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Abstract

Purpose: To develop a 3D-Unet dose prediction model to predict the three-
dimensional dose distribution of volumetric modulated arc therapy (VMAT)
for cervical cancer and test the dose prediction performance of the model in
endometrial cancer to explore the feasibility of model generalization.
Methods: One hundred and seventeen cases of cervical cancer and 20 cases
of endometrial cancer treated with VMAT were used for the model training, val-
idation, and test. The prescribed dose was 50.4 Gy in 28 fractions. Eight inde-
pendent channels of contoured structures were input to the model, and the
dose distribution was used as the output of the model. The 3D-Unet prediction
model was trained and validated on the training set (n = 86) and validation set
(n = 11), respectively. Then the model was tested on the test set (n = 20) of cer-
vical cancer and endometrial cancer, respectively. The results between clinical
dose distribution and predicted dose distribution were compared in the following
aspects: (a) the mean absolute error (MAE) within the body, (b) the Dice sim-
ilarity coefficients (DSCs) under different isodose volumes, (c) the dosimetric
indexes including the mean dose (Dpean), the received dose of 2 cm? (Do),
the percentage volume of receiving 40 Gy dose of organs-at-risk (V4), plan-
ning target volume (PTV) Dgg¢,, and homogeneity index (HI), (d) dose—volume
histograms (DVHs).

Results: The model can accurately predict the dose distribution of the VMAT
plan for cervical cancer and endometrial cancer. The overall average MAE and
maximum MAE for cervical cancer were 2.43 + 3.17% and 3.16 + 4.01% of the
prescribed dose, respectively, and for endometrial cancer were 2.70 + 3.54%
and 3.85 + 3.11%. The average DSCs under different isodose volumes is above
0.9. The predicted dosimetric indexes and DVHs are equivalent to the clinical
dose for both cervical cancer and endometrial cancer,and there is no statistically
significant difference.

Conclusion: A 3D-Unet dose prediction model was developed for VMAT of
cervical cancer, which can predict the dose distribution accurately for cervical
cancer. The model can also be generalized for endometrial cancer with good
performance.
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1 | INTRODUCTION

Compared with intensity modulated radiation therapy
(IMRT), the treatment time of volumetric modulated arc
therapy (VMAT) is significantly shorter,and the dose dis-
tribution is equivalent or even better,so VMAT is becom-
ing more and more extensively applied to the treat-
ment of various tumors.! However, the plan design still
has the following problems. Firstly, the planner needs to
iteratively adjust the planning target volume (PTV) and
organs-at-risk (OARs) optimization objective in the plan
optimization process to meet the clinical requirements,
which is a time-consuming process. Secondly, due to the
dose—volume histograms (DVHs) and dose distribution
that can be achieved for a specific patient is unknown
before the plan is optimized, the optimization objective
setting largely depends on the experience of the plan-
ner, which makes the final plan quality and consistency
poor2~*

In recent years, knowledge-based planning (KBP)
has been proposed to improve planning efficiency and
plan quality®>® The current KBP method mainly has
two branches. One is based on the DVHs prediction
model,'~"* which uses prior patient databases of high-
quality treatment plans to establish a model to predict
the DVHs of the patient’s specific structures and pro-
vide an optimization objective to guide the following plan
optimization. The commercial software representative of
the above method is RapidPlan (Varian Medical Sys-
tems, Palo Alto, CA, USA). Although the method based
on the DVHSs prediction model has been proven to be
effective in many studies, it cannot provide spatial dose
distribution information. The other one is based on the
method of three-dimensional (3D) dose distribution pre-
diction model 2 '5-20 which uses the machine learning or
deep learning network to automatically extract the struc-
ture and dose features in the plan to establish a dose
prediction model 2125

