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Glutamate Imaging Reveals Multiple
Sites of Stochastic Release in the
CA3 Giant Mossy Fiber Boutons
Sylvain Rama* , Thomas P. Jensen and Dmitri A. Rusakov*

UCL Queen Square Institute of Neurology, University College London, London, United Kingdom

One of the most studied central synapses which have provided fundamental insights
into cellular mechanisms of neural connectivity is the “giant” excitatory connection
between hippocampal mossy fibers (MFs) and CA3 pyramidal cells. Its large presynaptic
bouton features multiple release sites and is densely packed with thousands of synaptic
vesicles, to sustain a highly facilitating “detonator” transmission. However, whether
glutamate release sites at this synapse act independently, in a stochastic manner, or
rather synchronously, remains poorly understood. This knowledge is critical for a better
understanding of mechanisms underpinning presynaptic plasticity and postsynaptic
signal integration rules. Here, we use the optical glutamate sensor SF-iGluSnFR and
the intracellular Ca2+ indicator Cal-590 to monitor spike-evoked glutamate release and
presynaptic calcium entry in MF boutons. Multiplexed imaging reveals that distinct sites
in individual MF giant boutons release glutamate in a probabilistic fashion, also showing
use-dependent short-term facilitation. The present approach provides novel insights into
the basic mechanisms of neurotransmitter release at excitatory synapses.

Keywords: dentate gyrus, CA3 pyramidal cell, short-term plasticity, glutamate release, giant mossy fiber bouton,
action potential

INTRODUCTION

The dentate gyrus is the entry into the hippocampus, with the mossy fibers (axons of granule cells)
innervating both CA3 pyramidal cells and stratum-lacunosum interneurons (Acsády et al., 1998).
These distinct postsynaptic cell populations are connected through distinct presynaptic elements:
“giant” mossy fiber boutons (gMFBs, 4–10 µm) across and their smaller (2–3 µm) variant synapsing
onto the thorny excrescences of CA3 pyramidal cells, and relatively small (0.5–2 µm) en-passant
boutons and the filopodial extensions emerging from gMFBs both connecting to interneurons
(Chicurel and Harris, 1992; Acsády et al., 1998; Rollenhagen et al., 2007). Hippocampal MFB
connections show prominent facilitation during repetitive activity and are considered strong
“detonating” synapses, generating large postsynaptic responses in CA3 pyramidal cells (Vyleta
et al., 2016). This function is sustained by specific morphology, as they show multiple active
zones per MFB, and thousands of synaptic vesicles densely packed inside (Acsády et al., 1998;
Rollenhagen et al., 2007). They have been widely studied because MF synapses play a key role
in processing spatial information such as pattern completion, pattern separation and storage of
sequences of events (Kobayashi and Poo, 2004; Bischofberger et al., 2006). Moreover, these synapses
provide a key experimental model for analog-digital control of synaptic transmission, linking
presynaptic voltage, presynaptic calcium entry, and glutamate release (Geiger and Jonas, 2000;

Frontiers in Cellular Neuroscience | www.frontiersin.org 1 June 2019 | Volume 13 | Article 243

https://www.frontiersin.org/journals/cellular-neuroscience/
https://www.frontiersin.org/journals/cellular-neuroscience#editorial-board
https://www.frontiersin.org/journals/cellular-neuroscience#editorial-board
https://doi.org/10.3389/fncel.2019.00243
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fncel.2019.00243
http://crossmark.crossref.org/dialog/?doi=10.3389/fncel.2019.00243&domain=pdf&date_stamp=2019-06-04
https://www.frontiersin.org/articles/10.3389/fncel.2019.00243/full
http://loop.frontiersin.org/people/636097/overview
http://loop.frontiersin.org/people/495643/overview
http://loop.frontiersin.org/people/4921/overview
https://www.frontiersin.org/journals/cellular-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-neuroscience#articles


fncel-13-00243 June 2, 2019 Time: 12:14 # 2

Rama et al. Multiple Presynaptic Release Site Imaging

Alle and Geiger, 2008; Scott et al., 2008). Finally, changes in
MF transmission have been a major pathophysiological indicator
in epilepsy (Ben-Ari and Represa, 1990; Morimoto et al., 2004)
and Down syndrome (Witton et al., 2015). Therefore, an
inquisitive exploration of MF synapses helps to understand the
fundamentals of synaptic transmission and hippocampal network
function in a wide context.

