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Abstract
Pesticide-resistant populations of the predatory miteMetaseiulus (= Typhlodromus orGalen-
dromus) occidentalis (Arthropoda: Chelicerata: Acari: Phytoseiidae) have been used in the

biological control of pest mites such as phytophagous Tetranychus urticae. However, the
pesticide resistance mechanisms inM. occidentalis remain largely unknown. In other arthro-

pods, members of the glutathione-S-transferase (GST), cytochrome P450 (CYP) and car-

boxyl/cholinesterase (CCE) gene superfamilies are involved in the diverse biological

pathways such as the metabolism of xenobiotics (e.g. pesticides) in addition to hormonal and

chemosensory processes. In the current study, we report the identification and initial charac-

terization of 123 genes in the GST, CYP and CCE superfamilies in the recently sequenced

M. occidentalis genome. The gene count represents a reduction of 35% compared to T. urti-
cae. The distribution of genes in the GST and CCE superfamilies inM. occidentalis differs
significantly from those of insects and resembles that of T. urticae. Specifically, we report the

presence of the Mu class GSTs, and the J’ and J” clade CCEs that, within the Arthropoda,

appear unique to Acari. Interestingly, the majority of CCEs in the J’ and J” clades contain a

catalytic triad, suggesting that they are catalytically active. They likely represent two Acari-

specific CCE clades that may participate in detoxification of xenobiotics. The current study of

genes in these superfamilies provides preliminary insights into the potential molecular com-

ponents that may be involved in pesticide metabolism as well as hormonal/chemosensory

processes in the agriculturally importantM. occidentalis.

Introduction
The predatory miteMetaseiulus (= Typhlodromus or Galendromus) occidentalis (Arthropoda:
Chelicerata: Arachnida: Acari: Parasitiformes: Phytoseiidae) is an important natural enemy of
agricultural pests such as plant-feeding mites in the families Tetranychidae, Tarsonemidae,
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Eriophyidae and Tenuipalpidae in the USA, Australia, and New Zealand [1–6]. Pesticide-resis-
tant (carbaryl, organophosphate, and sulfur) strains ofM. occidentalis have been developed
through laboratory selection and these genetically improved mites have been used in biological
control programs [7–9].

The proteins and molecular pathways involved in pesticide resistance in this predator
remain undetermined. To confer resistance phenotype, arthropods may employ toxicodynamic
changes (e.g. altered target sites that make target proteins less sensitive to pesticides) and/or
toxicokinetic modifications (e.g. increased metabolism, decreased penetration, sequestration or
increased secretion) [10–13].

The molecular target for sulfur toxicity is unknown in arthropods. In contrast, acetylcholin-
esterase (AChE) has been identified as the target for carbamate and organophosphate (OP)
toxicity. AChE is a key enzyme involved in the degradation of acetylcholine, an important neu-
rotransmitter in both the central and peripheral nervous systems in animals. Carbamates and
OPs inhibit AChE activities in arthropods, disrupting nerve impulses, killing these animals or
interfering with their ability to carry out normal functions [14]. Arthropod strains resistant to
carbamates and OPs may carry an AChE with point mutations (i.e. toxicodynamic changes)
that make it less sensitive to these pesticides [10, 12, 15–21]. Alternatively, increased tolerance
to OPs can be achieved by elevating the expression of AChE through gene duplication, such as
the cases in some resistant strains of T. urticae [22, 23].

There are many examples of toxicokinetic changes that may contribute to pesticide resis-
tance in arthropods. In insects, numerous studies, including many employing functional
expression assays, have shown resistance to pesticides (e.g. carbamates/OPs, DDT, pyrethroids,
neonicotinoids and insect growth regulators) can be achieved through elevated expression of
pesticide-metabolizing enzymes such as members of the glutathione-S-transferases (GST),
cytochrome P450 (CYP), or carboxyl/cholinesterases (CCE) superfamilies [24–39]. Many
members of these superfamilies are also involved in other biological processes such as the deac-
tivation of kairomones and pheromones, and biosynthesis of hormones [40–45].

These detoxification enzymes have been studied for their involvement in pesticide metabo-
lism in the Acari as well (for reviews, see [10, 12, 13]). For example, increased activities or
expression in GSTs, CYPs and CCEs have been found in T. urticae, European red mite Panony-
chus ulmi, the scabies mite Sarcoptes scabiei, hard ticks Rhipicephalus bursa, and the phytoseiid
Phytoseiulus persimilis that are resistant to pesticides such as pyrethroids, spirodiclofen, tebu-
fenpyrad, abamectin, and etoxazole [31, 46–50]. Other studies have shown that individual
members of a particular gene family may be involved in pesticide resistance in Acari, including
a CYP gene involved in methidathion resistance in the phytoseiid mite Amblyseius womersleyi
[51]. GSTs were implicated in permethrin detoxification in scabies mites [52]. High levels of
oxidative detoxification were found inM. occidentalis strains resistant to carbamates, suggest-
ing that members of the CYP superfamily likely play a role in resistance to this group of pesti-
cide [53].

