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Abstract

Background: Brain injury is a serious and common complication of critical congenital heart 

disease (CHD). Impaired autonomic development (assessed by heart rate variability; HRV) is 

associated with brain injury in other high-risk neonatal populations.

Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, 
subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms
*Corresponding Author Contact Information: Sarah D. Schlatterer, MD, PhD, Prenatal Pediatrics Institute, Children’s 
National Hospital, 111 Michigan Ave NW, Suite 3118, Washington, DC 20010, Phone: 202-476-5000, Fax: 202-476-6758, 
sschlatt@childrensnational.org.
Author Contributions
Sarah Schlatterer designed the study, interpreted the data, and wrote the mansucript. Rathinaswamy Govindan performed HRV 
analysis for the study population and provided critical review of the manuscript. Jonathan Murnick interpreted and scored brain 
MRIs for brain injury and provided critical review of the mansucript. Scott Barnett performed statistical analyses for the study, 
interpreted the data, and provided critical review of the manuscript. Catherine Lopez coordinated patient enrollment and and clinical 
data acquisition and provided critical review of the manuscript. Mary T. Donofrio interpreted patient echocardiograms, aided in study 
recruitment, and provided critical review of the manuscript. Sarah B. Mulkey provided critical review of the manuscript and provided 
HRV data on subjects. Catherine Limperopoulos designed the study with Sarah Schlatterer and Adre du Plessis, provided MRI data on 
study subjects, and provided critical review of the manuscript. Adre du Plessis designed the study and provided critical review of the 
manuscript.

Disclosures
The authors have no financial conflicts of interests to disclose

Consent
The Institutional Review Board of Children’s National Hospital approved this study and written informed consent was obtained from 
each participant.

HHS Public Access
Author manuscript
Pediatr Res. Author manuscript; available in PMC 2022 July 11.

Published in final edited form as:
Pediatr Res. 2022 June ; 91(7): 1723–1729. doi:10.1038/s41390-021-01931-7.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.nature.com/authors/editorial_policies/license.html#terms


Objective: To determine whether impaired early neonatal HRV is associated with pre-operative 

brain injury in CHD.

Methods: In infants with critical CHD, we evaluated HRV during the first 24 hours of cardiac 

ICU (CICU) admission using time-domain (RMS1, RMS2, and alpha 1) and frequency-domain 

metrics (LF, nLF, HF, nHF). Pre-operative brain MRI was scored for injury using an established 

system. Spearman’s correlation coefficient was used to determine the association between HRV 

and pre-operative brain injury.

Results: We enrolled 34 infants with median birth gestational age (GA) of 38.8 weeks (IQR 

38.1-39.1). Median postnatal age (PNA) at pre-operative brain MRI was 2 days (IQR 1-3 days). 

Thirteen infants had MRI evidence of brain injury. RMS 1 and RMS 2 were inversely correlated 

with pre-operative brain injury.

Conclusions: Time-domain metrics of autonomic function measured within the first 24 hours of 

admission to the CICU are associated with pre-operative brain injury, and may perform better than 

frequency domain metrics under non-stationary conditions such as critical illness.

Introduction

Congenital heart disease (CHD) is the most common form of congenital malformation, 

affecting 4-12/1000 live births.1,2 Neurologic disability is a common complication of 

CHD and its management, with potential for lifelong debilitating consequences.3–7 The 

mechanisms underlying brain injury and neurologic morbidity in these infants are likely 

multifactorial and probably cumulative, starting in the fetal period and extending from birth 

to the intraoperative period and beyond.8–11

Neonates with CHD are particularly vulnerable to brain injury due to a unique combination 

of immature brain development and impaired cerebral perfusion and/or oxygenation. White 

matter injury, including periventricular leukomalacia, is commonly found both pre- and post-

operatively.12,13 Metabolic and structural brain development are impaired in critical CHD, 

with term neonates displaying decreased N-acetylaspartate-to-choline ratios, increased 

lactate, delayed cerebral maturation, and decreased cerebral volumes compared with control 