RESULTS

Simultaneous Imaging of Presynaptic
Calcium Entry and Glutamate Release at
Presynaptic MF Boutons
To directly monitor glutamate release by MFBs, we turned to
organotypic slices which we biolistically transfected with the SF-
iGluSnFR A184V construct (termed iGluSnFR thereafter; see
section “Methods”), as detailed earlier (Jensen et al., 2019).
With the sparse expression among cells, the iGluSnFR basal
fluorescence was sufficient to reveal cell morphology and to track
the cell axon. We thus patch-loaded dentate granule cells with the
red-shifted calcium-sensitive dye Cal-590 (Tischbirek et al., 2015;
Jensen et al., 2019) and followed their axon up to at least 100 µm
from the cell soma, toward the CA3 area (Figures 1A,B).

In individual cells, we evoked 5 action potentials (APs)
at 20 Hz, a bursting pattern similar to that in vivo (Pernía-
Andrade and Jonas, 2014; Vyleta et al., 2016; Chamberland et al.,
2018). Once we focused on the MF bouton of interest, either
of the two imaging protocols was employed: (i) for boutons
smaller than 4 µm, a fast “tornado” scanning mode covering the
bouton profile (Jensen et al., 2017, 2019), and (ii) for boutons
above 4 µm, a straight line-scan along the longest axis of the
bouton. In either case, we scanned at 500 Hz and collected
both iGluSnFR and Cal-590 fluorescence. Signals were converted
as 1F/F values, and the Cal-590 signal was used to confirm
AP arrival to the bouton (Figure 1C). The iGluSnFR signal
revealed glutamate release sites in the bouton, showing release
successes and failures (Figure 1D). At each individual site, release
probability (calculated as the release success rate over all the
trials) increased progressively with the AP number in the train,
showing classical facilitation (Figure 1E). The initial release
probability (first AP) at individual release sites was 0.37 ± 0.07
(mean ± SEM, n = 11 boutons), consistent with previous
observations (Lawrence et al., 2004).

Distinct Release Sites Display
Stochastic Release
In 6 out of 11 recorded boutons, we could clearly distinguish
at least two active release sites, providing rapid glutamate
discharges, which did not appear synchronized. We recorded
between 3 and 14 consecutive trials (1 min apart) per bouton.
Glutamate releases from spatially separate areas were detected
in 80 ± 12% trials per bouton (mean ± SEM, a total of
n = 43 trials). They were either synchronized or independent
(Figure 2A). In 25 ± 8% of the recordings (n = 43), we

could observe spontaneous (or possibly asynchronous, post-
burst) release by some release sites (asterisks in Figure 2 traces).
In one gMFB, there were up to four distinct release sites with
the first AP inducing glutamate release in only 2 of them and
spontaneous release in one of them, independent from the
other 3 (Figure 2B).

DISCUSSION

In this brief report, we expressed the SF-iGluSnFR reporter dye in
dentate granule cells and monitored glutamate release in gMFBs
during brief trains of evoked APs. We detected multiple release
sites in individual boutons displaying non-synchronized release
activity. This appears in contrast to CA3-CA1 synapses, the
majority of which displayed only one detectable glutamate release
hotspot (20 out of 23; organotypic slices) whereas the two-hotspot
boutons (3 out of 23) showed no detectable asynchrony (Jensen
et al., 2019). At the same time, EM data report dual active zones
in 38% of CA3-CA1 connections (Shepherd and Harris, 1998),
suggesting that super-resolution approaches, such as stochastic
localization, once combined with the present technique, might
help to better resolve individual release hotspots. Indeed, optical
diffraction limit, stereological bias, and limitation of 3D volume
scanning should underestimate the occurrence of release sites and
therefore their release asynchrony. In some cases, the distinction
between en-passant boutons [which are not supposed to have
multiple active zones (Acsády et al., 1998)] and the small subtype
of giant MF boutons could also be less than clear-cut. Despite of
these limitations, the present approach enables us to detect and
explore glutamate release and its stochastic features in a direct
manner, the task that has hitherto been difficult to achieve.

