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MicroRNAs (miRNAs) are a group of small non-coding endogenous RNAs. In plants,
miRNAs play vital functions in regulating growth, development, and stress response.
However, the role of miRNAs in Arabidopsis-Phytophthora capsici (P. capsici) model
pathosystem is poorly understood. Here, we used a high-throughput sequencing
approach to identify pathogen-responsive miRNAs using 15 small RNA (sRNA) libraries
prepared from Arabidopsis thaliana leaves collected at 0, 3, 6, 12, and 24 h post-
inoculation with P. capsici. A total of 293 known miRNAs and 6 potential novel
sRNAs (miRNAs or siRNAs) were identified, of which 33 miRNAs were differentially
expressed at four different infection stages. To verify the reliability of the sRNA-seq
results, we investigated the expression of five sRNAs upregulated throughout the four
infection stages and their potential target genes using northern blot analysis and/or
stem-loop quantitative real-time polymerase chain reaction (qRT-PCR). Gene Ontology
(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment
analyses revealed that the potential target genes of the differentially expressed miRNAs,
both conserved and novel, were enriched in pathways such as starch and sugar
metabolism, spliceosome, and plant-pathogen interaction, indicating that the splicing
machinery and pathogenesis-related (PR) proteins play important roles in the response
to P. capsici infection. Taken together, these results provide novel insights into the
molecular mechanisms of pathogenesis by P. capsici. Additionally, these results will
serve as a strong foundation for further in-depth analysis of miRNAs involved in the
resistance to Phytophthora species in other crops.

Keywords: Arabidopsis, host-pathogen interaction, high-throughput sequencing, microRNA, Phytophthora
capsici, target gene
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INTRODUCTION

MicroRNAs (miRNAs) are a class of endogenous non-coding
single-stranded small (21–22 nt) RNAs commonly found in
eukaryotes (Reinhart et al., 2002). In plant cells, endogenous
MIR genes are transcribed to form the primary transcript,
pre-miRNA, which is gradually processed in the nucleus
in an ATP-dependent manner to first form a pre-miRNA
with a hairpin structure and then form an miRNA:miRNA∗
double-stranded complex after methylation (Liu et al., 2018).
A mature miRNA is produced and combined with a series of
proteins to form an RNA-induced silencing complex (RISC),
which recognizes target mRNAs for degradation or translation
inhibition (Kurihara and Watanabe, 2004). The miRNAs regulate
genes at the post-transcriptional level and play an important
role in plant metabolism, tissue growth, organ development
and differentiation, and programmed cell death (Wightman
et al., 1993; Bruscella et al., 2017). Increasing evidence
suggests that miRNA is an indispensable regulator of the plant
response to biotic and abiotic stresses (Shukla et al., 2008;
Zhang et al., 2020).

In plants, miRNAs were first reported as regulators of
development and various transcription factors such as MYBs,
bZIPs, ARFs, and GRFs (Alonso-Peral et al., 2010; Glazinska
et al., 2014; Liebsch and Palatnik, 2020). Recently, it was
shown that microRNAs also target other types of genes
such as pathogenesis-related (PR) genes involved in the
resistance to invading pathogens (Wang and Galili, 2019).
Plant miRNAs change their expression during development
and/or in response to environmental challenges. Because of
plant-pathogen coevolution, plants have developed two layers
of immunity that must be broken by microbial pathogens to
cause damage (Dodds and Rathjen, 2010). The first layer of
immunity is based on the perception of pathogen-associated
molecular patterns (PAMPs) and is known as PAMP-triggered
immunity (PTI), which prevents a large number of potential
pathogenic microbes from invasion (Jones and Dangl, 2006).
The second layer of immunity is known as effector-triggered
immunity (ETI). Recent studies demonstrate that small
RNAs (sRNAs) are involved in both PTI and ETI in plants
(Padmanabhan et al., 2009).

The sRNAs either inhibit gene transcription or degrade
mRNAs and participate in the regulation of various physiological
plant processes, especially pathogen resistance. For instance,
amiR-P69159 and amiR-HC-Pro159, which target the toxicity
proteins of the turnip mosaic virus (TuMV) and the turnip
yellow mosaic virus (TYMV), induced resistance against TuMV
and TYMV infections when expressed in Arabidopsis (Niu
et al., 2006). Yin and colleagues showed that treatment of
cotton plants with Verticillium wilt significantly decreased the
expression of miR862 and miR1536 and up-regulated the
target gene TCH4, indicating that these miRNAs play an
important role in defense against Verticillium species (Yin et al.,
2012). Additionally, overexpression of miR160a and miR398b
in transgenic rice enhanced resistance to the fungal pathogen
Magnaporthe oryzae (Li et al., 2014). In tomatos, miR482
and miR2118 regulate the expression of a nucleotide-binding

site leucine-rich repeat (NBS-LRR)-type resistance (R) gene
(Shivaprasad et al., 2012). Additionally, research shows that
miR472 and RNA-dependent RNA polymerase (RDR)-mediated
silencing pathways are key regulatory checkpoints that modulate
PTI and ETI via post-transcriptional regulation of R genes
(Boccara et al., 2014).

