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Background: Vibriosis cases in Northern European 
countries and countries bordering the Baltic Sea 
increased during heatwaves in 2014 and 2018. Aim: 
We describe the epidemiology of vibriosis and the 
genetic diversity of Vibrio  spp. isolates from Norway, 
Sweden, Denmark, Finland, Poland and Estonia in 
2018, a year with an exceptionally warm summer. 
Methods: In a retrospective study, we analysed demo-
graphics, geographical distribution, seasonality, 
causative species and severity of non-travel-related 
vibriosis cases in 2018. Data sources included sur-
veillance systems, national laboratory notification 
databases and/or nationwide surveys to public health 
microbiology laboratories. Moreover, we performed 
whole genome sequencing and multilocus sequence 
typing of available isolates from 2014 to 2018 to map 
their genetic diversity. Results: In 2018, we identified 
445 non-travel-related vibriosis cases in the study 
countries, considerably more than the median of 126 
cases between 2014 and 2017 (range: 87–272). The 
main reported mode of transmission was exposure to 
seawater. We observed a species-specific geographi-
cal disparity of vibriosis cases across the Nordic-Baltic 
region. Severe vibriosis was associated with infec-
tions caused by Vibrio vulnificus (adjOR: 17.2; 95% CI: 
3.3–90.5) or Vibrio parahaemolyticus (adjOR: 2.1; 95% 
CI: 1.0–4.5), age ≥ 65 years (65–79 years: adjOR: 3.9; 
95% CI: 1.7–8.7; ≥ 80 years: adjOR: 15.5; 95% CI: 4.4–
54.3) or acquiring infections during summer (adjOR: 
5.1; 95% CI: 2.4–10.9). Although phylogenetic analysis 

revealed diversity between Vibrio spp. isolates, two V. 
vulnificus clusters were identified. Conclusion: Shared 
sentinel surveillance for vibriosis during summer may 
be valuable to monitor this emerging public health 
issue.

Introduction
The habitat of Vibrio spp. bacteria is fresh and brackish 
water with moderate salinity. Non-toxigenic Vibrio chol-
erae, as well as several human pathogenic non-chol-
era Vibrio species, including Vibrio alginolyticus, Vibrio 
parahaemolyticus and Vibrio vulnificus, cause vibriosis 
after seawater exposure or consumption of contami-
nated seafood [1]. Clinical manifestations range from 
mild gastroenteritis and otitis to wound infections that 
may lead to severe necrotising fasciitis and septicae-
mia with a potentially fatal outcome [2-5].

The Baltic Sea region is one of the areas where increas-
ing numbers of cases related to Vibrio species causing 
vibriosis (VCV) have been reported in the last decades 
[6]. Several studies have shown how the occurrence of 
heatwaves, which lead to an increase in sea surface 
temperature, are linked with an increase in the number 
of reported vibriosis cases [4,7-12]. For instance, the 
years with an especially warm summer in the Baltic Sea 
region, 2006, 2010 and particularly 2014 (the warm-
est year in historical records at the time), were also 
the years with the largest number of vibriosis cases 
reported [6,11].
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However, there is a notable gap in surveillance data 
for vibriosis since it is not a notifiable disease in the 
majority of European countries [1,6]. Therefore, the aim 
of this multi-country study was to describe the epide-
miology of vibriosis cases in countries bordering the 
North and Baltic Seas area during the exceptionally 
warm year of 2018 [13,14], in order to investigate the 
extent of these infections in the study countries, map 
their genetic diversity, understand the predictors for 
developing severe vibriosis, and propose recommenda-
tions for public health measures.

Methods

Study design and case definition
We conducted a retrospective study to analyse the 
epidemiology of VCV infections reported in 2018 
in Norway, Denmark, Sweden, Finland, Poland and 
Estonia, further referred to as the study countries. In 
addition, Latvia was contacted but no vibriosis cases 
had been reported in that country. Available data on 
vibriosis cases since the last warmest summer (2014) 
were used to contextualise the number of VCV infec-
tions in 2018.

We defined a case of vibriosis as a laboratory-con-
firmed VCV infection from the study countries; those 
related to travel outside the study countries were 
excluded. If more than one sample type was recorded 
concurrently in the same patient, we included only the 
sample type that indicated a more severe infection. For 

few cases (n = 18) where more than one Vibrio species 
was recorded concurrently in the same patient, only 
the species related to a more severe infection type was 
included.

