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ABSTRACT

NLSdb is a database collecting nuclear export sig-
nals (NES) and nuclear localization signals (NLS)
along with experimentally annotated nuclear and
non-nuclear proteins. NES and NLS are short se-
quence motifs related to protein transport out of and
into the nucleus. The updated NLSdb now contains
2253 NLS and introduces 398 NES. The potential sets
of novel NES and NLS have been generated by a
simple ‘in silico mutagenesis’ protocol. We started
with motifs annotated by experiments. In step 1,
we increased specificity such that no known non-
nuclear protein matched the refined motif. In step
2, we increased the sensitivity trying to match sev-
eral different families with a motif. We then iterated
over steps 1 and 2. The final set of 2253 NLS mo-
tifs matched 35% of 8421 experimentally verified nu-
clear proteins (up from 21% for the previous version)
and none of 18 278 non-nuclear proteins. We up-
dated the web interface providing multiple options
to search protein sequences for NES and NLS mo-
tifs, and to evaluate your own signal sequences.
NLSdb can be accessed via Rostlab services at:
https://rostlab.org/services/nlsdb/

INTRODUCTION

Eukaryotic cells are characterized by the envelopment of
DNA into a membranous compartment, the nucleus (name:
Greek ευ (eu) = well and καρυoν (karyon) = core). Shuttle
proteins known as karyopherins, namely importins and ex-
portins, facilitate the transport of proteins into and out of
the nucleus through nuclear pore complexes (1–4). To iden-

tify their cargo, these proteins use specific sequence motifs:
so-called nuclear localization signals (NLS) for the import
into the nucleus, and nuclear export signals (NES) for the
transport out of the nucleus.

NLS motifs vary substantially in terms of length and
features (5–7). However, almost all share a simple feature,
namely short stretches of mostly basic amino acids with the
consensus sequence K-K/R-X-K/R. When a single such
NLS on the sequence leads to import into the nucleus, these
motifs are referred to as monopartite, while bipartite NLS
often have two monopartite signals separated by a variable
linker of typically 9–12 amino acids (8,9). The linker re-
gions can be longer and tripartite motifs exist, as well. Many
other types of NLS exist, e.g. the Proline-Tyrosine NLS
(PY-NLS), named after the PY group in its motif: R/K/H-
X(2–5)-P-Y (10).

The classical NES motif contains three to four hydropho-
bic amino acids, often leucine, and was first identified in
HIV-1 (11,12). Several solutions to describing the consensus
sequence of NES have been proposed (13–15), but they did
not suffice to identify new NES-containing proteins (16).

Public databases such as UniProtKB (17), NESbase
(14) and ValidNESs (18) have been able to collect just a
few hundred experimentally verified NES and NLS mo-
tifs. Machine-learning methods targeted filling the gap,
e.g. SeqNLS (19), NucPred (20), NESsential (16) and NL-
Stradamus (21). However, as for every good prediction
method, they make mistakes: those designed to predict nu-
clear proteins might mislabel non-nuclear proteins (false
positives), and NES or NLS prediction methods might mis-
place the signal or miss it altogether (false negatives).

Our group has been developing generic machine learning-
based methods predicting localization for almost two
decades (22–26). In contrast, we developed NLSdb (27) as
a comprehensive and specific database collecting as many
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experimentally verified NLS in a single resource as possi-
ble. In contrast to related resources before and after this, we
also considered it to be important to enrich the resource
by simple in silico analyses. For instance, although good
experiments use controls for annotations, they cannot ac-
cess as comprehensive datasets for controls as we can in
silico: many motifs published by experimentalists mapped
to many non-nuclear proteins, i.e. they were not specific
enough (28), and many others mapped only to very few re-
lated proteins, i.e. were too specific (28). Experts tried to ma-
noeuvre optimally between these two extremes beginning
from 114 NLS carefully collected from the literature. Those
were complemented by 194 potential NLS generated by ‘in
silico mutagenesis’, i.e. mutated and tested by a computa-
tional algorithm essentially through iterating over the fol-
lowing simple steps (27,28): if too specific: make more gen-
eral by shrinking motif, if too unspecific: lengthen motif.
All operations (shorten/lengthen) were guided by multiple
sequence alignments. Fifteen years later, we have now com-
pleted a major update to NLSdb using a similar algorithm,
although this time we gave more control to the computer.
We have also added NES motifs to the database.