Oomycetes are a distinct kind of eukaryotic microorganisms
that differ from many notorious plant pathogenic fungi, such as
Phytophthora sojae (P. sojae), P. capsici, Phytophthora parasitica,
and Plasmopara viticola. Previous reports show that sRNAs
in plants are involved in the response to oomycete stress.
In soybeans, knocking down the level of mature miR393
led to enhances susceptibility to P. sojae, indicating that
miR393 promotes defense against P. sojae (Wong et al., 2014).
Additionally, deep sequencing data revealed the induction of
miRNAs in soybeans after an infection with P. sojae, indicating
these miRNAs impart resistance to P. sojae in soybeans
(Guo et al., 2011).

In a cucumber, the role of miR164b, miR171e, miR160b, and
miR159f was validated in the response to Pseudoperonospora
cubensis infection (Jin and Wu, 2015). In a tomato, miR1918
was reported to enhance sensitivity to Phytophthora infestans
infection (Luan et al., 2016). In black pepper, sRNAs derived from
the 5’ end of mature tRNAs (5’tRFs) were highly expressed under
P. capsici stress and targeted defense–related mRNAs, such as
NPR1 (Luan et al., 2016).

P. capsici is a soil-borne pathogenic oomycete that causes
severe blight and fruit rot of more than 50 plant species,
including pepper, tomato, cucumber, and other commercially
important crops (Lamour et al., 2012). Blight and fruit
rot results in tremendous yield losses approximating $1
billion worldwide each year (Lamour et al., 2012; Howden
et al., 2017). Recent research indicates that the P. capsica–
Arabidopsis system is a model pathosystem for analyzing
a wide range of oomycete-plant interactions (Wang et al.,
2013). Exploring host-pathogen interactions is the first
step toward enhancing our understanding of the molecular
basis of pathogenicity and developing disease management
strategies that safeguard food production from P. capsici
infection. Endogenous sRNAs represent a general regulatory
mechanism employed by the plant immune system to respond
to various pathogens. However, the effect of P. capsici
infection on endogenous sRNAs of Arabidopsis has not
yet been reported.

Here, we constructed and sequenced 15 sRNA libraries
prepared from the leaves of Arabidopsis thaliana ecotype
Columbia (Col-0) at different stages of infection post-inoculation
with P. capsici. Potential novel and previously known miRNAs
were identified in 15 sRNA-seq libraries via bioinformatics
analyses. Among the detected miRNAs, 5 up-regulated miRNAs
and their target genes were chosen for further examination
by northern blot and quantitative real-time PCR (qRT-PCR)
analyses. Additionally, we predicted and analyzed potential target
genes of the differentially expressed miRNAs by bioinformatics
analysis. This study provides useful information for uncovering
the regulatory functions of Arabidopsis miRNAs upon P. capsici
infection and understanding host-pathogen interactions.
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MATERIALS AND METHODS

Plant Material and Treatments
Plants of Arabidopsis thaliana ecotype Columbia (Col-0) were
grown at 22◦C in soil in an environmentally controlled growth
room under long-day photoperiod (16 h light/8 h dark).
Arabidopsis ecotype Col-0 was used in this study because it is
highly susceptible to P. capsici isolate LT263. The abaxial leaf
surface of 3-week-old Col-0 plants was inoculated with 10 µL of
P. capsici suspension (1 × 105 zoospores mL−1) or treated with
MgCl2 (control). Leaves were collected at 0 (control), 3, 6, 12, and
24 hpi and frozen in liquid nitrogen for RNA extraction. For each
sample, 40 leaves of Arabidopsis inoculated with P. capsici were
collected to extract the total RNA. Three independent biological
replicates were performed for each treatment.

P. capsici Zoospores Preparation for
Plant Infection Assays
P. capsici isolate LT263 was cultured on 20% (v/v) V8 agar plates
in the dark at 25◦C for 4 days (Wang et al., 2013). Cut into
uniformly sized hypha pieces (Ø 1.0 cm), incubating mycelial
pieces in 10% (v/v) cleared V8 juice in the dark at 25◦C for 2 days.
Thereafter, the V8 medium was replaced with sterilized water
and changed the wash solution once an hour and refresh up to
4 times. After 2 days of incubation under continuous light, many
sporangia formed. A zoospore release was induced with a cold
shock by placing plates at 4◦C for 30 min. The resulting zoospore
solution was examined with a light microscope, and then adjusted
to the desired concentration with distilled water.