term neonates.5,6,14 Microstructural and metabolic brain development appear to be strongly 

related to preoperative brain injury in CHD 14, and may be related to differences in cerebral 

circulation.15 Impaired brain perfusion and oxygenation are likely contributors to both 

impaired cerebral maturation and brain injury in CHD.16,17

Currently, brain imaging studies, with magnetic resonance imaging (MRI) as the gold 

standard, are used to detect brain injury in critically ill infants. However, clinical instability 

in such patients may preclude leaving the intensive care unit (ICU) for brain imaging 

studies. In addition, imaging studies may only detect brain injury after the threshold of 

reversibility has passed.

We have previously shown that autonomic function is associated with brain injury 

patterns in other high-risk neonates.18 The ANS plays a critical role in neurogenic 

control of the cardiopulmonary and cerebral circulation and is one system responsible for 

intrinsic neuroprotection. ANS dysfunction may lead to impairment of critical intrinsic 
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neuroprotective reflexes (e.g. cerebral pressure autoregulation (CAR)), leaving the infant 

vulnerable to irreversible brain injury from insults such as hypoperfusion and hypoxemia 

that commonly occur in CHD.19–23 We have previously described significant autonomic 

dysfunction in newborns with hypoplastic left heart syndrome (HLHS) and transposition of 

the great arteries (TGA), two forms of critical CHD.24 Impaired ANS development may 

lead to adverse neurologic outcome in several ways. Immature cardiorespiratory control 

may predispose to cerebral hypoxia-ischemia and brain injury. The brainstem ANS plays an 

important activity-based role in the development of higher cortical and subcortical centers; 

impaired maturation of the ANS might, therefore, lead to long-term neurodevelopmental and 

psycho-affective dysfunction in later life.25

Autonomic function may be measured using signals such as heart rate, blood pressure, 

and respiratory rate. 26 Heart rate variability (HRV), which measures variation in beat-to-

beat intervals between successive R waves on electrocardiography (ECG) recordings, is 

the most widely used measure of autonomic function in neonates, given the non-invasive 

nature of the measurement (by ECG). We use HRV in this study as a metric of ANS 

function in neonates with CHD. HRV can be calculated using standard ICU continuous ECG 

monitoring and analyzed by both time- and frequency-domain approaches. Time-domain 

analysis (metrics include RMS 1, RMS 2, alpha 1, and alpha2) determines both long-term 

(RMS 2, alpha 2) and short-term (RMS 1, alpha 1) HRV. Long-term HRV metrics (RMS 

2, alpha 2) reflect both sympathetic and baroreceptor-mediated parasympathetic function, 

while short-term HRV metrics (RMS 1, alpha 1) reflect predominantly parasympathetic 

function. RMS metrics indicate the variability between R-R intervals on ECG, while alpha 

metrics indicate the autocorrection in the R-R intervals. Among frequency-domain metrics, 

low-frequency (LF, 0.05-0.25 Hz) HRV characterizes sympathetic and parasympathetic tone 

and changes related to baroreflex function,27,28 while high frequency (HF, 0.3-1 Hz ) HRV 

reflects parasympathetic tone and is impacted by the respiratory rate.28 Frequency domain 

approaches may be less reliable in non-stationary conditions.29 Lower metrics of HRV 

indicate immature or impaired autonomic function.

In this study, we sought to extend our earlier studies of HRV in critically ill infants including 

those with CHD.24,29,30 We tested the hypothesis that HRV over the first 24 hours of cardiac 

ICU (CICU) admission would be associated with pre-operative brain injury (by MRI) in a 

cohort of infants with critical CHD. These data may help elucidate mechanisms of brain 

injury in infants with CHD as well as set the stage for the development of supplemental 

neuromonitoring strategies in infants who are too unstable to tolerate brain imaging.

Methods

Participants

All subjects in this single-center study were part of a prospective, observational MRI study 

in which pregnant women with a fetal diagnosis of critical CHD, i.e., infants expected 

to require cardiac surgery within the first 30 postnatal days 31,32 of age, were recruited. 

