

augmentations of the same image, and negative pairs refer to

augmentations sourcing from the rest.

In this work, we use CSSL to improve the current semi-

supervised methods for cryo-ET macro-molecule classification.

Specifically, we use SimCLR (Chen et al., 2020a), MoCo (He et al.,

2020) and SwAV (Zhu et al., 2020) methods to pretrain weights

for the classification. These methods are illustrated in Figure 1.

To this end, we design a domain-specific augmentation pipeline

for cryo-ET data. The augmentation pipeline consists of 3D affine

transformations: translation, rotation and scaling. Given the

augmentation pipeline, the CSSL task is to contrast positive

pairs against negative pairs, enabling a deep-learning model to

learn cryo-ET data representations without the need of labels.

The CSSL-pretrained weights are then fine-tuned on the

downstream classification task using subsets of the training

dataset, so as to mimic semi-supervised learning settings. The

overall pipeline is shown in Figure 2. The main contributions of

this work are summarised as follows:

• We propose a self-supervised learning framework for

classification of macromolecules from subtomograms

extracted from cryo-ET images.

• We design a simple yet effective data augmentation

strategy for 3D cryo-ET subtomogram images.

• We demonstrate the improvements of self-supervised

learning in a semi-supervised learning setting using both

labelled and unlabelled cryo-ET data.

• Experiments on simulated and experimentally-derived

cryo-ET data show the effectiveness and substantial

improvements by our proposed approach.

2 Related works

2.1 Pretraining

The most prominent pretraining approach is supervised

pretraining (SP) (Pan and Yang, 2009), where the model

solves a supervised task, such as predicting class labels,

segmenting images etc., to learn the weight updates. Self-

supervised learning (Oord et al., 2018; He et al., 2020; Chen

et al., 2020a; Misra and Maaten, 2020), has recently gained

promising success as an unsupervised pretraining strategy,
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even outperforming supervised pretraining in certain

applications. Self-supervised pretraining (SSP) solves

prediction problems, as is the case with SP. However,

unlike SP, the labels which are to be predicted by the

model are created from input data, rather than being

annotated by human beings.

FIGURE 1
Illustration ofmethods SimCLR (Chen et al., 2020a), MoCo (He et al., 2020) and SwAV (Zhu et al., 2020), whichwe use for cryo-ET subtomogram
classification.

FIGURE 2
Schematic illustration of the pipeline. The first box represents the CSSL pretraining process. An augmentation pipeline is used to create
augmented cryo-ET images which is then fed into a CSSL framework to perform CSSL pretraining. The pretrained encoder is then fine-tuned using
labelled cryo-ET data as shown in the second box.
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2.2 Data augmentation

Unfortunately, experimental 3D cryo-ET subtomogram

image data acquired from cellular imaging, is relatively scarce

and hard to collect. Data augmentation is a common method for

reducing data bias and helping model generalize better, and can

be leveraged to address this issue. Cropping, rotating, occlusion,

flipping, shearing, zooming in/out, picture blurring, and

adjusting brightness or contrast are all common data-

augmentation techniques used in computer vision. In this

paper, we propose a brand new data augmentation strategy

for 3D cryo-ET subtomogram images, which is especially

useful for self-supervised learning.

2.3 Self-supervised learning

Self-supervised learning (SSL) has been widely studied to

learn better representations of images. SSL generates a loss from a

pretext challenge to learn relevant features without the need for

human annotations. It only uses the input data to generate

auxiliary tasks, allowing deep neural networks to learn

effective latent representations by solving them. Numerous

methods have been explored for constructing auxiliary tasks,

such as temporal correspondence (Wang et al., 2019b; Liu et al.,

2019), cross-modal consistency (Wang et al., 2019a), and so on.

Rotation prediction (Komodakis and Gidaris, 2018), picture

inpainting (Pathak et al., 2016), automated colorization

(Zhang et al., 2016), and instance discrimination (Wu et al.,

2018) are only a few examples of auxiliary tasks in computer

vision.