RNA Isolation, Library Construction, and
sRNA-Seq
Total RNA was isolated from P. capsica–infected and uninfected
Col-0 leaves using the plant RNA reagent (Invitrogen, Life
Technologies, United States). The quantity and quality of the
isolated total RNA were assessed using a NanoDrop OneC
Spectrophotometer. Then, sRNA libraries were constructed using
the Small RNA Sample Prep Kit (Illumina, San Diego, CA,
United States) and sequenced on the Illumina HiSeq platform by
Novogene, Beijing, China.

Analysis of sRNA-Seq Data
The sRNA reads were mapped to the Arabidopsis
thaliana_Ensembl_42 genomes1 and P. capsici genomes that
we have sequenced before (unpublished). Reads mapped to the
reference sequence were compared with the specified sequence
range in miRBase to obtain the details of the matched sRNA
in each sample, including the secondary structure, sequence,
and length of the miRNA and the number of occurrences of
the miRNA in each sample. No mismatch was allowed when
the reads were mapped to the genomes. Digestion by the Dicer
enzyme converts a miRNA precursor into mature miRNA.
Because of the specificity of the digestion site, the first base

1ftp://ftp.ensemblgenomes.org/pub/plants/release-42/fasta/arabidopsis_thaliana/
dna/

of the mature miRNA is highly biased (Tang, 2005). Different
AGOs recruit its specific subset of small RNAs, such as AGO2
and AGO4 harbors miRNAs that favor a 5′ terminal adenosine,
whereas AGO1 preferentially recruit small RNAs with a 5′
terminal uridine (Mi et al., 2008). Therefore, in this study, the
base distribution of the first nucleotide of miRNAs of different
lengths was analyzed, and the base distribution statistics of each
site of miRNAs was also determined.

The signature hairpin structure of potential novel miRNA
precursors was predicted using miREvo and mirdeep2 software
(Friedlander et al., 2012; Wen et al., 2012). Subsequently, the
potential novel sRNAs were further analyzed by strict filtering
as described previously (Axtell and Meyers, 2018; Kozomara
et al., 2019). The basic principle of miRNA hairpin structure
prediction is to analyze the reference sequence of a certain
length of sRNA alignment and its secondary structure, Dicer
digestion site, energy, and other characteristics. The input data
of the miRNA differential expression is read count data obtained
from the miRNA expression analysis. Samples with biological
duplication were calculated using DESeq2, based on negative
binomial distribution. Venn diagrams were constructed using the
Calculate online tool2. Heatmaps were constructed by using the
RStudio software.

Histological Staining and Microscopy
P. capsica–infected Col-0 leaves sampled at 3, 6, 12, and 24 hpi
were stained as described previously (Wang et al., 2013). Briefly,
the inoculated leaves were fixed in trypan blue (Sigma, St. Louis,
MO, United States) for visualizing the infected hyphae. The
stained samples were cleared in saturated chloral hydrate until the
leaf tissue became translucent. Differential interference contrast
(DIC) images were captured using a Nikon 90i microscope
(Nikon, Amstelveen, Netherlands).

Northern Blot Analysis
Total RNA was isolated from P. capsici–infected and control
Col-0 leaf samples using the TRIzol reagent (Invitrogen,
United States). The quality and concentration of total RNA
were determined by denaturing gel electrophoresis and NanDrop
ND 100x. Northern blot analysis was conducted as described
previously (Qiao et al., 2015). Briefly, approximately 20 µg of
the total RNA of each sample was analyzed on a denaturing
19% polyacrylamide gel and transferred to Hybond-NX nylon
membranes (GE Healthcare, Madison, WI, United States),
which were subsequently crosslinked using a Stratagene UV
Crosslinker. DNA oligonucleotides complementary to different
sequences of miRNAs were synthesized and labeled with biotin
(TaKaRa). The membranes were prehybridized with PerfectHyb
(Sigma) hybridization solution and then hybridized with the
labeled probes. After several washes, the membranes were
autoradiographed using a Gel imaging system (Amersham
Imager 600, GE, Japan). U6 RNA was used a loading control.
Probe sequences used for northern blot hybridizations are listed
in Supplementary Table 1.

2http://bioinformatics.psb.ugent.be/webtools/Venn/
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Expression Analysis of miRNAs and Their
Targets by qRT-PCR and Stem-Loop PCR
Samples were analyzed by qRT-PCR as described previously
(Zhang et al., 2019; Xu et al., 2020). Briefly, 1 µg of total RNA
was reverse transcribed using the TransScript II One-Step gDNA
Removal and cDNA Synthesis SuperMix (TransGen Biotech).
The reverse transcription products were used as templates for
qRT-PCR, which was performed on a LightCycler480 II Real-
Time PCR System (Roche diagnostics, Mannheim, Germany)
using SYBR Premix Taq (TransGen Biotech). ACTIN1 and U6
were used as an internal control. The primers used for qRT-PCR
and stem-loop RT-qPCR are listed in Supplementary Table 1.