Subjects underwent fetal MRI and postnatal, pre-operative brain MRI. The Institutional 

Review Board of Children’s National Hospital approved this study and written informed 

consent was obtained from each participant. Inclusion criteria were infants with critical 
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CHD (i) admitted to the Children’s National Hospital Cardiac ICU (CICU) within 72 hours 

of birth, (ii) with postnatal, pre-operative MRI studies, and (iii) archived ECG data for the 

first 24 hours after CICU admission. Exclusion criteria included documented (i) genetic or 

chromosomal abnormalities, (ii) congenital infection, or (iii) multiple gestation.

Given that our population consisted of a heterogeneous group of infants with CHD, 

we categorized them as (i) two ventricle without aortic obstruction (2V-AO; n=14), (ii) 

two ventricle with aortic obstruction (2V+ AO; n=1) (iii) single ventricle without aortic 

obstruction (SV-AO; n=5), or (iv) single ventricle with aortic obstruction (SV+AO; n=14). 

For the purposes of this study, we compared either SV (n=19) vs. 2V (n=15) or AO (n=15) 

vs. no AO (n=19).

Continuous physiologic signals were retrospectively obtained from a large central archive. 

Relevant clinical data were abstracted from the medical record. A total of 34 infants had 

both postnatal, pre-operative brain MRI and continuous ECG data of sufficient quality to 

calculate time- and frequency-domain metrics of HRV.

Conventional MRI Studies

MR imaging was performed preoperatively on a 3T magnet (General Electric, Milwaukee, 

WI). Sequences obtained included conventional T1- and T2-weighted imaging, diffusion-

tensor imaging (DTI), and gradient-echo (GRE) sequences, as well as MR spectroscopy 

of the basal ganglia. Our neuroradiologist (JM) reviewed postnatal, pre-operative brain 

MRI and scored MRIs according to the Magnetic Resonance Imaging Abnormality 

Scoring System used by Andropoulos et al. 33 This scoring system categorizes brain MRI 

abnormalities as (i) white matter injury (WMI) , (ii) infarction (INF), (iii) intraparenchymal 

hemorrhage (IPH), (iv) punctate lesions (PL), (v) lactate peak on MRS (lactate), (vi) 

intraventricular hemorrhage (IVH), (vii) subdural hemorrhage (SDH), or (viii) deep venous 

sinus thrombosis (DVST). Abnormalities in each category are given a score of 0-3 (0=none, 

1=mild, 2=moderate, 3=severe) and weighted by a significance multiplier.33 For WMI, INF, 

and IPH the significance multiplier is 3, for PL and lactate the significance multiplier is 2, 

and for IVH, SDH, and DVST the significance multiplier is 1. Scores used in the analysis 

are derived from summated scores of all categories after application of the significance 

multiplier.

Physiologic Signal Collection

We retrospectively retrieved ECG data from the Phillips Data Warehouse system (DWS) 

(IntelliVue MP-70, Philips, MA) or the RDE system (IntelliVue Information Center; Philips 

Healthcare). We retrieved ECG over the course of the first 24 hours of admission to 

Children’s National CICU. The sampling rate of the ECG retrieved from DWS and the 

RDE was 250 Hz and 125 Hz, respectively. We processed all data offline using computer 

programs developed in MATLAB 2018 (Mathworks, Inc, Natick, MA).

Heart Rate Variability Analysis

We bandpass filtered the ECG signals between 0.5-60 Hz.34,35 After identifying R-waves, 

we calculated beat-to-beat interval (RRi). 29,35,36 After partitioning RRi into 10-minute 
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end-to-end epochs, we calculated HRV metrics (LF, HF, nLF, nHF, alpha 1, alpha 2, RMS1, 

RMS2) for RRi in each epoch. We averaged every metric over the entire recording period 

and obtained one representative value for the metric per study.