2.4 Semi-supervised learning

Semi-supervised learning techniques utilise both labelled

and unlabelled data (Chapelle et al., 2009). Unlabelled data

often carry important information which can be leveraged via

semi-supervised learning. It is particularly useful in domains

where getting labelled data is expensive and time-consuming.

Recently, SSL is being increasingly used in conjunction with

semi-supervised learning techniques (Zhai et al., 2019; Chen

et al., 2020b). SSP is first used to learn data representations

from unlabelled data, a process termed as the pretraining

phase. The weights learned in the pretraining phase are then

fine-tuned for the downstream task using labelled data.

Therefore, using SSP, one can utilize both labelled and

unlabelled data.

In this paper, to evaluate the effectiveness of SSP in a semi-

supervised learning setting, the fine-tuning phase only uses a

determined portion of the training set. While in the pretraining

phase, which does not require labels, we use the whole

training set.

2.5 Subtomogram classification

Identifying macromolecules inside cells essentially implies

classifying subtomograms extracted from cryo-ET data. Several

supervised and semi-supervised methods have been developed

for classifying subtomograms. Popular 3D image classification

networks (Simonyan and Zisserman, 2014; He et al., 2016; Che

et al., 2018) are used for supervised classification. CB3D,

DSRF3D_v2 and RB3D (Che et al., 2018) are the recent

examples of deep supervised models that have been used. To

deal with limited labelled data, active learning (Du et al., 2021)

and few shot learning (Yu et al., 2020) based methods have been

used to build classification models for classifying

macromolecules from subtomograms.

3 Methods

The basic flow of our method, demonstrated in Figure 1, is as

follows: Perform CSSL, using the specifically designed data-

augmentation pipeline with RB3D (Che et al., 2018) as an

encoder. For the downstream classification task, we use the

CSSL weights to initialize the RB3D architecture and perform

supervised classification using the labelled subset of cryo-ET

subtomogram images. The steps in our workflow are described in

detail in the sequel.

3.1 Contrastive self supervised learning
techniques

We chose three representative self-supervised learning

approaches for our studies: SimCLR (Chen et al., 2020a),

MoCo (He et al., 2020), and SwAV (Zhu et al., 2020). All of

them are based on contrastive learning (Hadsell et al., 2006). The

core principle behind contrastive self-supervised learning is to

construct augmented instances from original data samples,

design a prediction task that asks if two augmented instances

are augmented from a single data sample or not, and train the

model by solving this auxiliary task. SimCLR (Chen et al., 2020a)

is a simple framework for contrastive learning with bigger batch

sizes and considerable data augmentation that yields competitive

performance as supervised learning. MoCo (Wu et al., 2018) uses

a queue, which holds a dynamic collection of augmented data

instances (called keys), to accomplish contrastive learning. For

the sake of efficiency, a momentum encoder is used to encode the

keys. With a query augmentation, a contrastive loss is defined on

the query and keys based on whether they come from the same

source. SwAV performs contrastive SSP without requiring

computation of pairwise comparisons. In SwAV, clustering is

performed on the augmentations of data examples. For cluster

assignments for different augmentations from the same image,

SwAV encourages them to be consistent. Specifically, the code of

Frontiers in Physiology frontiersin.org04

Gupta et al. 10.3389/fphys.2022.957484

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2022.957484


one augmentation is predicted based on the representation of

another augmentation. Because it does not ask for a big memory

bank, this technique is considered to be more efficient interms of

memory. We introduce detailed descriptions of contrastive

learning for self-supervision and a momentum encoder that is

equipped with a queue-structured dictionary in the following

sections.