Several recent studies involving functional expression of potential detoxification enzymes
provide further details to the pesticide resistance mechanisms in T. urticae. Two studies
showed that two CYP paralogs, CYP392A16 and CYP392E10, were involved in resistance to
abmectin and spirodiclofen, respectively [54, 55]. Another study using both functional expres-
sion assays and transgenic Drosophila experiments showed that CYP392A11 was involved in
resistance to acaricides cyenopyrafen and fenpyroximate [56]. Finally, a functional expression
study showed that two Delta class and one Mu class GSTs were involved in pesticide resistance
[57]. These detailed studies of resistance mechanisms at the molecular level were made possible
after the genes encoding these enzymes had been identified through methods such as genomic
sequencing.
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Genomic sequencing and annotation have been increasingly used to identify large numbers
of molecular components that may participate in pesticide resistance process. Subsequent phy-
logenetic studies may shed light on the evolution and phylogenetic attributes of these gene fam-
ilies that may have functional implications. The GST, CYP and CCE gene superfamilies in T.
urticae are well studied and possess many distinct characteristics such as lineage-specific radia-
tions [58]. For example, while absent in insects, the Mu class GSTs are found in T. urticae (and
tick Ixodes scapularis), suggesting they may be Acari-specific within arthropods [58, 59]. In the
T. urticae CCE superfamily, close to the root of neuro/developmental class of CCEs, there are
two large new clades (J’ and J”) that are absent in insects [58]. Finally, the majority of the CYPs
in T. urticae form tightly clustered and shallow branches in their phylogenetic trees, suggesting
they likely derived from recent gene expansions [13, 58].

Mites and ticks belong to the Chelicerata subphylum of arthropods, andMetaseiulus occi-
dentalis separated from T. urticae approximately 400 million years ago [60]. Little is known
about the genes in the GST, CYP and CCE superfamilies inM. occidentalis, or in any other
mite in the Phytoseiidae. In the current study, we manually annotated the GST, CYP and CCE
gene complements based on a recently sequencedM. occidentalis genome [61]. We created
phylogenies of these superfamilies. Based on the results of the phylogenetic analyses, we report
thatM. occidentalis and T. urticae share similar patterns of gene distribution in the GST and
CCE, and, to a lesser extent, the CYP superfamilies.Metaseiulus occidentalis contains fewer
genes in all three superfamilies than T. urticae.

Materials and Methods

Manual annotation
To manually annotateM. occidentalis GST genes, tBLASTn searches were performed on a
sequencedM. occidentalis genome using the GST protein sequences from D.melanogaster,
Apis mellifera, T. urticae andHomo sapiens as queries. Gene models were created on the basis
of homology and available RNA seq support [62] and were manually assembled in Notepad++.
Iterative searches were conducted with each newM. occidentalis protein as query until no new
genes were identified in each major family. The CYP and CCE gene models were assembled in
the same manner as GST’s after using the CYP and CCE protein sequences, respectively, from
D.melanogaster, A.mellifera and T. urticae as queries to perform tBLASTn searches.

All manually annotated GST, CYP and CCE gene models were initially verified by perform-
ing reciprocal BLASTp searches against databases from which query sequences were derived.
For further validation, these gene models were used to search the conserved domain database
(CDD: http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi) to ascertain that they contain
the canonical domains for each type of protein (Domain ID for GSTs: COG0625, PTZ00057,
PLN02395, or cd0302; Domain ID for CYPs: pfam00067; Domain ID for CCEs: pfam00135).
For the CYP gene models, additional verification was performed by searching for the presence
of a CYP signature motif, FXXGXXXCXG, in the heme-binding domain [63, 64]. All CYP
sequences were submitted to the cytochrome P450 nomenclature committee (David Nelson,
Univ. Tennessee) for naming [65].

To identify the putative catalytically active CCEs, the presence of the esterase-specific cata-
lytic triad Ser-Glu (Asp)-His and the nucleophilic elbow surrounding the active-site serine resi-
due (GXSXG) were examined using criteria described previously [66–68].