MATERIALS AND METHODS

Datasets: nuclear and non-nuclear proteins

We downloaded all proteins from the UniProtKB/Swiss-
Prot database (release May 2017), which had manually cu-
rated annotations for their subcellular localization (UniPro-
tKB evidence code ECO:0000269). To reduce unrealistic
protein fragments, we removed all proteins shorter than 50
residues. We masked low-complexity regions with SEG (29)
and removed all proteins that did not have at least one seg-
ment of 30 consecutive unmasked residues.

We split the dataset into two distinct sets of nuclear and
non-nuclear proteins. Proteins with experimental annota-
tions for both nuclear and non-nuclear subcellular localiza-
tions were considered nuclear proteins. Although we previ-
ously ignored less reliable annotations (e.g. by similarity),
we made an exception: if a protein was annotated experi-
mentally as non-nuclear and it was annotated as nuclear by
one of those less-reliable annotations, we removed it from
our set. Analyzing the remaining set, we still found pairs of
nuclear/non-nuclear proteins that had over 80% pairwise
sequence identity. Though, the presence or absence of a sin-
gle NLS could easily explain why two proteins N and C have
>80% PIDE; and because N has the NLS and C does not,
only N is nuclear. However, such observations might also
suggest mistakes in the annotations. For security, we sim-
ply removed all such proteins from the set of non-nuclear
proteins (toward this end we applied CD-Hit (30)). Our fi-
nal datasets contained 8421 nuclear and 18 278 non-nuclear
proteins.

Finally, we used UniqueProt (31) (HVAL > 0) to divide
the set of nuclear proteins into 801 clusters of similar se-
quences, hereafter referred to as protein families. Those 801
families were used in the last step of our in silico mutagene-
sis algorithm (below).

Lists of NLS and NES

Next, we extracted all proteins from UniProtKB/Swiss-
Prot (release May 2017) with nuclear export and localiza-
tion signals (NES and NLS). We kept only proteins with
the following evidence codes for their signal annotations:
(i) ECO:0000269 (manually curated information for which
there is published experimental evidence); (ii) ECO:0000305
(manually curated information which has been inferred by
a curator based on his/her scientific knowledge or on the
scientific content of an article); (iii) ECO:0000250 (manu-
ally curated information which has been propagated from
a related experimentally characterized protein); and (iv)
ECO:0000255 (manual assertions for information which
has been generated by the UniProtKB automatic annota-
tion system or by various sequence analysis programs). This
resulted in 529 unique NES and 2362 unique NLS. We
enriched this initial set tapping into other online sources,
namely through 262 NES from ValidNESs, 80 NES from
NESbase and 122 NLS from SeqNLS. Our final datasets
contained 788 unique NES and 2466 unique NLS.

Protocol for in silico mutagenesis

Starting with our sets of collected NES and NLS, we applied
an in silico mutagenesis algorithm to generate new potential
signals. We applied the same steps to both sets (NLS and
NES, for simplicity referred as ‘signals’ in the following).

(i) To ensure a high specificity for nuclear proteins, we
removed all signals from the set that matched any of the
non-nuclear proteins or did not match any of the nuclear
proteins. To reduce the amount of non-functional residues
(i.e. linker regions not related to the NLS), we removed sig-
nals longer than 30 residues. Next, we generated all possible
variations of the remaining signals that differed by a single
amino acid from the original sequence. Thus, for each signal
we had 20 times its length variants, including the original
one.

(ii) We iteratively applied the following two steps un-
til no new variants could be generated: (a) remove all sig-
nals matching non-nuclear proteins or not matching nuclear
proteins; (b) generate all possible variants by deleting a sin-
gle residue, i.e. shortening the signal by one.