Data source and collection
Each country used different data sources including com-
prehensive compulsory passive surveillance systems 
for vibriosis (Sweden, Finland, Poland, and Estonia), 
national laboratory notification databases (Denmark) 
or nationwide surveys to public health microbiology 
laboratories (Norway). More details about the national 
surveillance systems can be found in  Supplementary 
Table S1.

The reporting criteria varied between countries 
that had a surveillance system in place in 2018. In 
Sweden, a confirmed case was defined as an iso-
lation of  Vibrio  spp. other than toxigenic  V. chol-
erae  O1 or O139. In Finland, a case was defined as 
(i)  V. cholerae  including non-O1, non-O139 identified 
in a faecal sample by culture or PCR (or other nucleic 
acid detection), (ii)  V. parahaemolyticus  identified 
in a faecal sample by culture or PCR (or other nucleic 
acid detection) and (iii) any Vibrio  spp. identified in a 
blood sample or cerebrospinal fluid by culture or PCR 
(or other nucleic acid detection). In Poland, a case was 
defined according to the International Classification 
of Diseases 10th revision, diagnosis A05.3 for V. para-
haemolyticus. Estonia considered as a vibriosis case 
any case meeting the clinical criteria (otitis, wound 

Figure 1
Occurrence of vibriosis cases in study countries during 2014–2018 and distribution of cases by age and sex, northern 
Europe, 2018 (n = 445)
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infection, gastroenteritis, septicaemia) and labora-
tory criteria (detection of Vibrio  spp., V. cholerae non-
O1, non-O139 in a clinical specimen detected by 
any method). Meanwhile, the criteria for  Vibrio  spp. 
infections reported from national laboratory 
notification databases (Denmark) and nationwide 
laboratory surveys (Norway) were based on detection 
of  Vibrio  spp. other than toxigenic  V. cholerae  O1 or 
O139.

We compiled the vibriosis cases from all study coun-
tries into a harmonised dataset that included: patients’ 
sex and age group, year and month of infection, coun-
try, European nomenclature of territorial units for sta-
tistics 3 (NUTS3) region [15], identified VCV, type of 
sample and, if known, source of exposure and travel 
status at the probable time of infection. The sever-
ity of an infection was inferred from the sample type: 
blood/serum (n = 60) and wound swabs (n = 144) were 
considered as a proxy of severe infections, while skin 
swabs (n = 28), ear secretion (n = 176), faeces (n = 19), 

Table 1
Summary of epidemiological parameters of vibriosis cases per species in the study countries, northern Europe, 2018 
(n = 445)

Total 
 

vibriosis 
 

(n = 445)

Vibrio 
 

alginolyticus 
 

(n = 152)

Non-toxigenic 
 

Vibrio cholerae 
 

(n = 100)

Vibrio parahaemolyticus 
 

(n = 89)

Vibrio 
 

vulnificus 
 

(n = 45)

Non-subtyped 
 

Vibrio spp. 
 