Maintenance of High Frequency
Transmission by Cross-Talk?
At many synapses, the rates of vesicle fusion exceed the rates
of their replenishment leading to vesicle depletion during high-
frequency activity (Zucker and Regehr, 2002). However, gMFBs
could have formed in a similar way to the Purkinje terminals or
the neuro-muscular junction (Telgkamp et al., 2004; Knodel et al.,
2014), with large boutons with multiple active zones and densely
packed with synaptic vesicles (Rollenhagen and Lübke, 2010). At
gMFB synapses, large areas of the opposing pre- and postsynaptic
membranes are separated by a narrow cleft. This extracellular
space geometry provides, at least in theory, favorable conditions
for neurotransmitter spill-over among multiple postsynaptic
densities, thus achieving high-fidelity transmission even at low
release probabilities and low rates of vesicle replenishment
(Vergnano et al., 2014; Zheng et al., 2017). However, our
glutamate imaging data suggest that this may not be the case
for the MF-CA3 transmission, as the majority of individual
glutamate release hotspots in presynaptic boutons do not seem
to overlap, at least during first spikes. Indeed, if Purkinje cells
do fire at high rates (Telgkamp et al., 2004), it is rarely the
case for granule cells of the dentate gyrus (Pernía-Andrade and
Jonas, 2014). Moreover, lower release probabilities and readily
releasable vesicle pools make hippocampal mossy fiber boutons
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FIGURE 1 | Experimental Protocol. (A) Dentate gyrus granule cell expressing SF-iGluSnFR A184V, maintained in current-clamp. Collage of 20 µm deep image
stacks, axon was followed to the bouton of interest (white square). (B) Area shown by the white square in panel (A). A small varicosity (<2µm) reveals a typical
en-passant bouton. The fast “Tornado” (spiral) line-scan was set-up to cover most of the bouton visible area. (C) Typical imaging protocol. Traces: Five APs initiated
by brief (5 ms) current pulses at 20 Hz (holding voltage −80 mV); Image panels: Tornado line-scans recorded in the Cal-590 (upper) and SF-iGluSnFR (lower)
emission channels. (D) Same recordings as in panel (C), but pixel values were averaged over the length of the tornado line-scan and converted as 1F/F. Note that
for the Cal-590 signal, each AP induced a calcium entry in the presynaptic bouton (middle) whereas APs 2 and 5 failed to induce a glutamate release (bottom, black
arrows). (E) Average release probability (mean ± SEM) for the AP train (n = 11 boutons). Note the increasing probability with the AP number, reflecting
presynaptic facilitation.
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FIGURE 2 | Monitoring distinct glutamate release sites in MFBs. (A) Two examples of large (>2µm) MF boutons showing multiple un-synchronized release sites. Left
panels: Z-projection of a 3D stack, with Tornado line scan superimposition (red); arrows 1 and 2, locations of glutamate-releasing sites (white transparent areas).
Middle panels: tornado line-scan of the iGluSnFR signal, showing un-synchronized releases of glutamate. Note the repeating patterns, as the tornado line-scan
enters and exits the area periodically, at each turn of the spiral. Right: 1F/F traces for areas 1 and 2, as indicated. Note unsynchronized peaks of glutamate release
during APs (black arrows), and some spontaneous releases (asterisks). Scale Bars: 0.2 1F/F and 200 ms. (B) Example of line-scan acquisition on a giant (>5µm)
MB bouton. Left: Z-projection of a 3D stack, with line-scan superimposition (red). Other notations as in panel (A). Scale Bars: 0.2 1F/F and 200 ms.

more suitable for presynaptic facilitation than high-frequency
transmission (Delvendahl et al., 2013).

Implications for Postsynaptic Signal
Integration and Presynaptic Machinery
Morphological studies employing 3D electron microscopy have
shown that individual giant MF boutons tend to form synaptic
connections on more than one postsynaptic CA3 pyramidal
cell (Acsády et al., 1998; Rollenhagen and Lübke, 2010). The
present finding that individual release sites in such boutons
can discharge glutamate relatively independently in a stochastic
fashion, suggests that postsynaptic responses in their distinct
cell targets could be similarly de-synchronized. It has been
previously reported that in juvenile rats, gMFBs may co-release
GABA and glutamate (Walker et al., 2001; Ruiz et al., 2003;
Beltrán and Gutiérrez, 2012; Münster-Wandowski et al., 2013).
The present results thus suggest that GABA and glutamate
release from the same gMFB could be, in principle, stochastically
separated. Finally, gMFBs show significant structural plasticity
in the pilocarpine and kindling models of epilepsy (Danzer
et al., 2010; McAuliffe et al., 2011), which could directly affect

functional interaction between their individual release sites. What
molecular mechanisms underpin such structural and functional
changes remains an intriguing and important question.