Shiraishi and Moore® manually selected features as
input to the model and developed a 3D dose prediction
model based on artificial neural networks (ANN). The
average prediction error for all voxels was less than 8%.
The accuracy of the dose prediction model based on
ANN usually depends on the selection of manual fea-
tures. It is difficult to improve the accuracy of dose dis-
tribution prediction as the extraction process of manual
features is complicated and tedious. It is attractive to
develop an algorithm that can automatically extract fea-
tures from the patient’s contour structures to achieve a
more accurate and effective prediction for 3D dose dis-
tribution. Deep learning, especially convolutional neural
network (CNN), has developed rapidly in recent years

and has been used in the field of medical images. Com-
pared with the dose prediction model based on machine
learning, the model based on deep learning can accu-
rately predict the dose distribution of a specific patient
without manually extracting features.'®2"2627 CNN is a
common network in deep learning, which can automat-
ically extract hierarchical features from medical images
and predict dose distribution without manual operations.
U-net is a preferred deep learning network for dose pre-
diction, and it has been used in the establishment of
dose prediction models for different diseases in previous
studies.'®1° Nguyen et al.'® first used 2D-Unet to estab-
lish a dose prediction model for predicting prostate can-
cer IMRT dose distribution. Six contours of critical struc-
tures and dose distribution of clinical plans were used
as input for training to learn local and global features in
their work. The results showed that the mean absolute
error (MAE) of PTV was less than 2%, and the prediction
error of OARs was less than 5%. Compared with previ-
ous ANN methods, the 2D-Unet method provides bet-
ter prediction performance. However, the biggest chal-
lenge of this 2D U-Net method is that it predicts the
3D dose distribution on a slice-by-slice basis instead of
real 3D volume prediction. Such predictions may cause
uncertainty, especially at the edge of PTV. Based on
the shortcomings of 2D-Unet, 3D-Unet is more widely
used in the construction of dose prediction models.Zhou
et al2® tested a 3D-Unet dose prediction model for the
dose prediction effect of rectal cancer IMRT, and the pre-
diction results were not much different from the clinical
results, the overall MAE was 3.92 + 4.16%, the mean
Dice similarity coefficients (DSCs) was above 0.9 for
most isodose volumes. Kajikawa et al?° established a
dose prediction model for the IMRT plan for prostate
cancer based on 3D-Unet and compared the results with
the RapidPlan. The MAEs of the 3D-Unet dose predic-
tion model were within 3% and 5% for PTV and OARs,
respectively, which is lower than the RapidPlan model.
Their study revealed the potential of 3D-Unet for dose
distribution prediction. Looking back at previous studies,
it can be found that although the deep learning model
has shown high dose prediction accuracy, most of the
existing studies are based on a single cancer for training
and testing. However, it requires a large number of train-
ing data to train a cancer-specific model. Collecting such
data is a time-consuming process for clinicians. There-
fore, it is necessary to test the dose prediction effect of
the model between different cancers to explore the gen-
eralization of the model between different cancer cases,
which could expand the scope of the application of the
model. Secondly, most studies focus on the IMRT plan. It
is more meaningful to establish a dose prediction model
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FIGURE 1 3D-Unet architecture, the number on each box represents the number of features extracted

for the VMAT plan due to the advantage of the VMAT
delivery efficiency. Finally, to our knowledge, there is no
report of deep learning for cervical cancer dose predic-
tion. Therefore, the purpose of this study is to explore
the generalization of the dose prediction model of the
cervical cancer VMAT plan for endometrial cancer.

2 | METHODS AND MATERIALS

2.1 | Plan information

One hundred and seventeen cases of cervical can-
cer and 20 cases of endometrial cancer VMAT plans
that have been clinically treated were retrospectively
selected for this study. This study was approved by
the Institutional Review Board (IRB). Eighty-six cervi-
cal cancer cases were randomly selected as the train-
ing set, 11 cervical cancer cases were used as the val-
idation set, and 20 cases of cervical cancer and 20
cases of endometrial cancer were used as the test set,
respectively. Two arcs were used for all VMAT plans.
The photon energy was 10 MV and the prescription
dose was 50.4 Gy in 28 fractions. The dose calcula-
tion algorithm was an anisotropic analytical algorithm
(AAA) and the calculation grid was 2.0 mm. The plan
design process was as follows: before the plan was
designed, patient image acquisition was carried out, all
patients were fixed with a thermoplastic body mask,
and the image was acquired using a CT simulator (Bril-
liance Big Bore, Philips Medical Systems) in the supine
position. The scanning slice thickness was 5 mm. Clini-
cians performed clinical target volume (CTV) delineation
according to relevant delineation guidelines, and then
expanded CTV by 0.5 cm to form PTV. After the PTV was
delineated, OARSs delineation was performed. The OARs
involved in this study were bladder, rectum, left and right
femoral heads, colon, and small intestine. The clinicians