3.1.1 Contrastive learning for self-supervision
Based upon an original subtomogram image from the

dataset, CSSL (Hadsell et al., 2006) creates two augmented

versions of this image denoted by xq and xk, where xq is

considered as query and xk as key. The query encoder fq (·;
θq) and the key encoder fk (·; θk), with weights θq and θk
respectively, are adopted to gain latent representations q = fq
(xq; θq) and k = fk (xk; θk) for xq and xk.

A positive pair consists of a query and a key from the same

image, while a negative pair contains a query and a key from

different images. The auxiliary task is designed to tell if the given

pair is positive or not.

CSSL employs a queue to hold a collection of keys ki from

different images, and the contrastive loss is computed by:

LCL � −log exp qj · kj/τ( )
exp qj · kj/τ( ) +∑i exp qj · ki/τ( )

, (1)

with (qj, kj) being a pair obtained from an image instance and τ

being a temperature parameter (He et al., 2020). During the

training process, the encoders are updated by optimizing

this loss.

3.1.2 Momentum encoder with queue-
structured dictionary

To maintain and perform sampling over key vectors, existing

approaches use a variety of strategies (Hadsell et al., 2006; Hjelm

et al., 2018; Oord et al., 2018; Chen et al., 2020a). Resorting to the

same network fk = fq on xk and xq at the same time, the Siamese-

like approach is proposed and has been proven to be effective

(Chen X. et al., 2020). However, learning discriminative features

from comparing fk and fq requires a very big mini-batch size

(Chen et al., 2020a). This Siamese-like approach is simple to use,

but it is of high computation complexity and is quite resource

intensive. As an alternative, a memory bank can be used to store

the representations of historical keys in a negative key dictionary

Dk = {ki} (Wu et al., 2018). Instead of utilising fk, a mini-batch of

keys is sampled from the memory bank at each iteration. The

memory bank is updated with the current mini-batch of queries.

With an expanded buffer pool, this approach eliminates big batch

sizes by default. However, the key sampling step leads to

inconsistency when training the encoder. Momentum

Contrastive (MoCo) (He et al., 2020) incorporates both types

of learning strategies. The memory bank is replaced with a queue-

structured key dictionary with a preset length. The oldest key

mini-batch will act as the negative key and will be substituted by

fresh queries due to the queue’s first-in-first-out (FIFO)

principle. This method can avoid negative sampling from

being irregular.

An additional important feature of this approach is that

parameters of query encoder and key encoder are fixed and do

not receive gradient updates. Instead, a running average of

the key encoder fk is used to update the query encoder

FIGURE 3
RB3D model (Che et al., 2018). ‘3×3×3 Conv, 64’ represents a 3D convolutional layer with kernel dimensions 3×3×3 and 64 filters. Other
convolutional layers follow similar definitions. All the convolutional layers have a stride of 1. ‘2×2×2 MaxPool’ represents a max-pooling operation
over the input signal with kernel size 3×3×3 and stride of 2. ‘Concatenation’ denotes the concatenation of the filters of the same dimensions. ‘FC-
1024’ represents a fully connected layer with 1024 neurons. The ‘L’ in ‘FC-L’ corresponds to the output dimension. ‘RelU’ and ‘Softmax’ are
activation functions.
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(Tarvainen and Valpola, 2017; He et al., 2020), referred as

momentum encoder. Thereby, θk and θq are updated as

follows:

θq ← θq − α
zL

zθq
θk ← mθk + 1 −m( )θq,

(2)

where the momentum coefficient is denoted by m, and the

query encoder’s learning rate is represented by α. As can be seen,

θq is updated via the back propagating, while θk from the key

encoder always keeps a running average of previous states.

3.2 Encoder

We have used RB3D (Che et al., 2018) as the encoder in

MoCo. The architecture of RB3D is illustrated in Figure 3. RB3D

is a 3D residual block based neural network, which was designed

specifically for classifying 3D cryo-ET images.