(iii) We removed signals that deviated too substantially
from the features known for generic signals. We kept
only NLS that contained at least three positively charged
residues (H, K, R), two if they also included a PY-NLS mo-
tif (R/K/H-X(2–5)-P-Y). At least one region (two for NLS of
20 or more residues) had to have an overall positive charge
(i.e. not cancelled out by negative residues right next to the
positive ones). NES were removed if they had fewer than
three hydrophobic residues (A, F, I, L, M, V), or if <30% of
the signal was hydrophobic.

(iv) To filter out potential signals that are too specific, we
kept only those that matched proteins from at least two fam-
ilies (as defined above). We removed redundant signals, i.e.
for any pair of signals S1 and S2, if S1 is a substring of S2,
we kept only the shorter signal S1.

Note that our final signals by design reached 100% speci-
ficity on the set of proteins that we used for development
(signals were removed if they match non-nuclear proteins).
In order to keep specificity high, we deliberately avoided to
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combine motifs in regular expressions. For instance, exper-
imentally observing the motifs RKHEL and LEHKR does
not imply that all motifs matched by [RL][KE]H[EK][LR]
constitute a valid NLS. In particular, LEHEL is unlikely to
function as NLS.

Dataset of whole proteomes

We analyzed the ‘entire proteomes’ for the nine eukaryotic
organisms that contributed most to our set of experimen-
tally annotated nuclear proteins (91%, Table 1). These were:
Arabidopsis thaliana, Caenorhabditis elegans, Drosophila
melanogaster, Homo sapiens, Mus musculus, Oryza sativa,
Rattus norvegicus, Schizosaccharomyces pombe and Saccha-
romyces cerevisiae. We downloaded the latest reference pro-
teomes (release April 2017) from the European Bioinfor-
matics Institute (EMBL-EBI) (32).

In addition, we downloaded the subcellular localization
annotations for 12 003 human proteins from the Human
Protein Atlas (release October 2017) (33,34). However, we
only used annotations classified as either ‘validated’ or ‘sup-
ported’, and ignored the less reliable ‘approved’ and ‘uncer-
tain’.

RESULTS AND DISCUSSION

Database growth

Our in silico mutagenesis protocol generated 1177 potential
NES and 5189 potential NLS from the initial collection of
788 original NES and 2466 original NLS. Of those, 192 po-
tential NES and 1651 potential NLS matched at least two
different protein families. In addition to those, NLSdb in-
cludes all original NES and NLS that match nuclear pro-
teins, while not matching non-nuclear proteins. The final list
is: 398 NES and 2253 NLS.

In comparison: the original NLSdb contained only 308
experimental and potential NLS, and no NES. Those 308
NLS match 1810 (21%) of the 8421 nuclear proteins, but
also 1017 of the non-nuclear proteins. Considering only
NLS motifs that exclusively match nuclear proteins, the pre-
vious version covered only 174 (2%) proteins. In contrast,
the NLS of the new NLSdb cover 2928 (35%) of the nuclear
proteins. In other words, the error-free coverage of the new
version increased by a factor of 17 (factor of 1.6 if ignoring
the errors). This also highlighted why we moved from regu-
lar expressions (old version) to lists of signal sequences (new
version): regular expressions are prone to quickly becoming
too permissive leading to matches in non-nuclear proteins.

Specificity and sensitivity of NES and NLS

Only 206 of the collected 788 NES (26%) matched at least
one of the 8421 nuclear proteins without matching any of
the 18 278 non-nuclear proteins. In fact, only 231 NES
(29%) matched any experimentally annotated nuclear pro-
tein. Similarly, only 639 (26%) of the annotated 2466 NLS
matched known nuclear proteins without matching non-
nuclear proteins, and only 969 NLS (39%) matched any
known nuclear protein. In fact, for most proteins with
NES and NLS annotations an experimental annotation
as nuclear proteins was missing. Only 17% (754 of 4429)

of the proteins we used to extract NES and NLS from
UniProtKB/Swiss-Prot were experimentally annotated as
nuclear.