Phylogenetic analyses
For phylogenetic analyses, only the amino acid sequences of the putative full-length GST, CYP
and CCE genes (including some probable pseudogenes. For details, see Results and Discussion
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section), but not those that are clearly pseudogenes or gene fragments, were included. To per-
form multiple sequence alignments of GSTs, the amino acid sequences of 13M. occidentalis
cytosolic GST proteins and those of selected homologs from D.melanogaster, Anopheles gam-
biae, A.mellifera, T. urticae, and I. scapularis were aligned using MAFFT 7.147 with the E-INS-
i alignment algorithm and the Blosum62 matrix [69]. For multiple sequence alignments of
CYPs, amino acid sequences of 63M. occidentalis CYP proteins and those of selected homologs
from D.melanogaster, A.mellifera, and T. urticae were aligned. For multiple sequence align-
ments of CCEs, amino acid sequences of the 44M. occidentalis CCE proteins and those of
selected homologs from D.melanogaster, A.mellifera, and T. urticae were aligned and the
resulting alignment was trimmed at both ends according to the parameters set previously [67].

Phylogenetic analyses were conducted for GSTs, CYPs and CCEs with Bayesian inference
using MrBayes v3.2.2 [70]. Model selections were performed with ProtTest 3.2 and the opti-
mummodels also supported by MrBayes were selected [71]. According to the Akaike informa-
tion criterion, the WAG + I + G + F model was selected for the phylogenetic analyses of GSTs
and CCEs, and the Blosum62 + I + G + F model was selected for the phylogenetic analyses of
CYPs. Metropolis-coupled Markov chain Monte Carlo sampling was performed with one cold
and three heated chains. Starting trees were random and the analyses were performed for five
million, thirteen million and fourteen million generations for GSTs, CYPs and CCEs, respec-
tively. Samplings were performed every 100 generations. The initial 25% of trees represented
burn-in and the remaining trees were used to calculate Bayesian posterior probabilities. The
analyses were performed until the average standard deviation of split frequencies dropped
below 0.01.

Results and Discussion

Glutathione-S-Transferases
Manual annotation of the GST genes in theM. occidentalis genome produced 16 putative full-
length gene models (S1 Table and S1 Fig). These models are identical to the existing GST Gno-
mon models predicted by the NCBI’s Eukaryotic Genome Annotation Pipeline. Two (Gst1 and
GstO1) of the 16 putative full-length gene models contain a partial GST C-terminal domain,
suggesting that they are probably pseudogenes. BLASTp searches using the 16M. occidentalis
GSTs against the GenBank database revealed that GstK1 and GstK2 showed very high similari-
ties (E value = 3e-61and 5e-59 for GstK1 and GstK2, respectively) to aHomo sapiens Kappa
class GST (GenBank accession number: NP_057001.1), which is a mitochondrial GST. AM.
occidentalis GST (PTGSES2) showed a high degree of similarity (E value = 2e-87) to aH. sapi-
ensmicrosomal GST (GenBank accession number: JC7977), a membrane-associated prosta-
glandin E synthase-2. The Kappa class GSTs belong to an ancient family of proteins with
orthologs in bacteria and eukaryotes that may play a role in detoxification, energy and lipid
metabolism, and may even act as chaperones to facilitate correct folding and assembly of pro-
teins [72]. The microsomal GSTs may play a role in protection against oxidative stress and dis-
arming toxic xenobiotics [73]. It is possible that the Kappa and microsomal class GSTs inM.
occidentalis serve similar functions as their homologs in other species.

The rest of theM. occidentalis GSTs belong to different cytosolic classes (Fig 1 and Table 1).
The number of the cytosolic GST genes (13) is far fewer than those in T. urticae (31) and I. sca-
pularis (32), the two other acarine species included in the current comparison (Table 1).
Among the nine arthropods listed,M. occidentalis has the second fewest cytosolic GSTs, ranked
only above the honey bee A.mellifera, which has 8 (Table 1).

Phylogenetic analyses of theM. occidentalis cytosolic GSTs revealed four different classes of
GSTs: Delta/Epsilon (3 genes), Mu (5 genes), Omega (3 genes) and Zeta (1 gene) (Fig 1). GST1

GST, CYP and CCE Superfamilies in MiteMetaseiulus occidentalis
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Fig 1. Phylogenetic relationships of the different cytosolic GST classes. The deduced amino acid sequences of 13M.
occidentalis cytosolic GST genes were aligned with those of selected GSTs from D.melanogaster (Dm), An. gambiae (Ag), A.
mellifera (Am), T. urticae (Tu) and I. scapularis (Is) (S2 Fig). The midpoint-rooted tree was generated using MrBayes. TheM.
occidentalisGST genes are shown in red. Posterior probabilities are shown at the nodes. Details of the gene names for the
GSTs fromM. occidentalis and other arthropods are shown in S1 and S2 Tables, respectively.