conducted a second check on the delineation results to
ensure that the delineation was accurate and consis-
tent. After the above work was completed, the medical
physicist designed the radiotherapy plan on Eclipse15.6
(Varian Medical Systems). After the plan was com-

pleted, the clinicians reviewed and approved the
plans.
2.2 | Data preprocessing

All plans were exported using DICOM-RT format files
in Eclipse 15.6, including structure files and dose files.
Firstly, the image matrix containing the contoured struc-
tures in the structure file was registered with the dose
distribution matrix. The contoured structures image
matrix contains eight contours: body, bladder, rectum,
PTV, left and right femoral heads, colon, and small intes-
tine. These structures were input into the network as
independent channels. Secondly, in order to accelerate
the training of the model and reduce the calculation
time, the 512 x 512 matrix size of contoured structures
and the dose distribution matrix were down-sampled to
256 x 256 first. During training phase, a 128 x 128 x 64
3D matrix was sampled for each patient.

2.3 | Network structure

2.3.1 | 3D-Unet structure

During training phase, the input was a 4D tensor with
the size of 8 x 128 x 128 x 64 which consists of eight
128 x 128 x 64 contoured structures, and the output
was a corresponding 3D dose distribution matrix with
the size of 128 x 128 x 64. The network structure is
shown in Figure 1. The network structure consists of
three components: coding area, decoding area, and
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connection module. The connection module was used
for layer jump connection and feature fusion. The
dimensionality of the original data was reduced in the
code area to extract more features. There were four
code modules in the coding area. Each encoding mod-
ule contained two 3 x 3 x 3 convolution layers and a
2 x 2 x 2 max-pooling layer. After each convolution layer
was a batch normalization (BN) and a rectified linear
unit (ReLu). The decoding area also contained four
decode modules. Each module contained two 3 x 3 x 3
convolutional layers and a 2 x 2 x 2 deconvolution layer.
After each convolutional layer was also a BN and a
ReLu. In the last layer, a single 3 x 3 x 3 convolution
and Relu activation function were used to output the
final dose distribution matrix.

2.3.2 | Model training and validation
Eighty-six patients were used as the training set and 11
patients as the validation set. The mean square error
(MSE) was selected as the training loss function. The
formula of MSE is as follows
1 @ i 2
MSE = — 21 (D}, - D)
| =

where n refers to the total number of voxels, Dg refers

to the predicted dose of the ith voxel, and D{: refers to
the clinical dose of the ith voxel. The adaptive moment
estimation (Adam) algorithm was used to minimize the
loss function. The initial learning rate was 1074, and its
decay rate of each epoch was the same as the decay
rate of the cosine function during the training process.
The python-based PyTorch platform was used to build
the 3D-Unet deep learning architecture. Nvidia GeForce
GTX 1080Ti GPU graphics card with 11 GB of memory
was used for model training. After the model was trained,
it only took a few seconds to predict the dose distribu-
tion for a specific patient from the test set. The network
training curve is shown in supplement file.

2.3.3 | Evaluation of prediction results

The results between clinical dose distribution and pre-
dicted dose distribution of 20 cases of cervical cancer
and 20 cases of endometrial cancer were compared.

A. Comparison of 3D dose distribution

Firstly, the clinical dose distribution map, predicted
dose distribution map, and dose difference map at dif-
ferent slices were compared in the test cases. Secondly,
the MAE within the body in each of the 20 test cases
were calculated. The formula is as follows:

1 &, . .
MAE =~ ¥ |D} - D,
]

where Dj, refers to the predicted dose of the ith voxel, D,
refers to the clinical dose of the ith voxel, and n refers
to the number of all voxels in the body. After calculating
the MAE, it was divided by the prescribed dose and con-
verted into a percentage. Thirdly, the DSCs of the differ-
ent isodose volumes for each patient were calculated.
In this study, the 10%—100% (interval of 10%) of the
prescribed dose was selected as the isodose. The for-
mula is as follows:

DSC 2:Vpx Ve
VetV

where V,, represents the volume where the predicted
dose distribution was greater than the given isodose and
V, represents the volume where the clinical dose distri-
bution was greater than the given isodose.