Prediction and Functional Annotation of
miRNA Target Genes
Potential target genes of the differentially expressed miRNAs
were predicted using the plant specific-TargetFinder software.
To determine the biological function of target genes, GO
enrichment analysis was performed using GOseq, which is
based Wallenius non-central hyper-geometric distribution (Cai
et al., 2006), and KEGG enrichment analysis was performed
using the KEGG database3 (Kanehisa et al., 2008), which
provides genomic, chemical, and systemic information of target
genes (Mao et al., 2005). KOBAS software was employed for
determining statistically significant enrichment of target genes
among the KEGG pathways.

RESULTS

Analysis of Compatible Interactions
Between Arabidopsis and P. capsici
To identify miRNAs most likely involved in Arabidopsis
immunity against P. capsici, we performed a thorough evaluation
of the infection process of P. capsici isolate LT263 in Arabidopsis
Col-0 leaves; Col-0 was selected for this experiment because it is
highly susceptible to P. capsici (Wang et al., 2013). Three-week-
old Col-0 leaves were inoculated with P. capsici strain LT263
zoospores, and the progression of infection was observed under
a microscope. Leaves treated with MgCl2 were used as a control
(Figure 1A). In leaves infected with P. capsici isolate LT263, most
zoospores produced germ tubes and attached to the leaf surface
at 3 h post-inoculation (hpi), and appressoria were formed at the
tips of germ tubes (Figure 1B). P. capsici penetrated epidermal
cells directly (Figure 1C), entering the leaf tissue either through
the junction between epidermal cell walls (Figure 1D) or via
stomatal cavities (Figure 1E). At 6 hpi, the hyphae progressed
into the adjacent epidermal cells or mesophyll cell layers upon
penetration (Figure 1F). Subsequently, the number of haustoria
formed from the infection hyphae increased from 12 hpi onward
(Figure 1G). At 24 hpi, the inoculated leaf tissues were covered
with ramifying mycelia (Figures 1H–K). Taken together, these
data suggest that the inoculated Col-0 leaves represented different
stages of P. capsici infection. Therefore, we used these leaf samples

3http://www.genome.jp/kegg/

at different infection stages for subsequent library construction
and sequencing of sRNAs.

Deep-Sequencing of sRNA Libraries
To explore the role of miRNAs in P. capsici infection, we
constructed 15 sRNA libraries from Arabidopsis Col-0 leaves
inoculated with P. capsici. A total of 16,545,182, 14,799,285,
14,717,539, 15,401,465, and 18,270,638 clean reads were obtained
from the inoculated leaf samples collected at 0, 3, 6, 12, and 24
hpi, respectively, which were then mapped on to the Arabidopsis
genome (Supplementary Table 2). After filtering to remove
tRNAs, rRNAs, small nucleolar RNAs (snRNAs), and other
categories of RNAs, we obtained 419,422, 303,754, 445,221,
210,813, and 89,988 reads from known miRNA and 4,928, 3,653,
5,311, 2,718, and 1,180 potential novel miRNA reads from 0, 3,
6, 12, and 24 hpi samples, respectively, ranging in size from 18 to
30 nt (Table 1).

Analysis of miRNA sequences indicated that 21 and 24 nt
reads represented the two most abundant classes of sRNAs at
the four infection stages (Figure 2A). More than 90% of the
first nucleotide of the 21 and 24 nt miRNA sequence reads
was an uracil (Figure 2B) indicating a high consistency in the
distribution of plant sRNAs. In the 0, 3, 6, 12, and 24 hpi
libraries, 86.73, 85.15, 83.60, 73.63, and 91.55% of the reads
mapped on to the Col-0 genome, respectively (Figure 2C).
In addition, 6.74, 6.98, 22.92, and 6.40% of the reads from
samples collected at 3, 6, 12, and 24 hpi mapped on to the
P. capsici genome, whereas only 2.95% of the reads from the
control sample mapped on to the P. capsici genome (Figure 2C).
These data indicated that the identified miRNAs were obtained
mainly from Col-0. A total of 293 known miRNAs belonging
to different families were identified from the 15 sRNA libraries
(Supplementary Tables 3, 4). Moreover, 26 unknown sRNAs
were predicted based on miREvo and mirdeep2 analyses and
secondary hairpin structure prediction (Friedlander et al., 2012;
Wen et al., 2012). After strict filtering of unknown sRNAs, we
finally identified 6 novel sRNAs, which represented potential
novel miRNAs or siRNAs (Table 2 and Supplementary Table 5).
To further examine these 6 unknown sRNAs, we investigated
whether the flanking sequences of miRNAs could be folded
into a signature hairpin structure and exactly mapped to the
unknown genome sequence of the plant miRNAs. The predicted
hairpin structures of the unknown miRNA precursors showed
negative minimum free energies (MFEs), ranging from -27.3 to
-116 kcal/mol (average: 62.39 kcal/mol), which was similar to the
MFE values of Arabidopsis miRNA precursors (-59.5 kcal/mol)
(Bonnet et al., 2004). Additionally, these miRNAs were 21–
24 nt in length (Table 2 and Supplementary Figure 1), which
is consistent with the typical length distribution of miRNAs
(Voinnet, 2009), indicating that these 6 newly identified miRNAs
represent potential novel miRNAs.