3.3 Data-augmentation pipeline

Original data-augmentation pipelines used in CSSL

methods such as SimCLR, MoCo and SwAV were designed

primarily for traditional 2D RGB image-datasets such as

ImageNet (Deng et al., 2009). The augmentation pipeline

used random changes in brightness, contrast, saturation

and hue of RGB images, along with random horizontal flips

and random resized cropping. This augmentation pipeline is

very specific to ImageNet like datasets, and needs to be

modified to be applied to a different domain (Chaitanya

et al., 2020).

FIGURE 4
3D isosurface visualization of simulated 2h12macromolecule, alongwith randomly simulatedmacromolecules depicting a crowded subcellular
environment.
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Due to the expensive annotation process, experimentally

acquired, biological cryo-ET dataset sizes are quite small.

Further, the dimensions of subtomograms are also usually

small (323 and 283 in the two datasets we use in this paper). In

such a case, using strong augmentations can make the

pretraining process difficult. We experimented with various

permutations and combinations of strong augmentations such

as Gaussian blur, Gamma correction, elastic transformations,

bias-field etc (Pérez-García et al., 2021). However, due to

small-sized datasets coupled with small dimensions of

subtomograms, such a augmentation pipeline proved to be

too complex for the model to learn useful features during the

pretraining phase.

We also considered other image-level augmentations

such as the tomography artefacts, e.g. missing wedge effect

and electron optical factors [using Contrast Transfer

Function (CTF) and Modulation Transfer Function

(MTF)], but they are mostly specific to 3D tomography

reconstruction from 2D tilt series of cryo-ET images.

However, since subtomogram classification is a far

downstream task from reconstructing 3D tomograms, it

may not be possible to include artefacts that are

encountered in a far upstream step in our augmentation

pipeline for subtomogram classification. Nevertheless,

simulated subtomograms are extracted from the simulated

tomograms and, while generating simulated tomograms, we

have incorporated the aforementioned tomography artefacts.

Consequently, the tomography artefacts are inherent in the

simulated subtomogram dataset too. Since the contrastive-

learning methods give promising results for simulated data in

the presence of tomography artefacts, we consider that

contrastive learning methods are robust towards the

presence of such artefacts.

FIGURE 5
2D subtomogram slice visualization of simulated
2h12 macromolecule, along with randomly simulated
macromolecules depicting a crowded subcellular environment.

FIGURE 6
3D isosurface visualization of T20 S proteasome (EMPIAR
10143) macromolecule, extracted from Noble single particle
dataset.

FIGURE 7
2D subtomogram slice visualization of T20 S proteasome
(EMPIAR 10143) macromolecule, extracted from Noble single
particle dataset.
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Based on the above arguments, we propose a simple yet

effective and fine-tuned data-augmentation pipeline as

follows:

1) A random resized crop of the image is taken with a probability

of 50%. The scale range of the cropped image before resizing

is between 0.5 and 1.

2) A random affine transformation is applied with a probability

of 50%. This affine transformation includes rotation,

translation, and scaling. Image rotation is done by a

random angle in the range -45 to 45° along the z axis.

Horizontal translation of the image is done by a random

fraction ≤ 0.1 of horizontal dimension of the image. Similarly,

the vertical translation is done by a random fraction ≤ 0.1 of

the vertical dimension of the image. The image may be scaled

up or down by a random scale-factor ≤ 0.1.

The intuition behind the above augmentation-pipeline is

that to judge if a pair of augmented images originate from a

common subtomogram image or not, the model would have to

learn global 3D spatial features. These features would then be

helpful in downstream classification tasks and may prevent

overfitting upon transfer to smaller datasets (Newell and

Deng, 2020).

4 Experiments

4.1 Datasets

4.1.1 Simulated data
Several different methods exist for simulating cryo-ET

data (Pei et al., 2016; Liu et al., 2020a,b). Here, we use the

framework designed by Liu et al. (Liu et al., 2020b). They

proposed an efficient gradient descent based method to

generate 3D cryo-ET subtomogram images of a target

macromolecule with a crowded environment having several

random neighbouring macromolecules. The macromolecules

are randomly rotated and translated. Further, the simulation

procedure includes tomographic artefacts such as the missing

wedge effect and electron optical factors to mimic

experimentally-acquired cryo-ET images. For illustration,

the 3D visualization formed using Chimera (Pettersen

et al., 2004) and the 2D slices of a simulated

2h12 macromolecule are shown in Figures 4, 5.