To calculate frequency-domain metrics (LF, nLF, HF, nHF), we used the Welch periodogram 

approach with a frequency resolution of 0.016Hz to estimate a power spectrum of RRi in 

every 10-minute epoch. Low-frequency (LF) was calculated as the median of the logarithm 

of the power in 0.05-0.25 Hz, and high-frequency (HF) was calculated as the median of 

the logarithm of the power in 0.3-1 Hz. Normalized low-frequency (nLF) and normalized 

high-frequency (nHF) were calculated as the ratio of the sum of the powers in low- and 

high-frequencies bands to the total power. Total power was defined as the sum of the powers 

in the frequency band between 0.05 – 2 Hz.

We used detrended fluctuation analysis (DFA), a modified root mean square analysis, to 

calculate the time domain metrics. 37,38 DFA involves five steps. First, the profile function, 

the mean value of the RRi is subtracted from the RRi series and the cumulative sum, is 

calculated. Then, we partition the profile into end-to-end windows containing ‘s’ number 

of beats and use a fourth-degree polynomial to fit the profile in each window. Next, we 

calculate the local fluctuation function as the root mean square (RMS) of the difference 

between the profile and best fits. Last, we use the median of the local fluctuation function 

from all the windows to calculate the fluctuation function. We repeat steps 1-3 for different 

window sizes.39 The window size is varied from 6 beats to one-fourth of the number of 

RRi samples in the 10-minute epoch. We calculated the time domain metrics RMS1 (s) 

and RMS 2 (s) as the maximum value of the fluctuation function for “s” between 15-50 

beats and 100-150 beats, respectively. Alpha 1 and alpha 2 were calculated as the slope 

of the fluctuation and “s” in a double logarithmic plot from 15-30 beats and 35-150 beats, 

respectively. Autocorrelation in the RRi is characterized by the alpha metrics.40 RMS (sec) 

metrics characterize the variability in the RRi.40

Statistical Analysis

We calculated Spearman’s rank correlation coefficient to determine correlation between 

brain injury scores and HRV metrics. We used SAS (ver. 9.3, Cary, NC) to conduct all 

analyses with statistical significance considered for P <0.05. Two-sided significance testing 

was used, with no adjustment for multiple comparisons. We present data as median (Q1-Q3) 

or frequency and percent. Group comparisons were made using either t-tests or Fisher’s 

exact test, where appropriate.

Results

Patient Population

Thirty-four infants met inclusion criteria. Clinical and demographic characteristics of 

our cohort are outlined in Table 1. There was no significant difference in demographic 

characteristics between groups no matter the CHD classification (Table 1). Overall, the 

median maternal age was 30.0 years (IQR 26.2-35.0), 19 (55.9%) infants were delivered via 

caesarean section, and median GA at birth was 38.9 weeks (IQR 38.1-39.1). As part of the 
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original prospective study, a total of 33/34 infants underwent at least one fetal MRI prior 

to birth (Table 2). On the first fetal MRI, one fetus was found to have a single abnormal 

appearing sulcus. One fetus had pontine and vermian hypoplasia vs. dysplasia and was 

found to have a Blake’s pouch cyst and small pontine measurements on the second fetal 

MRI. One fetus had mild ventriculomegaly on the second fetal MRI. There was no evidence 

of brain injury on fetal MRI in any fetus included in our cohort.

HRV and Brain Injury Scores

As outlined in Table 3, our cohort had a median gestational age of 39.1 weeks at the time 

of the postnatal, pre-operative brain MRI. A total of 13 (38.2%) infants had brain injury on 

pre-operative MRI. Among infants with pre-operative brain injury, 6 (46.2%) had mild brain 

injury, 5 (38.5%) had moderate brain injury, and 2 (5.9%) had severe brain injury. A total of 

9 infants had white matter injury (WMI), 1 infant had intraparenchymal hemorrhage (IPH), 

2 infants had punctate lesions (PL), 5 infants had intraventricular hemorrhage (IVH), and 4 

infants had subdural hematoma (SDH). Of the 4 infants with SDH, 3 had SDH including 

the interhemispheric fissure (subscore of 2) and 1 had a small supratentorial SDH. No 

infants in our cohort had cerebral infarction, lactate peak on MRS, or deep venous sinus 

thrombosis on pre-operative MRI. Among infants with SDH, 3 of 4 had hemorrhage or 

injury in at least one category in addition to SDH (one with SDH +IVH+WMI+IPH, one 

with SDH+IVH+PL, one with SDH+IVH). All 5 infants with IVH had at least one other 

category of injury (one with SDH +IVH+WMI+IPH, one with SDH+IVH+PL, one with 

SDH+IVH, two with IVH+WMI).