Expression Profiles of miRNAs in
Response to P. capsici Infection
To identify miRNAs potentially involved in the immunity of
Arabidopsis against P. capsici, we compared the expression
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FIGURE 1 | Microscopic analysis of the progression of Phytophthora capsici strain LT263 infection in Arabidopsis thaliana Col-0 leaves. (A) Surface of control leaves
not infected by P. capsici. (B) Germination of zoospores and formation of appressoria on the leaf surface at 3 h post-inoculation (hpi). (C–E) Appressorium-mediated
penetration of the leaf directly through the epidermis (C), anticlinal cell wall junction (D), or stomata (E). (F) Hyphae on Col-0 leaves at 6 hpi. (F–H) Massive invasive
hyphae with haustoria in the leaf tissue at 6 hpi (F), 12 hpi (G), and 24 hpi (H). (I,J) Infection hyphae emerging from the leaves via stomata (I) or epidermis (J).
(K) Haustoria development on the leaf surface. st, stomata; ap, appressorium; gt, germ tube; cy, cyst; aw, anticlinal cell wall junction; ha, haustorium; hy, invasive
hyphae. Scale bars = 20 µm.

TABLE 1 | Classification of small RNAs (sRNAs) induced by Phytophthora capsici infection in Arabidopsis at different time points.

Category Sampling time points

0 h 3 h 6 h 12 h 24 h

Totala 8,796,359 6,948,394 7,160,647 6,537,296 7,753,693

Known_miRNAb 419,422 303,754 445,221 210,813 89,988

rRNAc 3,238,869 2,424,033 2,289,062 2,383,856 3,669,538

tRNAd 689,876 533,666 436,080 762,740 883,362

snRNAe 16,018 12,326 153,40 10,547 14,738

snoRNAf 128,975 130,327 138,232 82,613 20,811

Repeat 409,605 372,075 430,047 234,959 74,160

NATg 107,707 92,122 114,190 64,837 55,908

Novel_miRNAh 4928 3653 5311 2718 1180

TASi 12 20 18 6 3

Exon: + j 451,155 396,566 393,982 339,293 250,506

Exon:-k 96,492 81,245 97,423 54,713 26,104

Intron: + l 29,626 24,295 23,301 17,251 4557

Intron:-m 6963 6697 7576 3684 1113

Othern 3,196,710 2,567,615 2,764,864 2,369,264 2,661,724

aNumber of sRNAs aligned to the reference sequence in each sample; this value was used as a reference for calculating the proportion of various types of sRNAs.
bNumber and proportion of sRNAs in each sample compared with known miRNAs. c,d,e,fNumber and proportion of sRNAs compared with rRNA, tRNA, snRNA, snoRNA,
respectively, in each sample. gNumber and proportion of sRNAs compared with natural antisense transcripts in each sample. hNumber and proportion of sRNAs compared
with the potential novel miRNA in each sample. iNumber and proportion of sRNAs compared with the trans-acting siRNAs in each sample. j,k,l,mRefer to the number and
proportion of positive and negative strands of a sample compared with an exon or intron. nNumber and proportion of sRNAs in each sample aligned to the reference
sequence but not to the known miRNAs, non-coding RNAs (ncRNAs), NAT, novel potential miRNAs, TAS, exons, or introns.

profiles of miRNAs at different infection stages by analyzing high-
throughput sequencing data. The sequenced reads that mapped
to miRNAs were normalized using the DESeq package, which
identified miRNAs showing differential expression among the

different infection stages and the control. After normalization,
the reads of the tags of each miRNA family were determined
as reads per million (p < 0.05). The number of miRNA reads
generated from the control and P. capsici–infected Col-0 samples
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FIGURE 2 | Analysis of small RNAs (sRNAs) by deep sequencing sRNA libraries of Arabidopsis leaves inoculated with P. capsici. (A) Length distribution of unique
mapping reads obtained from 15 sRNA-seq libraries. (B) Nucleotide frequency of the 5′ end of previously known sRNAs. (C) Percent identity of sRNAs with
A. thaliana and P. capsici genomes.