doi:10.1371/journal.pone.0160009.g001

GST, CYP and CCE Superfamilies in MiteMetaseiulus occidentalis

PLOSONE | DOI:10.1371/journal.pone.0160009 July 28, 2016 5 / 20



does not cluster with any known class. A comparison of the cytosolic GST distribution in dif-
ferent classes inM. occidentalis vs. the other eight arthropods revealed some interesting find-
ings (Table 1). All nine arthropods contain the Delta/Epsilon, Omega and Zeta class GSTs.
Only Acari contain homologs that are similar to the mammalian Mu class GSTs (Table 1) [59].
As in I. scapularis, the Mu class is the largest GST class inM. occidentalis. In general, the num-
bers of the Mu class GSTs in all three acarine species are comparable to those of the Delta/Epsi-
lon classes. Finally, unlike insects, all three acarine species lack the Sigma or Theta class GSTs.
The functions of the Sigma and Theta class GSTs remain poorly understood, with some studies
suggesting that the Sigma class GSTs may be involved in protection against oxidative stress
[74–76]. The implications for the lack of the Sigma and Theta class GSTs in Acari remain
unclear.

The ubiquitous distribution of the Delta/Epsilon, Omega and Zeta class GSTs in arthropods
suggests that they play important roles in endogenous metabolic processes. Members of the
Delta/Epsilon class of GSTs are directly involved in pesticide resistance in mosquito disease
vectors and T. urticae [28, 29, 57, 77]. The Omega class GSTs are involved in the removal of S-
thiol adducts from proteins [78]. The Zeta class GSTs catalyze the degradation of tyrosine and
phenylalanine and may also be involved in pesticide resistance [79, 80]. The results from two
recent studies indicate the Omega and Zeta class GSTs may also be involved in oxidative stress
response [81, 82]. Similarly, the mammalian Mu class GSTs have been suggested to participate
in oxidative stress response, which may be caused by insecticides [83]. A recent study in T. urti-
cae showed that a Mu class GST was involved in pesticide resistance [57]. TheM. occidentalis
GST homologs in these classes may play a similar role as their counterparts in other species.

Similar to the GST genes in other sequenced arthropod genomes [84], theM. occidentalis
GST genes show some clustering in their genomic locations (Fig 2). Both Kappa class GSTs are
located in a tandem array and two of three Omega class GSTs (GstO2 and GstO3) form a clus-
ter (Fig 2). The cluster and tandem array are likely the result of gene duplication.

Cytochrome P450s
A total of 75 CYP gene models were produced by manual annotation, 12 of which are apparent
pseudogenes as determined by the cytochrome P450 nomenclature committee. Among the 63
putative full-length CYP gene models, six appear to contain an incomplete CYP domain and
may also be pseudogenes (S1 Table and S1 Fig). Unlike theM. occidentalis GSTs, not allM.
occidentalis CYP Gnomon models appear to be correct. While some Gnomon models appear
to have concatenated multiple genes, others appear to have been poorly assembled. Among the
63 putative full-length CYP gene models, 12 represent novel gene models or improved Gno-
mon gene models and the rest are identical to the existing Gnomon models (S1 Table and

Table 1. A comparison of cytosolic GST gene numbers in the genomes of nine arthropods. Data are derived from Hayes et al. [73], Oakeshott et al.
[84], Grbic et al. [58], Reddy et al. [59], and the current study.

GST family D.melanogaster An. gambiae T. castaneum B.mori A.mellifera N. vitripennis T. urticae I. scapularis M. occidentalis

Delta/Epsilon 25 20 22 12 1 5 16 12 3

Mu 0 0 0 0 0 0 12 14 5

Omega 5 1 4 4 1 2 2 3 3

Sigma 1 1 7 2 4 8 0 0 0

Theta 4 2 1 1 1 3 0 0 0

Zeta 2 1 1 2 1 1 1 3 1

Unknown 0 3 0 2 0 0 0 0 1

Total 37 28 35 23 8 19 31 32 13

doi:10.1371/journal.pone.0160009.t001
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Fig 2. A schematic diagram of the GST, CYP and CCE tandem arrays and gene clusters onM. occidentalis genome
scaffolds. Each scaffold is represented by a bar with its ID (prefix is scf71800000) indicated on top. Scaffold sequences are
numbered from top (first nucleotide) to bottom. The names of the genes present in tandem are highlighted in bold. The GST
class (K and O = Kappa and Omega classes, respectively), CYP clan (2, 3, 4 and M = Clans 2, 3, 4 and M, respectively) and
CCE clade assignments (J’, J” and K = Clades J’, J” and K, respectively; U = Undermined) are shown in brackets.

doi:10.1371/journal.pone.0160009.g002
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S1 Fig). The lower proportion of correct CYP (also CCE, see below) Gnomon gene model pre-
dictions likely reflects the fact that CYPs (also CCEs), when compared to GSTs, are less con-
served across species. Our annotation result is consistent with the notion that manual
annotation is needed to achieve a more accurate CYP gene assembly [85].