(n = 59)
n % n % n % n % n % n %

Sex
Female 168 37.8 68 44.7 26 26.0 38 42.7 14 31.1 22 37.3
Male 277 62.2 84 55.3 74 74.0 51 57.3 31 68.9 37 62.7
Age group (years)
0–4 9 2 2 1.3 4 4.0 0 0.0 1 2.2 2 3.4
5–14 91 20.4 47 30.9 23 23.0 7 7.9 0 0.0 14 23.7
15–24 47 10.6 24 15.8 10 10.0 4 4.5 0 0.0 9 15.3
25–44 54 12.1 26 17.1 12 12.0 7 7.9 1 2.2 8 13.6
45–64 83 18.7 24 15.8 24 24.0 20 22.5 6 13.3 9 15.3
65–79 109 24.5 24 15.8 19 19.0 36 40.5 21 46.7 9 15.3
≥ 80 52 11.7 5 3.3 8 8.0 15 16.9 16 35.6 8 13.6
Season
Summer 326 73.3 97 63.8 74 74.0 78 87.6 44 97.8 33 55.9
Autumn 96 21.6 45 29.6 22 22.0 6 6.7 1 2.2 22 37.3
Winter 13 2.9 6 3.9 2 2.0 3 3.4 0 0.0 2 3.4
Spring 10 2.2 4 2.6 2 2.0 2 2.3 0 0.0 2 3.4
Country
Norway 92 20.7 63 41.5 2 2.0 12 13.5 9 20.0 6 10.2
Denmark 170 38.2 70 46.1 3 3.0 55 61.8 16 35.6 26 44.1
Sweden 147 33 19 12.5 64 64.0 19 21.4 19 42.2 26 44.1
Finland 30 6.7 0 0.0 26 26.0 3 3.4 1 2.2 0 0.0
Poland, Estoniaa 6 1.3 0 0.0 5 5.0 0 0.0 0 0.0 1 1.7
Sample type
Blood 60 13.5 3 2.0 20 20.0 4 4.5 31 68.9 2 3.4
Faeces 19 4.3 2 1.3 11 11.0 3 3.4 0 0.0 3 5.1
Ear-related 176 39.6 91 59.9 43 43.0 14 15.7 1 2.2 27 45.8
Wound-related 144 32.4 45 29.6 13 13.0 54 60.7 12 26.7 20 33.9
Other 46 10.3 11 7.2 13 13.0 14 15.7 1 2.2 7 11.9
Exposure
Food/water 6 1.3 2 1.3 3 3.0 1 1.1 0 0.0 0 0.0
Bathing/seawater 109 24.5 17 11.2 38 38.0 12 13.5 25 55.6 17 28.8
Other 1 0.2 1 0.7 0 0.0 0 0.0 0 0.0 0 0.0
Unknown 329 73.9 132 86.8 59 59.0 76 85.4 20 44.4 42 71.2
Severe infection
Yes 204 45.8 48 31.6 33 33.0 58 65.2 43 95.6 22 37.3
No 241 54.2 104 68.4 67 67.0 31 34.8 2 4.4 37 62.7

a Data from Poland and Estonia are reported in an aggregated manner because of the small number of cases.
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urine (n = 2), nasal swab (n = 1) and other unspecified 
(n = 15) sample types were considered linked to non-
severe infections. Seasons were defined according to 
the northern hemisphere seasons (spring: March to 
May; summer: June to August; autumn: September to 
November; winter: December to February). Population 
data as per 31 December 2018 were publicly available 
from national statistics authorities.

Epidemiological investigation and statistical 
analysis
We describe the epidemiology of vibriosis cases 
reported in 2018 in the study countries per country and 
as total counts. Data presented include the sex ratio, 
notification rate per 100,000 inhabitants, median age, 
distribution of cases across age groups, season and 
identified VCV. Case numbers are presented by country 
and by region (NUTS3) and month of infection was con-
sidered for the investigation of seasonality. Severity of 
infection is described by age group and month of infec-
tion. Association of sex, age group, season and VCV 
with developing severe vibriosis was further analysed 
by estimation of crude odds ratios (OR) and 95% con-
fidence intervals (CI) by univariate logistic regression 
analysis. Adjusted OR (adjOR) with 95% CI were esti-
mated in a multivariate analysis. The binary outcome 
was severe/non-severe vibriosis.

Data analysis was performed using Stata version 15.0 
(2017. Stata Statistical Software: Release 15; StataCorp 
LP, College Station, United States). Categorical vari-
ables were described as proportions with 95% CI and 
compared using chi-squared test. Continuous vari-
ables were described using mean and standard devia-
tion or median and range and compared using t-test or 
non-parametric Wilcoxon rank-sum test. Trends were 

assessed using a nonparametric test across ordered 
groups. Observations with missing values for the varia-
bles under comparison were excluded from the respec-
tive analysis.

We used an alpha level of 0.05 for all statistical tests. 
Stata outputs of p values p < 0.000 are reported as 
p < 0.001.