According to our protocol (Methods: In silico mutage-
nesis), we retained only the 206 NES and 639 NLS that
exclusively matched known nuclear proteins. These motifs
matched 191 (NES) and 713 (NLS) of the annotated 8421
nuclear proteins. This suggests that most motifs are too spe-
cific, i.e. too long to match any other sequence. While such
specific motifs might be biologically meaningful, they are
not very helpful to discover motifs in proteins outside of
the well annotated families.

The in silico-refined signals in NLSdb were both more
sensitive (i.e. matching more proteins) and more specific (i.e.
matching only nuclear proteins): the 192 NES matched 439
nuclear proteins from 265 families, and the 1651 NLS in
2773 nuclear proteins from 618 families. Thereby the aver-
age number of nuclear proteins matched by one motif in-
creased from 1.2 for the original NES to 2.6 for the poten-
tial NES and from 1.3 for the original NLS to 3.2 for the
potential NLS.

The bias in the dominance of particular organisms to the
final set appeared to mirror the bias of experimental biol-
ogy with most annotations from human, relatively few from
plants, and relatively many from yeast (Table 1). However,
this bias largely disappeared when considering how many
proteins of an organism the NLS/NES matched. For in-
stance, although almost ten times more nuclear proteins
from human were annotated than from rat, the NLS from
NLSdb matched 38% of the experimentally annotated hu-
man and 36% of the experimentally annotated rat proteins,
i.e. rather similar fractions of the annotated nuclear pro-
teins. The same held for NES.

The potential NES and NLS in NLSdb were rather short
(Figure 1) because our in silico mutagenesis protocol can
only shorten NES and NLS. Furthermore, we kept only the
shorter of two redundant motifs. Almost all of the resulting
motifs (NLS and NES) were about six amino acids long.
This implies that a match in a protein sequence indicates the
site of a NES or NLS, but that the signal tagged by NLSdb
might not suffice to facilitate nuclear transport on its own.
Instead, the biologically relevant NLS/NES might require
additional neighbouring residues to bind to shuttle proteins
(karyopherins). For example, two consecutive matches in a
protein might indicate a bipartite NLS, while the same sig-
nal might match a monopartite NLS in another protein.

NES and NLS in NLSdb map to about half of all nuclear
proteins in popular organisms

The enriched dataset of motifs available through NLSdb
matched many proteins in all nine organisms analyzed (Ta-
ble 2). On average, NLS motifs matched 9–13% of all pro-
teins in each proteome and NES motifs 1–2% (Table 2).
Comparing those numbers to the estimated fraction of nu-
clear proteins predicted by LocTree3 (22), suggested a cov-
erage very similar to that estimated by the set of experimen-
tally verified nuclear proteins (Table 1 versus Table 2). For
example, the NLS cover 38% of the experimentally anno-
tated human nuclear proteins, and about 42% of the hu-
man nuclear proteins predicted by LocTree3. Overall, the
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Table 1. Proteins with NES and NLS in nuclear protein dataset

Organism
Number of nuclear proteins
in NLSdb

Proteins with
NLS

Proteins with
NES

Homo sapiens (human) 2163 820 (37.9%) 185 (8.6%)
Schizosaccharomyces pombe (fission yeast) 1263 282 (22.3%) 52 (4.1%)
Arabidopsis thaliana (thale cress) 1241 430 (34.6%) 37 (3.0%)
Mus musculus (mouse) 1011 420 (41.5%) 89 (8.8%)
Saccharomyces cerevisiae (brewer’s yeast) 1010 294 (29.1%) 33 (3.3%)
Drosophila melanogaster (fruit fly) 334 149 (44.6%) 20 (6.0%)
Caenorhabditis elegans (roundworm) 273 113 (41.4%) 19 (7.0%)
Rattus norvegicus (rat) 237 85 (35.9%) 22 (9.3%)
Oryza sativa (rice) 140 46 (32.9%) 5 (3.6%)
Sum nine organisms 7672 2639 (34.4%) 462 (6.0%)

Organism: latin (common) names for the nine organisms that contributed the most nuclear proteins (sorted by number of nuclear proteins) to NLSdb
(together 7672 proteins in these nine organisms accounted for 91% of all currently known 8421 nuclear proteins); Number of nuclear proteins in NLSdb: gives
the number of proteins annotated experimentally as nuclear and retained in NLSdb after applying a variety of filters (Methods); Proteins with NLS/NES:
numbers and fractions (brackets) of the nuclear proteins that contain at least one NLS or NES from NLSdb.