The number of the CYP genes inM. occidentalis is fewer than those in T. urticae (86) and
other arthropods listed (Table 2), with the exception of A.mellifera (46). CYPs in arthropods
can be grouped into four distinct clans: CYP2, CYP3, CYP4 and the mitochondrial clan, based
on sequence similarities and phylogenies [86]. Assignment of theM. occidentalis CYP genes
into different clans, families, and subfamilies was initially achieved on the basis of sequence
similarity by the P450 nomenclature committee, and was further supported, with a few excep-
tions, by subsequent phylogenetic analyses (Fig 3) [65]. The distribution of theM. occidentalis
CYPs in various clans differs from that of T. urticae, and instead resembles those of insects
(Table 2). The CYP3 (23 genes) is the most abundant clan inM. occidentalis, followed by the
CYP4 (19 genes) and CYP2 (16 genes) clans. The mini-blooms inM. occidentalis CYP3s were
also reported by Van Leeuwen and Dermauw when performing a phylogenetic study using
CYP Gnomon gene models [2016]. By comparison, there is a huge expansion of the CYP2 clan
(48 genes) and an equally dramatic reduction of the CYP3 clan (10 genes) in T. urticae [58].

TheM. occidentalismitochondrial CYP clan contains five genes, three of which show 1:1:1:1
orthologies with the mitochondrial CYPs from other arthropod genomes included in our phylo-
genetic analyses (T. urticae, A.mellifera and D.melanogaster; Fig 3). CYP302A1, CYP314A1
and CYP315A1 are orthologs of enzymes encoded by D.melanogasterHalloween genes disem-
bodied (Dm_CYP302A1 in tree), shade (Dm_CYP314A1 in tree), and shadow (Dm_CYP315A1
in tree), respectively. These D.melanogaster genes encode for steroid hydroxylases that are
involved in the biosynthesis of insect molting hormone, 20-hydroxyecdysone (20E) [43, 44]. It
is likely thatM. occidentalis orthologs perform similar functions. TheM. occidentalis
CYP3012A5 and CYP3098A1 genes do not appear to have orthologs in insects.

In theM. occidentalis CYP2 clan, CYP307G1 appears to be an ortholog of CYP307A1 of D.
melanogaster and T. urticae (Fig 3). Drosophila melanogaster CYP307A1 encodes for spook,
which is required for the biosynthesis of 20E [44]. It is likely that CYP307G1 is involved in 20E
biosynthesis inM. occidentalis. The rest of theM. occidentalis CYP2s belong to two tightly clus-
tered clades that share no strong orthology with CYP2s from the other arthropods evaluated,
suggesting they might have derived from recent gene expansion events (Fig 3). However, it is
possible that potential orthologs from other species may be present in the sequences not
included in the current study. Clade I contains CYP3101A1, CYP3102A1, CYP3102A2,
CYP3103A1 and CYP3002B1. They cluster with members of the T. urticae CYP392 family,
some of which (e.g. CYP392A16 in tree) are be involved in the resistance to several pesticides
[54–56]. Members of the clade II of theM. occidentalis CYP2 clan do not share close sequence
similarities with CYP2s from D.melanogaster, A.mellifera, or T. urticae (Fig 3). Six CYPs
(CYP3106A1, CYP3104B1, CYP3104A1, CYP3104C1, CYP3104D1, and CYP3105A1) could

Table 2. A comparison of CYP gene numbers in the genomes of eight arthropods. Data are derived from Feyereisen [25], Grbic et al. [58] and the cur-
rent study.