We found that time domain metrics RMS 1 and RMS2 significantly negatively correlated 

(p <0.01) with total brain injury score. This inverse correlation seemed to be driven 

predominantly by scores for intraventricular hemorrhage (IVH) and subdural hematoma 

(SDH), which were also significantly inversely correlated with RMS1 and RMS2 values 

of HRV (Table 4). While we did not find a significant correlation between total brain 

injury scores and other metrics of HRV, there was a significant negative correlation between 

time domain metric Alpha1 and brain injury subscores for punctate lesions and IVH. All 

significant correlations between total brain injury scores or subscores and HRV metrics 

occurred between time domain metrics of HRV. No infants in our cohort had a cerebral 

infarction, deep venous sinus thrombosis (DVST), or lactate peak on MRS on pre-operative 

brain MRI. We found no correlation between frequency domain metrics of HRV (LF, HF, 

nLF and nHF) and pre-operative brain injury scores in our cohort.

Pregnancy Conditions and Illness Severity

Pregnancy conditions and markers of illness severity prior to pre-operative MRI within our 

cohort are described in Table 5. No infant in our study had cardiac arrest or required ECMO 

prior to MRI. A total of 12 neonates underwent balloon atrial septostomy, 5 (24%) with 

no preop brain injury and 7 (54%) with brain injury. There was no significant difference in 

the rates of maternal or gestational diabetes, pregnancy-induced hypertension/pre-eclampsia, 

or chorioamnionitis between the brain injured vs. non-brain injured groups. We also found 

no significant difference between brain injured vs. non-brain injured groups with regards 
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to lowest pH, highest pCO2, need for balloon atrial septostomy, or need for other cardiac 

intervention prior to MRI.

Discussion

In the current study of newborn infants with critical CHD, we show that lower autonomic 

tone, as measured by three time-domain metrics of HRV (RMS1, RMS2, and alpha 

1), is associated with higher total brain injury scores on pre-operative brain MRI. The 

ANS controls the cardiovascular system via interaction between its sympathetic and 

parasympathetic branches that modulate heart rate and peripheral vascular resistance. ANS 

function is associated with cardiovascular, behavioral, and neurodevelopmental outcomes 

later in life.25,41–46 Impaired or immature sympathetic function is associated with brain 

injury in other populations, and this may be due to the effects of altered sympathetic-

parasympathetic balance on cerebral pressure autoregulation, cardiac output, and baroreflex 

function.47 A functional and appropriately mature autonomic nervous system is known to 

play a key role in neuroprotection, but there is much left to study regarding the interplay 

between these systems in the critically ill neonate and in CHD, specifically.

ANS development is prolonged, spanning the fetal period and continuing after birth 48,49. 

The sympathetic division of the ANS begins to develop early in gestation and continues to 

mature steadily throughout the fetal period. The myelinated vagus nerve develops during 

the third trimester and begins to exert parasympathetic influence 50,51, resulting in a steep 

increase in parasympathetic tone near term 24,43,52.