METHODS

Organotypic Cultures of Rat
Hippocampus
Hippocampal slice cultures were prepared as described
previously (Bialowas et al., 2014). All experiments were carried
out according in accordance with the European Commission
Directive (86/609/EEC) and the United Kingdom Home Office
(Scientific Procedures) Act (1986). Briefly, postnatal day 7–8
Wistar rats were briefly anesthetized by isoflurane inhalation, the
brain removed and each hippocampus individually dissected in
ice-cold sterile slicing solution consisting (in mM) of Sucrose
105, NaCl 50, KCl 2.5, NaH2PO4 1.25, MgCl2 7, CaCl2 0.5,
Ascorbic acid 1.3, Sodium pyruvate 3, NaHCO3 26 and Glucose
10. Hippocampal slices (350 µm) were placed on 20-mm latex
membranes (Millicell-CM, Millipore, United Kingdom) inserted
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into 35-mm Petri dishes containing 1 ml of culture medium
and maintained for up to 30 days in an incubator at 34◦C,
95% O2–5% CO2. The culture medium contained (in ml) 25
minimal essential medium, 12.5 Hanks’ balanced saline solution,
12.5 horse serum, 0.5 penicillin/streptomycin, 0.8 glucose (1 M),
0.1 ascorbic acid (1 mg/ml), 0.4 HEPES (1 M), 0.5 B27, and
8.95 sterile H2O. To limit glial proliferation, 5 mM cytosine-
arabinoside (Ara-C) was added to the culture medium at 4 days
in vitro (DIV) for one night.

Biolistic Transfection of iGluSnFR
Variants
Second generation iGluSnFR variant SF-iGluSnFR.A184V was
expressed under a synapsin promoter in dentate gyrus granule
cells in organotypic slice cultures using biolistic transfection
techniques adapted from manufacturer’s instructions. In brief,
6.25 mg of 1.6 micron Gold micro-carriers were coated with
30 µg of SF-iGluSnFR plasmid. Organotypic slice cultures at
8 DIV were shot using the Helios gene-gun system (Bio-Rad)
at 120 psi. The slices were then returned to standard culture
media the next day and remained for 3–7 days before experiments
were carried out.

Axon Tracing and Imaging of
Pre-synaptic Boutons
We used a Femtonics Femto2D-FLIM imaging system, integrated
with patch-clamp electrophysiology (Femtonics, Budapest) and
linked on the same light path to two femtosecond pulse lasers
MaiTai (SpectraPhysics-Newport) with independent shutter and
intensity control. Patch pipettes were prepared with thin walled
borosilicate glass capillaries (GC150-TF, Harvard apparatus) with
open tip resistances 2.5–3.5 M�. Internal solution contained (in
mM) 135 potassium methanesulfonate, 10 HEPES, 10 di-Tris-
Phosphocreatine, 4 MgCl2, 4 Na2-ATP, 0.4 Na-GTP (pH adjusted
to 7.2 using KOH, osmolarity 290–295), and supplemented with
Cal-590 (300 µM; AAT Bioquest).

Pre-synaptic imaging was carried out using an adaptation of
pre-synaptic glutamate and Ca2+ imaging methods previously
described (Jensen et al., 2017, 2019). Cells were first identified
as iGluSnFR expressing using two-photon imaging at 910 nm
and patched in whole cell mode as above. Following break-in,
10–15 min were allowed for Cal-590 to equilibrate across the
axonal arbor. Axons, identified by their smooth morphology
and often tortuous trajectory, were followed in frame scan
mode to their targets. Putative Giant Boutons were identified as
varicosities on axon collaterals with a minimum diameter and
length of∼2–3 µm (Acsády et al., 1998; Rusakov and Fine, 2003;
Rama et al., 2015).

For fast imaging of action-potential mediated iGluSnFR and
Cal-590 fluorescence transients at single boutons a spiral shaped
(“tornado”) scan line was placed over the bouton of interest
(described further in the text), which was then scanned at a
sampling frequency of ∼500 Hz with excitation at 910 nm. APs
were typically induced by trains (20 Hz) of 5 short (5 ms) pulses of
depolarizing current (900–1400 pA) in current clamp mode and
synchronized with biphoton fluorescent imaging. Ten to fifteen
acquisitions were made per boutons, recordings showing APs
failures were discarded.

Data Analysis
After acquisition, iGluSnFr or Cal-590 fluorescence was
converted to 1F/F values. Region of Interest (ROIs) were
defined by fitting the fluorescence profile with Gaussian equation
and extracting the Full Width at Half Maximum (FWHM) of
this Gaussian. All of this was calculated by custom-written
analysis programs written in Labview (National Instruments)
and Matlab (MathWorks).
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