CYP clan D.melanogaster An. gambiae T. castaneum B.mori A.mellifera N. vitripennis T. urticae M. occidentalis

CYP2 7 10 8 7 8 7 48 16

CYP3 36 40 72 30 28 48 10 23

CYP4 32 46 45 36 4 30 23 19

Mitochondrial CYP 11 9 9 12 6 7 5 5

Total 88 105 134 85 46 92 86 63

doi:10.1371/journal.pone.0160009.t002
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Fig 3. Phylogenetic relationships of the different CYP clans. The deduced amino acid sequences of 63
M. occidentalis CYP genes were aligned with those of selected CYPs from D.melanogaster (Dm), A.
mellifera (Am) and T. urticae (Tu) (S3 Fig). The midpoint-rooted tree was generated using MrBayes. TheM.
occidentalis CYP genes are shown in colors. Posterior probabilities are shown at the nodes. Details of the
gene names for the CYPs fromM. occidentalis and other arthropods are shown in S1 and S3 Tables,
respectively.

doi:10.1371/journal.pone.0160009.g003
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not be assigned to any of the four CYP clans by Bayesian analyses (Fig 3). This is not surprising
because the classification of some CYP genes can be difficult, due to significant differences in
their sequences among species [86]. They were, however, assigned to the CYP2 clan based on
sequence identities by the CYP nomenclature committee (S1 Table).

Interestingly, similar to T. urticae,M. occidentalis also lack orthologs to CYP306A1 and
CYP18A1, two genes that encode, respectively, the biosynthetic C25 hydroxylase and a C26
hydroxylase/oxidase involved in hormone inactivation. These results suggest thatM. occidenta-
lismay use alternative enzymes in place of these two CYPs. Alternatively, this predatory mite
may use a different molting hormone (e.g. ponasterone A) instead of 20E, as suggested in T.
urticae [58].

Insect CYPs usually lack precise orthologies in the CYP3 clan [84]. Unsurprisingly, mem-
bers of theM. occidentalis CYP3 clan do not show close sequence similarities with insect
CYP3s.Metaseiulus occidentalis CYP3s are separated into two clades consisting of 15 and 8
genes each. They diverge from the insect CYP6 and 9 families (Fig 3). It is notable that the
insect CYP6 family contains members that are involved in resistance to a broad range of chem-
ically unrelated pesticides [25, 87] and the detoxification of host plant secondary metabolites in
the gut [26, 88].

The majority of theM. occidentalis CYP4 clan can be divided into two clades that consist of
6 and 10 genes each (Fig 3). CYP4EW1, CYP4EN1 and CYP4EN2 could not be assigned to
either clade due to polytomy. None of the genes inM. occidentalis CYP4 clan show precise
orthologies with the selected CYP4s from either insects or the spider mite. The insect CYP4
clan comprises highly diverse families of enzymes that have been implicated in the metabolism
of insecticides and pheromone perception [89–92]. The specific functions ofM. occidentalis
CYP4s remain to be determined.

Our CYP annotation and phylogenetic analysis results are consistent with the notion that
arthropod CYPomes consist of many species- or lineage-specific expansions of CYP subfami-
lies and only a small number of recognizable orthologs [93]. Many CYP gene expansions inM.
occidentalis appear to have resulted from recent gene duplication events, as evidenced by the
physical clustering of the CYP genes on genomic scaffolds (Fig 2). Eleven CYPs are present in
small tandem arrays of 2–3 genes each. The numbers of these tandem repeats are small when
compared to those in some other arthropods such as Daphnia pulex [94]. Fourteen CYPs form
gene clusters composing of 2–3 genes. As found in other arthropods, with very few exceptions,
CYPs in the same tandem array and physical cluster are also from the same phylogenetic radia-
tion (Figs 2 and 3) [84, 94].

Carboxyl/cholinesterases
TheM. occidentalis genome contains 44 full-length CCE genes and one apparent pseudogene.
Of the 44 putative full-length genes, three contain a partial esterase domain and may be pseu-
dogenes (S1 Table). Thirty four of 45 gene models are identical to the existing Gnomon models.
The rest (11) represent either new gene models or refined Gnomon gene models (S1 Table and
S1 Fig). The total number of CCEs inM. occidentalis is similar to that of the wasp Nasonia
vitripennis and much fewer than the 71 CCEs found in T. urticae (Table 3).