TABLE 1 Comparison of subtomogram classification accuracy (%) with standard deviation on experimental biological data. Classifier with CSSL
pretrained initial weights performs much better than classifier with random initial weights.

(%)Labelled SNR Random init SimCLR SwAV MoCo

100 ∞ 59.1 ± 1.1 64.4 ± 1.0 66.7 ± 2.4 68.6 ± 1.4

0.05 47.9 ± 2.1 63.1 ± 0.8 65.8 ± 2.1 67.3 ± 0.6

0.03 47.1 ± 2.1 54.9 ± 1.0 58.8 ± 1.3 57.5 ± 1.7

75 ∞ 37.7 ± 1.1 54.7 ± 1.3 55.4 ± 1.6 59.9 ± 3.1

0.05 35.7 ± 0.8 54.1 ± 1.5 54.7 ± 1.8 59.6 ± 0.4

0.03 37.6 ± 0.6 51.8 ± 1.8 52.0 ± 2.3 60.7 ± 0.8

50 ∞ 24.0 ± 0.9 51.4 ± 1.0 50.0 ± 3.0 53.0 ± 1.6

0.05 23.5 ± 0.7 50.1 ± 0.9 48.9 ± 2.3 49.2 ± 3.1

0.03 21.7 ± 0.7 49.8 ± 1.7 46.5 ± 3.1 56.5 ± 0.7

25 ∞ 16.0 ± 0.6 37.4 ± 1.0 34.2 ± 1.8 39.3 ± 1.0

0.05 12.9 ± 1.2 33.9 ± 2.4 34.8 ± 2.9 27.5 ± 1.3

0.03 15.1 ± 0.8 31.4 ± 1.9 30.5 ± 2.1 30.1 ± 1.7

TABLE 2Comparison of subtomogram classification accuracy (%) with
standard deviation on real data. Classifiers with CSSL pretrained
initial weights always perform better than classifiers with random
initial weights proving the efficacy of CSSL pretraining.

(%)Labelled Random init MoCo

100 97.0 ± 0.2 98.5 ± 0.7

75 97.0 ± 0.3 98.6 ± 0.7

50 94.3 ± 1.2 98.2 ± 0.4

25 46.5 ± 0.9 98.4 ± 0.4
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For our experiments, we use three simulated datasets with

signal to noise ratio (SNR) as∞, 0.05 and 0.03. Each dataset has

500 images per class for 10 classes and each subtomogram is of

size 323 (32 × 32 × 32). For our experiments, the three simulated

datasets are split in ratio 60:20:20 for training, validation and

testing respectively.

4.1.2 Experimentally acquired biological data
The real dataset has been constructed from the Noble single

particle dataset (Noble et al., 2018). For each tomogram in the

Noble single particle dataset, potential structural regions have

been extracted using the Difference-of-Gaussians (DoG) method

(Pei et al., 2016). The top 1000 sub-volumes were selected

according to cross-correlation scores (Zeng et al., 2018) and

then 400 subtomograms were selected manually for each class

(Liu et al., 2019). The final constructed dataset has 400 samples

for seven classes and each subtomogram is of size 283 (28 × 28 ×

28). For illustration, 3D visualization formed using Chimera

(Pettersen et al., 2004) and 2D slices of an extracted T20 S

proteasome macromolecule is shown in Figures 6, 7. For our

experiments, the dataset is split with the ratio of 3:1:1 for training,

validation and testing respectively.