In an earlier report, we showed that autonomic tone, as measured by HRV, is depressed 

in infants with hypoplastic left heart syndrome or transposition of the great arteries in the 

early transitional, pre-operative period, suggesting that ANS development is delayed in the 

CHD population. 24 Fetal HRV is lower in fetuses with hypoplastic left heart syndrome than 

controls in the third trimester, and similar trends have been noted in fetuses with tetralogy of 

Fallot and transposition of the great arteries. 53

Understanding the interplay between brain injury, brain maturity, and ANS function may 

help elucidate mechanisms of brain injury in CHD. Mechanisms underlying delayed ANS 

development in CHD remain poorly understood. CHD may result in chronic cerebral 

hypoxia, hypoperfusion, or both, beginning in the fetal period. There is considerable 

evidence to support delayed brain growth and development in infants with critical CHD 
54–56, which may, in turn, result in delayed development of the ANS. We hypothesize, based 

upon this study and others, that chronic fetal cerebral hypoxia or hypoperfusion contributes 

to delayed structural brain maturation and delayed ANS maturation, leaving survivors of 

CHD more vulnerable to brain injury.

With regard to brain injury, it may be that intrinsic autoregulatory mechanisms controlled by 

the ANS play some role in cerebral blood flow and perfusion by participating in regulation 

of vasoconstriction and vasodilation of the cerebral vessels in response to changes in 

blood pressure, oxygenation, and CO2 levels.47,57 Human and animal studies suggest that 

sympathetic inputs to the cerebral vasculature in fetuses and neonates may play a more 
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important role in cerebrovascular tone in infants than in than adults.58,59 In one study of 

infants with birth asphyxia, cerebral blood flow varied significantly with variations in blood 

pressure, suggesting that cerebral pressure autoregulation is impaired in distressed infants.60 

We hypothesize that this may be one mechanism by which ANS function and brain injury 

may be linked. Further studies will be needed to investigate this possibility.

Our findings suggest that impaired ANS function correlates with total preoperative brain 

injury score in infants with critical CHD. We found no difference in rates of common 

prenatal conditions, including gestational diabetes, pregnancy-induced hypertension/pre-

eclampsia, and chorioamnionitis between brain injured vs. non-brain injured neonates with 

CHD, but our cohort had relatively low rates of high-risk pregnancy conditions. Future 

studies with a larger cohort will be necessary to better evaluate the relationship between 

prenatal conditions, brain injury, and autonomic function in CHD. We also found no 

difference in markers of postnatal illness severity, such as lowest pH, highest pCO2, and 

need for cardiac interventions prior to surgery, between CHD neonates with pre-operative 

brain injury vs. those without. However, our population was relatively homogeneous with 

respect to illness severity markers, and no infant in our cohort experienced cardiac arrest or 

required ECMO prior to MRI. Relationships between illness severity, brain injury, and ANS 

function should be investigated in larger studies.

It is notable that we found no association between brain injury scores and frequency domain 

metrics of HRV in the CHD population. We have reported this phenomenon previously 

in a study of premature infants.29 Our data suggest that time domain metrics may more 

accurately reflect HRV under non-stationary conditions such as critical illness.

In this study, we used the brain injury scoring system developed by Andropoulos et. al. 

that includes white matter injury, infarction, intraparenchymal hemorrhage, punctate lesions, 

lactate on MRS, intraventricular hemorrhage, subdural hemorrhage, and deep venous sinus 

thrombosis.33 This scoring system has been utilized previously in the CHD population by 

our group and others. 61–63 While we did find a significant negative/inverse correlation 

between RMS 1 and RMS 2 and total brain injury score, we only found a trend toward 

significance between RMS1 and RMS 2 and subscores for white matter injury (WMI), 

which is one of the most commonly noted types of brain injury in CHD. The lack of 

correlation with subscores for white matter injury may be related to the relatively low levels 

of injury in our cohort and the fact that the majority of injury we did see was relatively mild. 

This will need to be addressed in larger studies.