Insect CCEs fall into three main phylogenetic classes with broadly defined, yet distinct func-
tions: dietary/detoxification, hormone/semiochemical processing and neuro/developmental
functions [84]. The phylogenetic relationships amongM. occidentalis CCEs and those from
several arthropod species were investigated (Fig 4). The distribution ofM. occidentalis CCEs
among different CCE classes/clades, while similar to that of T. urticae, differs from those of
insects in two significant ways (Table 3). First, bothM. occidentalis and T. urticae lack
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homologs to insect CCEs in the dietary/detoxification and hormones/semiochemical classes
(clades A, B, C, D, E, F and G). Secondly, the majority ofM. occidentalis CCEs fall into two
new clades (CCE17–CCE35 in the J’ clade and CCE1–CCE15 in the J” clade) close to the root
of the neuro/developmental class of CCEs. This distribution pattern is similar to that of the T.
urticae CCE superfamily, in which 34 and 22 CCEs fall into the clades J’ and J”, respectively
[58]. Taken together, these results suggest that the J’ and J” clades likely represent two ancient,
Acari-specific clades, although we cannot rule out the possibility that orthologs toM. occiden-
talis genes in these clades may exist in the excluded CCE sequences from other species. Inter-
estingly, the majority of theM. occidentalis CCEs in the J’ (12 out of 19) and J” (12 out of 15)
clades contain characteristic features of α/β-hydrolase structure [66–68], such as a catalytic
triad composed of Ser-Glu (Asp)-His and the nucleophilic elbow surrounding the active-site
serine residue (GXSXG) (S1 Table and S4 Fig), indicating that they are catalytically active. Sim-
ilarly, three of four T. urticae CCEs in the J’ and J” clades selected for the phylogenetic analyses
also contain the same features (S4 Fig).

The majority of CCEs in insect genomes belong to the dietary/detoxification and hormone/
semiochemical classes with each species having representatives in most of the clades in these
two classes [84]. Unlike most CCEs in the neuro/developmental class, CCEs in the dietary/
detoxification and hormone/semiochemical classes are mostly catalytically active and partici-
pate in diverse biological process such as the detoxification of xenobiotics (e.g. insecticide
metabolism) and the hormone/pheromone processing [26, 27, 67, 95]. We speculate that CCEs
in the J’ and J” clades perform similar functions inM. occidentalis as those in insect dietary/
detoxification or hormone/semiochemical classes due to the presence of the intact catalytic tri-
ads and the apparent need for such important biological functions encoded by these classes of
CCEs in this mite.

Table 3. A comparison of CCE gene numbers in the genomes of eight arthropods. Data are derived from Yu et al.[106], Oakeshott et al [84]. Grbic et al
[58]. and the current study.

CCE clade D.melanogaster An. gambiae T. castaneum B.mori A.mellifera N. vitripennis T. urticae M. occidentalis

Dietary/detoxification class

Clade A, B and C 13 16 26 57 8 13 0 0

Hormone/semiochemical class

Clade D (integument esterases) 3 0 2 2 1 4 0 0

Clade E (secreted β esterases) 2 4 7 2 2 11 0 0

Clade F (dipteran JhE) 3 6 2 4 2 2 0 0

Clade G (lepidopteran JhE) 0 4 0 0 0 0 0 0

Clade F’ (crustacean/Acari JhE) 0 0 0 0 0 0 2 0

Neuro/developmental class

Clade H (glutactin) 5 10 1 1 1 1 2 0

Clade I (uncharacterized clade) 1 1 1 2 1 1 0 0

Clade J (AChEs) 1 2 2 2 2 2 1 1

Clade K (gliotactin) 1 1 1 1 1 1 1 1

Clade L (neuroligins) 4 5 5 3 5 5 5 5

Clade M (neurotactins) 2 2 2 2 1 1 1 0

Novel Acari-specific class

Clade J’ 0 0 0 0 0 0 34 19

Clade J” 0 0 0 0 0 0 22 15

Undetermined 0 0 0 0 0 0 3 3

Total 35 51 49 76 24 41 71 44

doi:10.1371/journal.pone.0160009.t003
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Fig 4. Phylogenetic relationships of the different CCE classes/clades. The deduced amino acid
sequences of 44M. occidentalis CCE genes were aligned with those of selected CCEs from D.melanogaster
(Dm), A.mellifera (Am) and T. urticae (Tu) (S5 Fig). The alignment was trimmed at both ends using criteria set
previously [67]. The midpoint-rooted tree was generated using MrBayes. TheM. occidentalis CCE genes are
shown in red. Posterior probabilities are shown at the nodes. Details of the gene names for the CCEs fromM.
occidentalis and other arthropods are shown in S1 and S4 Tables, respectively.

doi:10.1371/journal.pone.0160009.g004
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In the neuro/developmental class,M. occidentalis contains one ortholog of gliotactin and
five orthologs of neuroligins (Fig 4). Gliotactin and neuroligins are catalytically inactive cholin-
esterase-like molecules that are involved in the cell-cell interactions during the development of
the nervous system [96–98]. The high degrees of orthologies of these proteins across different
arthropods suggest that they likely play conserved functional roles in these species (Table 3).
As expected, none of the CCEs in theM. occidentalis K (gliotactin) or L (neuroligins) clades
contains an intact catalytic triad (S1 Table and S4 Fig). ThreeM. occidentalis CCEs (CCE36-
CCE38) do not cluster with any insect CCE clade (Fig 4). None contain an intact catalytic
triad, suggesting that they likely play a structural role (S1 Table and S4 Fig).