Figure 1. Length distribution of NLS and NES sequences. The graphs compare the length distribution for the original NLS (A: gray line; total 2466 NLS)
and the NLSdb set of NLS refined through in silico mutagenesis (A: dark line; total 1651 NLS), as well as the corresponding distributions for the original
NES (B: gray line; total 788) and the NLSdb refined set of NES (B: dark line; total 192 NES). Note that motifs with over 25 amino acids were observed,
but are not shown in the graphs due to sparseness (total: 156 original NLS, 42 original NES).

fractions of predicted nuclear proteins suggested that about
30–40% of all nuclear proteins in those nine proteomes were
matched by one of the NLS in NLSdb.

We tried to validate the specificity of our NLS and NES
on the set of potential novel human nuclear proteins by
comparing these proteins to annotations from the Hu-
man Protein Atlas. Of the 2673 human proteins contain-
ing NLS from NLSdb (Table 2), 1853 proteins were not in
our dataset of experimentally annotated nuclear proteins
from UniProtKB/Swiss-Prot, therefore representing poten-
tial novel nuclear proteins. For 516 of them we had subcellu-
lar localization annotations from the Human Protein Atlas.
There, 407 (79%) of the 516 proteins were annotated as nu-
clear proteins, implying an error rate of 21% (i.e. proteins
containing NLS being non-nuclear). Repeating the same
process for the 375 human proteins containing NES (Ta-

ble 2), we found 65% (34 of 52) of potential novel proteins
to be annotated as nuclear. This unfortunately showed that
despite our careful approach the signals were not always
100% specific. However, we would like to note that for all
2597 proteins, which were in both the Human Protein Atlas
and our entire datasets of experimentally annotated nuclear
and non-nuclear proteins, the agreement on being nuclear
or non-nuclear was only 90%. Thus, the 79 and 65% should
be compared to an upper limit of 90% and not to 100%.

Our in silico mutagenesis protocol succeeded in rendering
signals that are found in many organisms. For instance, 46%
of the NES matched in at least four of nine model organ-
isms, and 46% of the NLS matched in six or more (Figure 2
arrows and Table 1). Only about 1% of all NES and 5% of
all NLS matched in all nine organisms.



Nucleic Acids Research, 2018, Vol. 46, Database issue D507

Table 2. Nuclear signals and proteins in entire proteomes

Organism
Number of
proteins

Proteins with
NLS

Proteins with
NES

LocTree3
(nucleus)

Homo sapiens (human) 21 042 2673 (12.7%) 375 (1.8%) 30%
Schizosaccharomyces pombe (fission yeast) 5142 501 (9.7%) 78 (1.5%) 34%
Arabidopsis thaliana (thale cress) 27 502 2768 (10.1%) 246 (0.9%) 31%
Mus musculus (mouse) 22 262 2684 (12.1%) 358 (1.6%) 30%
Saccharomyces cerevisiae (brewer’s yeast) 6722 681 (10.1%) 63 (0.9%) 31%
Drosophila melanogaster (fruit fly) 13 757 1573 (11.4%) 168 (1.2%) 31%
Caenorhabditis elegans (roundworm) 20 057 1759 (8.8%) 170 (0.8%) 27%
Rattus norvegicus (rat) 21 412 2555 (11.9%) 359 (1.7%) 28%
Oryza sativa (rice) 44 321 4285 (9.7%) 280 (0.6%) 28%

Organism: latin (common) names for the nine organisms that contributed the most nuclear proteins to NLSdb (sorted by number of nuclear proteins);
Number of proteins: gives the number of proteins found in the ‘entire proteome’ as we accessed it (Methods: Dataset of whole proteomes); Proteins with
NLS/NES: numbers and fractions (brackets) of the nuclear proteins that contain at least one NLS or NES from NLSdb; LocTree3 (nucleus): lists the
fractions of proteins predicted by our generic machine learning-based method LocTree3 (22) as nuclear.