Sampling of isolates of Vibrio species causing 
vibriosis, MLST and WGS analyses
We collected available clinical VCV isolates in 2018 
from the national public health institutes or regional 
laboratories and complemented them with avail-
able clinical (2014–2017) and environmental seawater 
(2018) isolates. The collected isolates were subjected 
to whole genome sequencing (WGS); eighteen isolates 
from Sweden were not subjected to WGS because of 
resource prioritisation, these isolates’ combination 
of Vibrio species, region and patient sex were already 
represented in the dataset. DNA was extracted and 
sequenced using standard operating procedures and 
Illumina sequencers. The WGS raw files are available 
at the European Nucleotide Archive (https://www.
ebi.ac.uk/ena) under study project accession number 
PRJEB43461. Accession numbers of all sequenced iso-
lates are listed in Supplementary Table S2.

Raw WGS reads from each country were analysed 
together using a common pipeline for species identi-
fication, multilocus sequence typing (MLST), and phy-
logenetic analyses. We used BBmap (version 38.69) to 
clean the raw reads and FastQC (version 0.11.8) to gen-
erate quality reports of samples. In addition, we used 
Kraken2 (version 2.0.8_beta) to confirm the species 

Figure 2
Geographical distribution (NUTS3 level) of vibriosis cases, by identified species, in the study countries, northern Europe, 
2018 (n = 445)
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and Shovill (1.0.9) to assemble (using SPAdes version 
3.13.1) the genomes.
We searched the PubMLST database (https://pubmlst.
org/) using Ariba (2.14.4). We assigned a sequence 
type (ST) to isolates of non-toxigenic  V. cholerae,  V. 
parahaemolyticus,  V. vulnificus  and  V. alginolyti-
cus according to their respective MLST schemes.

We used Parsnp (v1.2) and a neighbour-joining algo-
rithm to build the phylogenetic trees, and Snp-dists 
(0.7.0) to calculate the single nucleotide polymorphism 
(SNP) distance between isolates. A cluster was defined 
as two or more  Vibrio  spp. isolates within 30 SNPs 
difference. An in-house pipeline was used for sequence 
mapping, generation of consensus sequences, 
alignment calculation and SNP filtering (exclusion 
distance = 300). We used R package ggtree [16] to visu-
alise the phylogenetic trees generated by the in-house 
pipeline (https://github.com/folkehelseinstituttet/
Vibrio-Project).

Results

Descriptive epidemiology of vibriosis cases
In 2018, 445 non-travel-related cases of vibriosis were 
reported in the study countries, which was the high-
est case number in a single year compared with the 
four previous years (n = 610) (Figure 1A  and  Table 1). 
Additional information on epidemiological parame-
ters of these vibriosis cases per country can be found 
in Supplementary Table S3.

The vibriosis notification rates ranged between 0.5 per 
100,000 inhabitants in Finland and 2.9 per 100,000 
in Denmark. Because of the limited number of cases 

(n = 6), we did not calculate the notification rate for 
Poland and Estonia. The majority of the cases were 
male (n = 277; 62.2%) (Table 1) and the largest num-
ber of cases were reported in the age group 65–79 
years (n = 109; 24.5%) followed by age groups 5–14 
(n = 91; 20.4%) and 45–64 years (n = 83; 18.7%) (Figure 
1B, Table 1).

Most of the infections were caused by  V. alginolyti-
cus  (n = 152; 34.2%), followed by non-toxigenic  V. 
cholerae  (n = 100; 22.5%), V. parahaemolyticus  (n = 89; 
20.0%),  V. vulnificus  (n = 45; 10.1%), and non-
subtyped Vibrio spp. (n = 59; 13.3%). The most common 
type of infections reported were ear infections (n = 176; 
39.6%), followed by wound infections (n = 144; 32.4%) 
(Table 1).

We observed a difference in the proportions of species 
affecting each age group. The proportions of  V. vul-
nificus and V. parahaemolyticus infections followed an 
upward trend with increasing age (both p < 0.001), with 
the opposite pattern for  V. alginolyticus  (p < 0.001), 
and no trend was observed for non-toxigenic  V. chol-
erae infections (p = 0.081) (Table 1).

Information on exposure was systematically collected 
in two countries (Norway and Sweden) that contrib-
uted with 239 cases to this study. The reported expo-
sures from these two countries were seawater/bathing 
(n = 107; 44.8%), food/water poisoning (n = 6; 2.5%), 
other (unspecified) (n = 1; 0.4%) or unknown (n = 125; 
52.3%). However, because the number of cases with 
unknown information on exposure from all participat-
ing countries was larger (n = 329; 73.9%) than that 
reported in Norway and Sweden, the overall exposure 

Figure 3
Severity of vibriosis cases in the study countries, northern Europe, 2018 (n = 445)
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for seawater/bathing from the study countries resulted 
to be lower (n = 109; 24.5%) (Table 1).