We found that RMS 1 and RMS 2 were inversely correlated with subscores for 

intraventricular hemorrhage (IVH) and subdural hematoma (SDH). The Andropoulos 

scoring system includes points for subdural hemorrhage, although some authors have 

questioned the relevance for long-term outcome of small subdural hemorrhage in neonates.64 

Notably, small posterior fossa subdural hemorrhages are considered “normal” by the 

Andropoulos scoring system, in that they contribute zero points to the injury score. Only 

supratentorial SDH contribute to the injury score, and even then, they have a significance 

multiplier of 1, so they contribute far less to the total score than white matter injury 

or intraparenchymal hemorrhage, which have a significance multiplier of 3. Others have 
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shown that infants with supratentorial SDH (the type of SDH in our cohort) have normal 

developmental outcomes at 24 months.64 In our cohort, 3 of 4 infants with SDH had at 

least one other type brain injury subcategory as scored by the Andropoulos system, and 5/5 

infants with IVH had at brain injury in at least one other subcategory. Our findings of an 

inverse correlation between HRV metrics and SDH and IVH may reflect the fact that SDH 

and IVH appear to be associated with other types of injury resulting in an overall higher 

burden of injury among infants with SDH and IVH, rather reflecting a correlation between 

HRV and isolated SDH or IVH. We cannot assess the clinical impact of SDH on our cohort 

with the available data, but this finding warrants further study.

While our study has many strengths, it is limited by its relatively small size. Within our 

cohort of 34 infants with critical CHD, only 13 had brain injury on pre-operative MRI, 

and only 2 of those had severe brain injury. Our study was performed in a stand-alone 

children’s hospital in which all patients are out born. While the majority of the participants 

in this study were transferred within the first 24 hours of birth (and all were transferred 

within the first 72 hours), we were not able to obtain HRV data immediately following 

birth. This study included neonates with a variety of CHD lesions which have different 

circulatory pathophysiologies. We consider the fact that our data show a significant inverse 

correlation between time domain metrics of HRV (indicating impaired ANS function or 

delayed ANS maturation) and brain injury scores despite this heterogeneity to be a strength, 

but more precise understanding of the interplay between autonomic function and brain 

injury in CHD may be gained by studying larger populations with similar heart defects 

and physiology. Our study was insufficiently powered to evaluate the influence of specific 

cardiac defects on brain injury due to the heterogeneity of cardiac defects in our population. 

Although we show a significant association between HRV metrics and brain injury, we 

are unable to determine the causal direction of this association, i.e. whether alterations 

in autonomic function measured by HRV preceded brain injury or whether brain injury 

influenced autonomic function (HRV), as previously described by us in otherwise healthy 

term infants with perinatal hypoxic-ischemic encephalopathy.65–67 While the subjects in our 

study had fetal brain MRI studies without brain injury in the third trimester, we are not able 

to able to exclude perinatal brain injury between the fetal MRI studies and the onset of our 

HRV recordings.

In the future, larger studies may determine the precise mechanisms and interplay between 

autonomic function, as measured by HRV, and brain injury in CHD. Future studies using 

serial HRV measures and brain MRI in fetuses and infants with critical CHD may help to 

clarify the temporal and causal relationships between autonomic function and brain injury 

in this vulnerable population. Future studies using real-time and simultaneous monitoring of 

cerebral oxygenation, blood pressure, and heart rate variability in critically ill infants may 

better elucidate any connections between cerebral autoregulation, autonomic function, and 

brain injury in this vulnerable population. While much remains to be learned, understanding 

HRV and whether it may serve as a marker for brain injury or brain maturation may set 

the stage for the development of novel methods of neuromonitoring in the CICU using 

HRV. Such novel neuromonitoring techniques may prove clinically valuable given that many 

infants with critical CHD may be too unstable to risk transport from the ICU to the MRI 

scanner. For now, we show a significant negative correlation between early postnatal time-
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domain metrics of HRV and total pre-operative brain injury score in infants with critical 

CHD.
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Impact

• Autonomic dysfunction, measured by heart rate variability (HRV), in early 

transition is associated with pre-operative brain injury in neonates with 

critical congenital heart disease.

• These data extend our earlier findings by providing further evidence for (i) 

autonomic dysfunction in infants with CHD, and (ii) an association between 

autonomic dysfunction and brain injury in critically ill neonates.

• These data support the notion that further investigation of HRV as a 

biomarker for brain injury risk is warranted in infants with critical CHD.
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