TheM. occidentalis genome has one copy of AChE gene (CCE16 in tree, Fig 4). Similar to
its orthologs from D.melanogaster, A.mellifera and T. urticae, theM. occidentalis AChE con-
tains the signature features of an active esterase as described above (S1 Table, S1 and S4 Figs).
DNA used for the genome sequencing project was produced from aM. occidentalis strain that
is resistant to carbamates and OPs [61]. The presence of a single copy of AChE gene suggests
this mite, unlike some of the OP-resistant T. urticae strains [22, 23], does not utilize an AChE
gene expansion strategy to confer resistance to carbamate/OPs.

An examination of the deduced amino acid sequence of theM. occidentalis AChE identified
a G(193)S mutation (corresponding to the conserved position 119 of the mature AChE of Tor-
pedo californica) that is associated with resistance to propoxur (a carbamate) in Culex pipiens
and An. gambiae [15, 99, 100], and chlorpyrifos (an OP) resistance in a closely related preda-
tory mite Kampimodromus aberrans (Acari: Phytoseiidae) [21]. Interestingly, the same point
mutation is also found in the amino acid sequence of the AChE of T. urticae (London strain),
although it is unclear whether this strain of T. urticae is resistant to carbamates/OPs (Miodrag
Grbic, personal communications). The G119S amino acid substitution is not found in I. scapu-
laris, several insects or T. californica (Fig 5). And similar to the AChE in chlorpyrifos-resistant
strain of K. aberrans, no other point mutations associated with carbamate/OP resistance in
insects or Acari were found in theM. occidentalis AChE [12, 15–18, 101]. Future studies are
needed to compare the AChE sequences fromM. occidentalis strains that are resistant and sus-
ceptible to carbamates/OPs in order to determine whether the G(193)S point mutation (or

Fig 5. A schematic diagram showing the point mutation at a conserved position in the AChEs ofM.
occidentalis and T. urticae. The deduced amino acid sequences of the AChEs from several species were
aligned using the same method as described for other multiple sequence alignments (e.g. GSTs). A partial
alignment is shown with the G-to-S point mutation in theM. occidentalis and T. urticae AChEs highlighted in
bold. Numbers on the top and bottom of the alignment denote the positions of corresponding amino acid
residues in the AChEs ofM. occidentalis and T. californica, respectively. Species includeM. occidentalis
(Mo; CCE16 in this study), T. urticae (Tu; OrcAE ID: tetur19g00850), I. scapularis (Is; GenBank accession
no.: XP_002413212.1), Culex pipiens (Cp; GenBank accession no.: AAV28503.1), A.mellifera (Am;
BeeBase ID: GB18414), D.melanogaster (Dm; FlyBase ID: CG17907) and T. californica (Tc; UniProtKB ID:
P04058.2).

doi:10.1371/journal.pone.0160009.g005
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other possible yet-to-be found point mutations) is associated specifically with the resistance
phenotype. If confirmed, follow-up studies involving the in vitro expression of the AChEs from
susceptible and resistant strains are required to validate the notion that this mutation indeed
confers resistance.

Similar to the GST and CYP genes, many CCE genes also exist in physical clusters on
genome scaffolds. Twelve CCEs form 5 tandem arrays of 2–3 genes each and two CCEs form 1
gene cluster onM. occidentalis genome scaffolds (Fig 2). As with GSTs and CYPs, the physical
clustering of CCEs also overlaps with the phylogenetic radiation (Figs 2 and 4).

Conclusions
The current study provides the first glimpses into the shared and unique features of the GST,
CYP and CCE gene superfamilies in the phytoseiid miteM. occidentalis in comparison with
other arthropods.Metaseiulus occidentalis has fewer members of the GST, CYP and CCE
superfamilies than the spider mite T. urticae. This difference likely reflects a reduced need for
detoxification inM. occidentalis, possibly due to the fact that this obligatory predator is likely
exposed to a narrower range of potentially toxic xenobiotics in their prey diet than the plant-
feeding spider mite. Clearly, further studies are needed to determine the diverse functions
encoded by these genes that our current analyses have inferred. For example, to delineate the
molecular mechanisms underlying pesticide resistance, further characterization and compari-
sons of the expression levels (or in the case of AChEs, amino acid sequences) of these genes in
resistant and susceptible strains ofM. occidentalis are required. Results from these future stud-
ies, coupled with functional genomic analyses using approaches such as RNAi [102–105],
could tease out the molecular mechanisms for pesticide resistances inM. occidentalis.
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