Geographical distribution of vibriosis cases
The geographical distribution of the vibriosis cases dif-
fered between Vibrio species (Figure 2).

Vibrio alginolyticus and V. parahaemolyticus infections 
were reported mainly from regions adjacent to the 
North Sea as well as around the connecting sounds 
between the Baltic and the North Sea: southern and 
western regions of Norway, all of Denmark and the 
south-west coast of Sweden (Figure 2A  and  2C). Non-
toxigenic V. cholerae infections were almost exclusively 
reported from coastal regions of the Baltic Sea: the 
east coast of Sweden and regions in Finland, Poland 
and Estonia (Figure 2B). V. vulnificus infections, similar 
to V. alginolyticus and V. parahaemolyticus  infections, 
mainly occurred in the coastal regions around the 
connecting sounds between the Baltic and the North 
Sea, particularly Oslo fjord in Norway, south-west 
Sweden and Denmark (Figure 2D).

Severity of infections with Vibrio species 
causing vibriosis
The proportion of severe VCV infections increased sig-
nificantly with increasing age (p < 0.001) and it differed 
by Vibrio species (p < 0.001) (Figure 3A and Table 2).

We observed the highest proportion of severe infec-
tions for  V. vulnificus  (95.6%) and  V. parahaemolyti-
cus  (65.2%), while these were lower yet substantial 
for non-toxigenic  V. cholerae  (33.0%) and  V. algino-
lyticus (31.6%) (Table 1 and 2). The exposure for these 
severe infections with non-toxigenic V. cholerae and V. 
alginolyticus  was largely unknown (48% and 70%, 
respectively) or cases were exposed to seawater/
bathing (48% and 25%, respectively). In terms of age, 
these infections were shifted slightly towards the 
younger age group. In contrast, more than 70% of the 
severe V. vulnificus and V. parahaemolyticus infections 
occurred in the age groups 65–79 and ≥ 80, while 58% 
and 41% of the severe non-toxigenic V. cholerae and V. 
alginolyticus cases, respectively, occurred in these age 
groups.

The majority of VCV cases occurred in summer (n = 326, 
73.3%; ranging per species from 63.8% to 97.8%) (Table 
1). No difference in the seasonal distribution of vibriosis 

Table 2
Predictors without and with adjustment of severe and non-severe vibriosis cases in the study countries, northern Europe, 
2018 (n = 445)

Characteristics 
 
All cases (n = 445)

Severe infections Non-severe infections Univariate logistic 
regressiona 

 
OR (95% CI)

Multivariate analysisa 
 

adjOR (95% CI)
n % n %

204 45.8 241 54.2

Sex
Female 89 53.0 79 47.0 1 1
Male 115 41.5 162 58.5 0.6 (0.43–0.93) 0.7 (0.42–1.27)
Age group (years)
0–4 1 11.1 8 88.9 0.3 (0.03–2.35) 0.1 (0.01–1.69)
5–14 7 7.7 84 92.3 0.2 (0.07–0.47) 0.1 (0.05–0.41)
15–24 7 14.9 40 85.1 0.4 (0.14–1.02) 0.4 (0.16–1.26)
25–44 17 31.5 37 68.5 1 1
45–64 41 49.4 42 50.6 2.1 (1.04–4.35) 1.9 (0.86–4.18)
65–79 83 76.1 26 23.9 6.9 (3.37–14.33) 3.9 (1.73–8.68)
≥ 80 48 92.3 4 7.7 26.1 (8.1–84.2) 15.5 (4.41–54.31)
Season
Summer 184 56.4 142 43.6 7.6 (4.13–13.93) 5.1 (2.40–10.86)
Autumn 14 14.6 82 85.4 1 1
Winter 3 23.1 10 76.9 1.8 (0.43–7.19) 3.1 (0.52–18.04)
Spring 3 30.0 7 70.0 2.5 (0.58–10.88) 1.5 (0.27–8.49)
Vibrio species
V. alginolyticus 48 31.6 104 68.4 0.9 (0.55–1.61) 1.6 (0.79–3.31)
Non-toxigenic V. cholerae 33 33.0 67 67.0 1 1
V. parahaemolyticus 58 65.2 31 35.8 3.8 (2.08–6.94) 2.1 (1.00–4.49)
V. vulnificus 43 95.6 2 4.4 43.7 (9.96–191) 17.2 (3.28–90.45)
Vibrio spp. 22 37.3 37 62.7 1.2 (0.62–2.36) 2.1 (0.86–5.30)