TABLE 2 | Potential novel miRNAs identified by sRNA-seq analysis of Arabidopsis leaves inoculated with P. capsici.

miRNA Mature sequence LM Arm LP G + C (%) MFE

Novel_24 ACCAGUCAACCAUAGAGUCUC 21 5p 284 30.3 −116

Novel_24* AGACUCUAUGUAGACUGGACU 21 3p 284 30.3 −116

Novel_40 AAAGGACAGAUUACAAGAUACGUG 24 5p 295 41.7 −70.92

Novel_40* AUAUCAAAUUGGAUCUGUUGUUUC 24 3p 295 41.7 −70.92

Novel_47 AUUUGAUGAACUCGCAAUUAGACG 24 5p 145 34.5 −36.4

Novel_47* GUUAAUUGCGAGUCGAGAGAAUGA 24 3p 145 34.5 −36.4

Novel_50 UUGUCAUAUCUUGUACCUUCA 21 3p 259 28.6 −88.53

Novel_50* AAGGCACAAUAUAUGGCAAUG 21 5p 259 28.6 −88.53

Novel_69 UAUGGUUUGAAACUUUGCUUC 21 3p 78 29.5 −35.2

Novel_69* AGCAAAGUUUCAAACCAUAUU 21 5p 78 29.5 −35.2

Novel_74 AUUAUGAUCAGUUUUUAGACAAGC 24 5p 76 31.6 −27.3

Novel_74* CCAAAAACUGACCAUAACUA 20 3p 76 31.6 −27.3

LM, length of mature miRNA; LP, length of precursor; MFE, minimal folding free energy. *Represents an RNA sequence of approximately 22 nucleotides that is
complementary to miRNA during processing and maturation.

ranged from several hundreds to several thousands, showing
the variability of miRNA transcript abundance. Compared with
the control (0 hpi), 23, 28, 29, and 30 miRNAs were up-
regulated at 3, 6, 12, and 24 hpi, respectively, and 27, 23, 30,
and 26 miRNAs were downregulated at these four infection
stages (Figures 3A,B). Among these, 19 and 14 miRNAs
were up-regulated and downregulated, respectively, at all four
infection stages, as shown by the Venn diagrams (Figures 3A,B)
indicating that approximately 30.9% of the newly identified
miRNAs were continuously expressed throughout the P. capsici
infection period.

Next, we investigated the abundance of 19 known upregulated
miRNAs exhibiting more than 2-fold (|log2 ratio| ≥ 1) higher
expression in at least at one of the four infection stages
compared with the control (Supplementary Figure 2). Notably,
a potentially novel miRNA, novel_24, was up-regulated in all
stages of P. capsici infection, suggesting that novel_24 plays an
important role in host–pathogen interaction (Supplementary
Figure 2A). Similarly, |log2 ratio| < −1 was used as a threshold
for selecting downregulated miRNAs. The expression of 14
known miRNAs was downregulated at the four infection stages
compared with the control (Supplementary Figure 2B). The
heatmap showing the expression patterns of 19 up-regulated

miRNAs and 14 downregulated miRNAs at the four different
infection stages is shown in Figures 3C,D.

Validation of Differentially Expressed
miRNAs and Their Target Genes
To validate sRNA-seq results, we examined the expression of
five up-regulated (one potential novel and four known miRNAs,
including miR398a-5p, novel_24, miR4228-3p, miR408-5p, and
miR846-5p, by northern blot analysis. The results of sRNA
northern blot analysis were generally consistent with sRNA-
seq data. Similar to the sRNA-seq data, the accumulation of
all five up-regulated miRNAs was significantly induced to a
higher level upon P. capsici infection, as shown by northern
blot analysis (Figure 4A). However, some discrepancies were
observed in miRNA expression levels between sRNA-seq data and
northern blot analysis; for example, unlike sRNA-seq analysis, the
northern blot assay showed greater accumulation of novel_24,
miR4228-3p, and miR408-5p at 12 hpi than at other time
points (Figure 4A).

To further confirm this observation, we performed stem-loop
qRT-PCR and quantified the abundance of miRNA transcripts.
Stem-loop primers were designed to amplify the biologically

Frontiers in Microbiology | www.frontiersin.org 6 June 2020 | Volume 11 | Article 1094

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-11-01094 June 19, 2020 Time: 17:52 # 7

Zhu et al. P. capsici Induces Arabidopsis miRNAs

FIGURE 3 | Analysis of differentially expressed miRNAs. (A,B) Venn diagrams showing up-regulated (A) and downregulated (B) miRNAs in P. capsici-infected Col-0
leaves at four different infection stages. (C,D) Heatmaps of up-regulated (C) and downregulated (D) miRNAs at four different infection stages. The change in
expression, expressed as log2 (TPM + 1), is quantified from high (red) to low (blue), as shown in the color scale.
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active form of miRNAs (pri-miRNAs). Expression profiles of
qRT-PCR products are shown in Figure 4B. The results of
stem-loop qRT-PCR were consistent with those of sRNA-seq
and northern blotting analyses. The transcript abundance of
novel_24, miR4228-3p, and miR408-5p was the highest at 12 hpi,
while that of miRNA846-5p was the highest at 3 hpi compared
with the control (Figure 4B). Thus, the stem-loop qRT-PCR
directly confirmed that sRNA-seq data effectively identified
differentially expressed miRNAs of Arabidopsis induced by
P. capsici.