4.2 Experimental settings

Simulated data: For the MoCo pretraining phase, the MoCo

queue size is set to 128. The momentum variable for updating the

key encoder is kept as 0.999 and the temperature parameter τ is

set as 0.2. Adam optimiser (Kingma and Ba, 2014) is used, with

learning rate 1e−4, weight-decay 1e−4 and batch-size 16. The

training is done for 200 epochs. For SimCLR and SwAV

pretraining phase, the settings are directly inherited from

(Chen et al., 2020a) and (Zhu et al., 2020). For the fine-tuning

phase, we use the SGD optimiser with cosine decay schedule

(Loshchilov and Hutter, 2016). The learning rate is 5e−4, weight-

decay 1e−4 and batch-size 16. The fine-tuning is done for

50 epochs and the model with best validation accuracy is

FIGURE 8
Grad-CAM Visualizations. CSSL (MoCo) pretrained model shows wider regions of 3D space, indicating regularization effect of CSSL pretraining
(Newell and Deng, 2020).
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chosen. For normal supervised learning with random

initialization, the same hyper-parameters as that of MoCo

fine-tuning phase are used.

Experimental biological data: For the MoCo pretraining

phase, the hyper-parameters are the same as those for

simulated data except for MoCo queue size, which is set as

64. In the fine-tuning phase, for 100 and 75% labelled

experiments, the hyper-parameters are same as that for

simulated data. For 25 and 50% labelled experiment, the

learning rate is 1e−4.

4.3 Experimental results

For both simulated and real datasets, we randomly select

25, 50, 75 and 100% of the training set size, and then fine-tune

the classification models on these subsets. All the

experiments are run 5 times and the average accuracy and

the standard deviation are reported. Our results for simulated

data have been shown in Table 1 and the results for

experimental data in Table 2. We found that subtomogram

classification accuracy for our experimentally acquired

dataset is comparatively higher than the simulated dataset.

This is because of the higher complexity of the simulated

dataset due to higher resolution and more closely packed

macromolecules. As a result of dataset complexity and small

training set, the highest accuracy achieved for simulated

dataset is around 69%. At the same time, MoCo

outperforms the other two CSSL baselines in most

experiments. This may be because MoCo extends the idea

of contrastive learning by leveraging an extra dictionary

along with a momentum encoder, and is more robust and

adaptable to be applied to cryo-ET data. We use two-tailed

student’s t-test to reject null-hypothesis (Cox, 1982). The

p-value of the MoCo results obtained is 0.046. Considering

significance level, α = 0.05, we reject the null hypothesis.

We further show the Grad-CAM visualizations (Selvaraju

et al., 2017) of a sample subtomogram image for CSSL-

pretrained (MoCo) and randomly initialized models in

Figure 8, which roughly highlights the region important for

making the classification decision. We have used M3d-CAM

(Gotkowski et al., 2020) to make these visualizations. It can be

observed that the CSSL-pretrained model along with giving

higher accuracy also considers wider regions of the 3D

environment. These data indicate that CSSL pretraining has

a regularization effect on the model (Newell and Deng, 2020).

The improvements of CSSL methods over Random Init in all

experiments show that the classifier can leverage knowledge

gained from CSSL and effectively exploit the representations

obtained via pretraining.

5 Conclusion

In this paper, we addressed the problem of utilizing

unlabelled data for macromolecular structure classification

from cryo-ET subtomograms. We developed a pipeline that

uses the unlabelled subtomogram data for pretraining weights

of a classifier using CSSL methods: SimCLR, MoCo and SwAV,

yielding a regularization effect over the classification model. To

this end, we designed a unique data-augmentation pipeline for

cryo-ET subtomogram data. Our pipeline was able to generate

cryo-ET subtomogram images, and those generated images

worked well as a source of augmentation for self-supervised

learning. We fine-tune the CSSL pretrained weights using

labelled subtomograms for the downstream classification task.

Taken together, we present a novel workflow that provides

significant improvement over traditional classification

methods on both simulated and real data.
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