adjOR: adjusted odds ratio; CI: confidence interval; OR: odds ratio.
a Data from Poland and Estonia were not included in the logistic regression analyses.



7www.eurosurveillance.org

Figure 4
Single nucleotide polymorphism-based phylogeny of non-toxigenic Vibrio cholerae genomes from the study countries, 
northern Europe, 2015–2018 (n = 100)
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cases was observed between countries. According to 
our multivariate model, the likelihood of developing 
a severe infection was significantly increased among 
elderly people (65–79 years: adjOR = 3.9; 95% CI: 1.7–
8.7; ≥ 80 years: adjOR = 15.5; 95% CI: 4.4–54.3), for 
infections caused by V. vulnificus (adjOR = 17.2; 95% CI: 
3.3–90.5) or V. parahaemolyticus  (adjOR = 2.1; 95% CI: 
1.0–4.5), as well as for infections occurring in summer 
(adjOR = 5.1; 95% CI: 2.4–10.9) (Table 2).

Microbiological and molecular investigations
In total, 178 isolates were sequenced in this study. 
We analysed whole genome sequences of 142 clini-
cal VCV isolates from 2018 that were available at the 
national public health institutes (non-travel-related 
n = 135; travel-related n = 7). In addition, we included 23 
available clinical VCV isolates from the period 2014 to 
2017 (non-travel-related n = 14; travel-related n = 9) as 
well as 13 Finnish environmental (seawater) non-toxi-
genic V. cholerae  isolates from 2018 to investigate the 
genetic diversity of Vibrio  spp. in the study countries. 
More detailed information about the analysed isolates 
can be found in Supplementary Table S4.

Phylogenetic analysis
The SNP analysis showed a high diversity of isolates for 
all species. Nine clusters with two or three cases each 
of non-toxigenic  V. cholerae  isolates were identified 
in Sweden (n = 4), Sweden/Finland (n = 4) and Finland 
(n = 1) (Figure 4). Cases whose isolates clustered were 
sampled within a short time frame (median: 7 days; 
range: 2–86 days) but detailed information on place of 
infection was not available. 

In addition, two clusters of  V. vulnificus  isolates 
with < 10 SNPs difference were detected (Figure 5): one 
cluster with nine isolates in Norway, where the cases 
had been infected within 40 days and ca 60 km apart, 
and one cluster with two isolates in Sweden, where the 
cases had been infected 30 days and ca 55 km apart.

No clusters of  V. alginolyticus  or  V. parahaemo-
lyticus  were identified and more details on 
phylogenetic analysis for these species can be found 
in Supplementary Figures S1 and S2.

MLST analysis
Among the 178 isolates included in this study, 20 
groups of isolates had the same ST. Of these, 10 groups 
were pairs of isolates from a single country (Norway, 
Sweden or Finland), three were pairs from two coun-
tries (Sweden/Denmark n = 1 and Sweden/Finland 
n = 2), six included three or four isolates each, and 
the largest group of nine V. vulnificus  isolates (ST534) 
was detected in Norway (Figure 4 and 5). Finally, a sin-
gle  V. parahaemolyticus  isolate from Norway, found 
in a gastrointestinal infection in spring of 2014, was 
identified as the pandemic ST3 [17].