Figure 2. NES and NLS common to multiple organisms. The graph shows
the cumulative percentage of NES and NLS found in at least one pro-
tein from the nine organisms used in Tables 1–2 (Arabidopsis thaliana,
Caenorhabditis elegans, Drosophila melanogaster, Homo sapiens, Mus mus-
culus, Oryza sativa, Rattus norvegicus, Schizosaccharomyces pombe and
Saccharomyces cerevisiae). Hundred percent corresponds to 353 NES and
2180 NLS contained in NLSdb. For instance, 46% of the NES and 46% of
the NLS matched in at least four and six organisms, respectively (arrows).

NLSdb web interface

In addition to updating the dataset of NES and NLS, we
also re-designed the NLSdb web interface. It now supports a
wider range of different query types as well as batch queries,
i.e. submitting more than one query at a time. Queries can
be directly inputted as text or uploaded as a file.

Searching proteins for NES and NLS. Users can submit
protein sequences to find potential NES and NLS. The
server accepts sequences in FASTA format or through their
UniProtKB accession numbers. If any NES or NLS match
the sequences, NLSdb reports the position and sequence
of the hit as well as two confidence scores. These confi-

dence scores are the number of nuclear proteins and families
matched by the hit.

Searching and evaluating NES and NLS. Users can also
submit their own putative NES or NLS signals and either
compare those against our dataset or evaluate them on the
set of nuclear and non-nuclear proteins. NLSdb returns all
NES and NLS that are matched by the query. Submitting
a signal for evaluation returns all nuclear and non-nuclear
proteins the query is matching.

Browsing and downloading the database. NLSdb provides
a browse function where users can simply look at all the
NES and NLS sequences within NLSdb, as well as those
collected from other databases. Each entry includes the fol-
lowing information: (i) type of the signal (possible values:
NES or NLS); (ii) number of nuclear proteins and families
matched (integers 0-N); (iii) type of evidence for annota-
tion (possible values: experimental, determined by an expert
or potential); (iv) database from which motif was extracted
(possible values: UniProtKB AC, NESbase, ValidNESs, Se-
qNLS or in silico mutagenesis).

Users can also download all available data: the sets of
collected and generated NES and NLS, and the sets of nu-
clear and non-nuclear proteins. This can be useful if a user
wants to check several thousands of sequences on his local
machine and does not need all the information provided by
NLSdb, e.g. wants only to check if a NES or NLS is present.
Currently all downloads are available as comma separated
value files.

CONCLUSION

The substantially updated version of NLSdb makes avail-
able NLS and NES that appeared to match about 34 and
6%, respectively, of all the nuclear proteins in nine model
organisms (A. thaliana, C. elegans, D. melanogaster, H. sapi-
ens, M. musculus, O. sativa, R. norvegicus, S. pombe and S.
cerevisiae). Before the update, the specific motifs contained
in the previous version of NLSdb matched 17-times fewer
proteins than the new version. When also allowing error-
prone motifs (matching non-nuclear proteins), the old ver-
sion covered 1.6-times fewer proteins than the new version.
The new NLSdb contains about 7-times as many potential
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signals that help to understand the molecular mechanism of
nuclear transport for many uncharacterized proteins. Along
with a complete redesign of the interface, this overhauled
resource might help in the design and follow up analysis of
many experiments.

DATA AVAILABILITY

The complete sets of nuclear and non-nuclear proteins, as
well as the sets of collected and potential NES and NLS, is
available at the NLSdb website: https://rostlab.org/services/
nlsdb/.
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