Because the miRNAs regulate gene expression by cleaving
target mRNAs and suppressing mRNA transcription (Krol et al.,
2010; Wang and Galili, 2019), we examined the transcript
abundance of one of the potential candidate targets of each
of the five miRNAs by qRT-PCR (Figure 5). The expression
of the tested mRNAs showed a negative correlation with the
abundance of miRNAs, which is consistent with one of the roles
of miRNAs (Figure 5). Interestingly, sequences of the target
gene and its cognate miRNA showed highly complementary
(Supplementary Figure 3). Among the tested target genes,
three genes including AT3G18040, AT1G48090, and AT1G16570
showed a drastic reduction in expression (approximately 60%)
upon P. capsici infection (Figure 5); AT3G18040 encodes
mitogen-activated protein kinases (MAPKs, e.g., MAPK9, one
of the targets of miR4228-3p), AT1G48090 encodes calcium-
dependent lipid-binding (CBL) protein (target of miR408-5p),
and AT1G16570 encodes a putative UDP-glycosyltransferase
(UGT; target of miR846-5p). Additionally, the expression of
genes encoding a drought-inducible transcription factor ERF053
(AT2G20880; target of miR398a-5p) and TIR-NBS-LRR-type PR
protein (AT4G36150; PR, target of novel_24), was repressed
in Col-0 leaves by approximately 50% at 12 hpi. These target
genes are likely involved in the regulation of Arabidopsis
immunity against P. capsici. Collectively, these results showed
a clear negative correlation between the expression levels of
target mRNAs and their corresponding miRNAs, thus providing
key insights into miRNA-mediated gene regulation under
pathogen stress.

Functional Annotation and Signaling
Pathway Analysis of Potential Target
Genes
Because miRNAs identify target genes via sequence
complementarity, identification of the target transcripts and
potential functions of miRNAs is essential for a comprehensive
understanding of miRNA-mediated gene regulation. To further
investigate the possible role of the identified miRNAs in
regulating Arabidopsis immunity, we first predicted the potential
target genes of miRNAs in the Arabidopsis database using
TargetFinder. Subsequently, we performed Gene Ontology
(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)
enrichment analyses of the target genes of miRNAs differentially
expressed at 12 hpi. A total of 31,427 potential targets of miRNAs
were assigned to 34 categories (Figure 6A). A detailed summary
of the GO classification is shown in Figure 6A. In the cell
component category, the most abundant terms were cell, cell

part, and intracellular. In the molecular function category,
the most abundant GO terms were binding and molecular
function. In the biological process category, the metabolic
process and regulation of biological process showed the highest
enrichment. KEGG pathway analysis revealed that 20 pathways
were enriched in response to P. capsici infection including
spliceosome and plant-pathogen interaction (Figure 6B).
Thus, the results of functional annotation indicated that
P. capsici regulates the immunity of Arabidopsis via differentially
expressed miRNAs.

DISCUSSION

Plant endogenous miRNAs, a class of small non-coding RNAs,
play vital functions in host-pathogen interactions. Identification
of miRNAs showing differential expression in response to
pathogen infection is the first step toward the elucidation of
their functions in plant immunity. Previously, several studies
identified a set of pathogen-induced miRNAs, and functionally
characterized their role in plant immunity (Navarro et al., 2006;
Du et al., 2011; Radwan et al., 2011; Seo et al., 2013; Li et al., 2014).
However, the effect of P. capsici infection on Arabidopsis Col-0
miRNAs has not been reported to date.

In this study, we first investigated the infection process
of P. capsici by microscopic evaluation, which showed clear
correlation between the time from inoculation and P. capsici
infection stages (Figure 1). This finding is consistent with
a previous study on Arabidopsis (Wang et al., 2013), which
contributed to the determination of sampling time points
and subsequent functional analysis. In the current study,
333 miRNAs differentially expressed in response to P. capsici
infection were identified by deep sequencing, and most of
these miRNAs were highly conserved. Seemingly, the number of
known miRNAs that negatively regulate Arabidopsis immunity
is greater than that of positive regulators. All 293 known
miRNAs belonged to 176 families. The number of miRNAs
in each family varied greatly, with MIR156, MIR167, MIR169,
MIR172, MIR398, and MIR396 families containing the most
members. The expression of different miRNAs also varied
greatly (Supplementary Table 4); miRNA826a was the most
highly expressed, which is similar to the expression of
the nitrogen (N) starvation-induced miR826 (Liang et al.,
2013), while miR395b showed the lowest expression, which
is consistent with a previous study showing the induction
of miR395 in Arabidopsis under sulfate starvation conditions
(Jones-Rhoades and Bartel, 2004).