Discussion
Our study provides a detailed overview on the occur-
rence of vibriosis in the Nordic and Baltic Sea regions 
in 2018. In a context of epidemiological and micro-
biological findings as well as studies conducted from 
2014 to 2018 [11,12], our results highlight the impor-
tance of vibriosis as a concern to public health in this 
geographical area. Even though the data had been 
collected using different systems, the study countries 
reported similar patterns of sex and age group distribu-
tion in the affected population. Two-thirds of all vibrio-
sis cases from 2014 to 2018 occurred in the years 2014 
and 2018, reported as two remarkably warm years in 
the literature [6,11-14]. Moreover, although  V. vulnifi-
cus infections are usually considered rare in this region 
[18], 45 such infections were detected in 2018, while 
in the preceding years, only eight (2014), none (2015), 
one (2016) and two (2017) V. vulnificus infections were 
identified. Interestingly, one V. vulnificus case occurred 
at latitude ca 60 degrees north in Finland, which, to 
the best of our knowledge, is the highest northern 
latitude at which  V. vulnificus  has been reported. 
These findings suggest that this pathogen may spread 
to different areas following seawater warming [19].

It is well documented that vibriosis is more frequently 
reported in summer [2,6,11,12,19]. Our results from 
2018 confirm this pattern, with the majority of infec-
tions occurring in summer months. In addition, in this 
study almost half of all infections reported in 2018 
were categorised as severe infections that also mainly 
occurred during summer season. Mild ear infections 
may have longer reporting delays up to several months 
until a patient seeks medical care [20,21] explaining 
why reporting of mild vibriosis extended to autumn 
and winter compared with rapidly developing severe 
blood or wound infections which were mainly reported 
in summer. However, more accurate information on 
the probable infection date would be needed to con-
firm this hypothesis. Few severe infections occurred 
in autumn, winter and spring, these did not differ from 
the severe cases that occurred in summer in terms 
of male/female ratio, reporting country, affected age 
group or  Vibrio  species. The likely source of infection 
was available for a subset of cases and suggested that 
the mode of transmission was mostly through seawater 
rather than through consumption of contaminated 
seafood.

The majority of vibriosis cases in the study coun-
tries were domestic and males were more frequently 
affected than females, consistent with other reports 
[12,22]. Even though the majority of cases were among 
adults, about a fifth of the detected cases were among 
children up to 14 years of age, who mostly had ear 
infections and mild vibriosis; severe infections on the 
other hand were found to be associated with increas-
ing age. This is probably due to underlying condi-
tions being overrepresented among elderly people. In 
addition to increasing age, we also found that being 
infected by  V. vulnificus  or  V. parahaemolyticus  was a 
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risk factor for a more severe VCV infection, probably 
because these microorganisms are more pathogenic 
[1,2]. On the other hand, although non-toxigenic  V. 
cholerae and V. alginolyticus predominantly cause mild 
infections, in our study, about one third of the cases 
infected by these species were sampled from blood/
serum or wounds. Thus, in absence of systematic data 
on hospitalisation and symptoms, these infections 
were also considered as severe. These cases had a 
lower median age compared with cases infected with V. 
vulnificus  and  V. parahaemolyticus, and the exposure 
was largely unknown with only some cases exposed to 
seawater/bathing. Given that a substantial proportion 
of cases were classified as severe, non-toxigenic  V. 
cholerae  and  V. alginolyticus  should therefore not be 
underestimated in vibriosis diagnosis, as has been 
pointed out previously [23].

We observed geographical disparity in the distribution 
of VCV in the study countries.  V. alginolyticus  and  V. 
parahaemolyticus  infections were concentrated in 

the coastal regions connecting the North Sea to the 
Baltic Sea, including the Danish sounds, where  V. 
vulnificus  was mainly reported. Infections with non-
toxigenic  V. cholerae  were mostly detected along the 
coasts of the Baltic Sea. This is in line with previous 
environmental detection of  Vibrio  species in different 
areas [2,24-27] and reported clinical  V. vulnifi-
cus  infections from Germany [4]. Reasons for the geo-
graphical disparity could be related to differences in 
sea surface temperature and salinity, which represent 
major factors influencing  Vibrio  spp. growth, and are 
continuously monitored in the  Vibrio  suitability tool 
from the European Centre for Disease Prevention and 
Control [28]. Additional factors, such as phytoplank-
ton composition and nutrient presence in the water 
[24-26,29], could also have played a role. Additional 
research studies on the water environment and pres-
ence of  Vibrio  spp. in seafood could provide useful 
information on the ecological niches and geographical 
distribution of such bacteria, particularly for species 
associated with a potentially severe clinical outcome.

Figure 5
Single nucleotide polymorphism-based phylogeny of Vibrio vulnificus genomes from the study countries, northern Europe, 
2018 (n = 27)
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Our MLST analysis showed a genetic heterogene-
ity between clinical  Vibrio  spp. isolates, the majority 
of which belonged to STs not yet assigned not yet 
assigned in the PubMLST database. The SNP-based 
phylogenetic analysis revealed small clusters of non-
toxigenic  V. cholerae, containing two to three isolates 
each, without a clear epidemiological link. That the 
same non-toxigenic  V. cholerae  strains are detected 
in one or more countries might be due to common 
exposure to contaminated seafood or environmental 
spread of clones through e.g. sea currents [26], plas-
tic pollutants [30], ship ballast water [31] or waterbirds 
[32].

The occurrence of two  V. vulnificus  clusters, one in 
Norway and one in Sweden, detected 30–40 days apart 
and within an area of around 50–60 km, highlights 
the possibility of emerging  V. vulnificus  clones that 
caused infections after seawater exposure during the 
exceptional warm summer in 2018. This was further 
supported by the epidemiological investigations of the 
first reported waterborne outbreak caused by  V. vul-
nificus after seawater exposure; this outbreak involved 
six  V. vulnificus  infections from which isolates were 
included in our study [33]. Moreover, the smaller num-
ber of vibriosis cases reported per year during 2019 
and 2020, respectively 50 and 52 cases in Norway 
and 51 and 91 cases in Sweden, further confirms the 
hypothesis that the risk of vibriosis is higher during 
warmer summers.

Some limitations apply to our investigation. There 
were differences in data sources and data availability 
between the study countries. Notification rates should 
therefore be compared carefully as vibriosis is not 
notifiable in all study countries or not for all species. 
Especially mild infections might have been reported 
with a delay and/or under-reported. Conversely, in 
some cases a disease could have been misclassified 
as vibriosis when the identified  Vibrio  species were 
merely opportunistic microorganisms present at the site 
of infection. Case severity classification used in this 
analysis was not reported directly in any study country, 
but was inferred based on the sample type. In addition, 
cases without known travel history were considered as 
non-travel related, which could have led to an over-
estimation of vibriosis cases in the Baltic Sea region. 
Furthermore, the place of residence was used as proxy 
when place of infection was not available. Regarding 
the molecular findings, SNP analysis needs to be eval-
uated carefully since recombination is one of the major 
sources of genomic changes in  Vibrio  spp. Therefore, 
the removal of changes caused by recombination could 
have provided better insight from an evolutionary 
perspective. Finally, laboratory methodology, capac-
ity and priorities to diagnose and report VCV infections 
probably differed among the study countries.

During our investigation, we performed a systematic 
and consistent analysis of epidemiological data from 

different countries and combined it with the genomic 
analysis of strains from cases to achieve a comprehen-
sive understanding of the occurrence of VCV infections 
in this affected region. In addition, following results 
from two laboratory surveys carried out in Norway 
and Sweden, we do not have evidence that any factors 
changed over time and influenced the monitoring in the 
study countries. All available isolates representing a 
vibriosis case were included in the study, reducing the 
risk of bias in the selection procedure. Further source 
attribution studies, based on epidemiological and/or 
genomic data, could provide additional information on 
the burden of vibriosis in relation to possible different 
source of infections per Vibrio species.

Despite the low incidence, severe VCV infections are 
clinically costly [34], and predictions of changing cli-
mate as well as population and socioeconomic pro-
jections for the upcoming years suggest that they are 
likely to increase in the future when growth conditions 
become more favourable for VCV [19,35].

Conclusion
It is of interest to detect and report the VCV infections 
in countries bordering the Baltic Sea and connecting 
regions to the North Sea to further monitor the situa-
tion, especially during summer heatwaves. Moreover, 
such surveillance would facilitate risk assessments 
and allow for targeted interventions, including risk 
communication to raise awareness among clinicians 
and populations at risk of vibriosis. Countries without 
comprehensive surveillance could benefit from estab-
lishing or expanding dedicated surveillance systems 
to detect and prevent vibriosis cases. In particular, a 
shared sentinel system during summer months might 
be highly valuable.
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