The objective of this study was to identify miRNAs up-
regulated in Arabidopsis upon P. capsici infection. We examined
five up-regulated miRNAs including four known miRNAs
(miR398a-5p, miR408-5p, miR846-5p, and miR4228-3p) and
one potential novel miRNA (novel_24). All five miRNAs
were up-regulated as soon as P. capsici zoospores attached to
the leaf surface, and their expression remained up-regulated
throughout the infection process. Although some studies
previously reported the role of miR846-5p and miR398a-5p in
plant biotic stress response (Xie et al., 2018), no study has
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investigated the sRNAs roles of Phytophthora species about
these five miRNAs between Phytophthora species and host
plants. In soybeans, knocking down the level of mature miR393
enhances susceptibility to P. sojae (Wong et al., 2014). Our
sRNA-seq data showed that miR393-3p and miR169h were also
induced upon P. capsici infection. Furthermore, we verified
the transcript abundance of all five differentially expressed
miRNAs by RNA blot and qRT-PCR analyses. The results
suggested that our sRNA-seq data are highly reliable, and the
identified Col-0 miRNAs were up-regulated in response to
P. capsici infection.

Increasing evidence shows that miRNAs are highly conserved
across species and cleave the same or similar target genes.
Such as miR156, miR165/166, miR167, miR169, miR171, and
miR172, they target crucial transcription factors belonging to
the AP2, ARF, bZIP, and WRKY families in multiple species
(Sire et al., 2009; Lee et al., 2010). These target genes play the
most basic role in regulating plant growth, development, and
biotic and abiotic stress responses (Wang and Galili, 2019).
In this study, the predicted target genes of known miRNAs,
such as miR398a-5p and miR408-5p, were conserved among
different plant species and targeted common factors such as
resistance related genes. Given the interaction of known miRNAs
with their common targets in different plant species, these
known miRNAs likely employ similar mechanisms to regulate
P. capsici–triggered immunity in Arabidopsis. The miR398a-
5p is conserved across different plant species and targets ERF
genes, which regulate disease resistance pathways (Gutterson
and Reuber, 2004; Meng et al., 2013; Dong et al., 2015).
Consistent with the induction of miR398a-5p, we detected
reduced expression of ERF053 genes in P. capsici–infected
leaves. The repression of ERF053 genes may contribute to
the repression of PR genes, thus affecting plant defense. In
wheat, miR408 targets TaCLP1, which promotes resistance
against stripe rust (Feng et al., 2013). In this study, the gene
encoding calcineurin B-like (CBL)-interacting protein kinase,
chosen as the potential target of miR408-5p in Arabidopsis,
was downregulated in P. capsici–infected leaves, implying that
miR408-5p negatively regulates plant immunity by affecting the
CBL-interacting protein kinase (CIPK)-CBL signaling pathway,
which is involved in the response to various biotic and abiotic
stresses (Xi et al., 2017; Aslam et al., 2019). In this investigation,
while miR846-5p was up-regulated, its target gene, UGT, was
downregulated in Col-0 leaves. Considering that UGT genes
promote plant immunity, suppressing the expression of UGT
genes may inhibit the response of Col-0 to P. capsici infection.
Some of the known but non-conserved miRNAs (such as
miR4228-3p), which were also detected in the present study,
have been identified only in one or a few plant species so
far. The expression of AT3G18040 (one of the targets of
miR4228-3p), was significantly downregulated in Col-0 leaves,
which may inhibit the MAPK signaling pathway. Notably,
accumulation of one potential novel miRNA was detected in
Arabidopsis leaves inoculated with P. capsici. Nevertheless,
consistent with the up-regulation of novel_24, its target PR
genes were downregulated. PR proteins are generally induced
by different types of pathogens, such as fungi, oomycetes, and

viruses (van Loon et al., 2006). Because PR proteins accumulate
at the infection site in response to the invading pathogen and
contribute to systemic acquired resistance (SAR) (van Loon et al.,
2006), downregulation of PR genes by the novel_24 in response
to P. capsici infection possibly repressed PTI in Arabidopsis.
In plant-microbe compatible interactions system, there seem
to be more miRNAs that negatively regulate plant immunity
than those that do positively (Li et al., 2014). Similarly, during
the Arabidopsis–P. capsici interaction system, the plant also
can employ its own miRNAs to downregulate genes that are
important for defense. We speculate that the pathogen could
suppresses miRNA biogenesis or directed manipulation of host
miRNA during infection process in a compatible interaction
system. Thus, how miRNAs induced due to pathogen infection or
the pathogen-derived miRNAs and their biological implications
are need to be explored. A northern blot assay confirmed the
increased abundance of these miRNAs, including miR398a-
5p, miR408-5p, miR846-5p, miR4228-3p, and novel_24, in
infected plants. Further investigation is needed to determine how
miRNAs interact with their target genes and how the latter are
expressed under biotic stress conditions. Thus, future studies
will need to focus on the functional investigation of miRNA
target genes and identification of functional components of the
regulatory network.
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