B. Comparison of dosimetric indexes and DVHs
1. Dosimetric indexes

For PTV, the homogeneity index (HI) and Dggy were
calculated, the calculation formula for HI is as follows:

H = Dy, — DQS%,

Dsoq
where Dyq, represents the received dose of X% of the
PTV volume. For OARs, the mean dose (Dyean) and
V4o (that is the percentage of the OARs volume that
receives 40 Gy) of the bladder, colon, left and right
femoral heads, rectum, and small intestine were evalu-
ated. The received dose of 2 cm? (D,..) was also com-
pared for the small intestine, colon, rectum, and blad-
der.

2. DVHs

The representative DVHs of 3D-Unet model predicted
dose distribution were compared with the clinical dose
distribution for the tested cervical cancer and endome-
trial cancer, respectively.

3 | RESULTS

3.1 | Comparison of predicted dose
distribution and clinical dose distribution

Figures 2 and 3, respectively, show the clinical dose dis-
tribution map, predicted dose distribution map, and dose
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FIGURE 2 The clinical dose distribution map, the model predicted dose distribution map, and the dose difference map at the same slice of
the cervical cancer case. The left side is the clinical dose distribution map (the unit is Gy), the middle is the predicted dose distribution map and
the right is the dose distribution difference map (take the prescription dose equal to 1 as the standard)
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FIGURE 3 The clinical dose distribution map, the model predicted dose distribution map, and the dose difference map at the same slice of
the endometrial cancer case. The left side is the clinical dose distribution map (the unit is Gy), the middle is the predicted dose distribution map,
and the right is the dose distribution difference map (take the prescription dose equal to 1 as the standard)
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FIGURE 4 Mean absolute errors of the 3D-Unet model, including all voxels within the body for the 20 testing cases of cervical cancer and

endometrial cancer, respectively

difference map of cervical cancer and endometrial can-
cer in different trans-axial slices. It can be seen from the
figures that the predicted dose distribution was similar to
the clinical dose distribution. It can be seen from Figure 3
that the prediction accuracy of the 35-50 Gy region is
high, which may be due to the good consistency of the
target and dose distribution in this region for different
clinical plans. So, the dose distribution can be accurately
predicted. In the low-dose region (10-35 Gy), due to
the various shape and location of OARs for different
patients, the dose distribution in the clinical plan was less
consistent, which resulted in relatively lower prediction
accuracy.

Figures 4 shows the MAE and standard deviation
within the body of 20 test cases of cervical cancer and
endometrial cancer, respectively. The overall mean MAE
and maximum MAE of the cervical cancer cases were
2.43 + 3.17% and 3.16 + 4.01% of the prescribed dose
and the endometrial cancer cases were 2.70 + 3.54%
and 3.85 + 3.11%.

3.2 | Dosimetric indexes and DVHs

Table 1 shows the dosimetric indexes between the clini-
cal results and the predicted results of two cancer cases.
Figure 5 shows that the average DSCs of cervical can-
cer and endometrial cancer cases are above 0.9 under
the different isodose volume of the prescribed dose,
which proves that the 3D-Unet dose prediction model
can accurately predict the dose distribution of endome-
trial cancer. Figure 6 shows the representative DVHs of
cervical cancer and endometrial cancer.

4 | DISCUSSION

To our knowledge, there is no study on cervical cancer
VMAT dose prediction and the dose prediction model’s
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FIGURE 5 The Dice similarity coefficients (DSCs) of 20 testing
cases of cervical cancer and endometrial cancer, respectively, under
the isodose volume of 10%—-100% (10% interval) of the prescribed
dose

generalization between different cancer sites in the pre-
vious studies. A 3D-Unet dose prediction model estab-
lished using the cervical cancer VMAT plans was used
to predict the dose distribution of endometrial cancer
in this study. The results were evaluated with the dose
distribution map, MAE, DVHSs, dosimetric indexes, DSCs,
etc. The predicted dose distribution was comparable to
the clinical dose distribution, showing the possibility of
the generalization of the model. Exploring the gener-
alization of the model helps to expand the application
scope of the model, and it is not necessary to build a
model based on every cancer site again, which reduces
the data collection work before the model is established.
In this study, there is no need to collect a large num-
ber of endometrial cancer cases for modeling again,
and the dose prediction model for cervical cancer can
be used to predict the dose distribution for endometrial
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TABLE 1 Comparison of dosimetric indexes (mean + standard deviation)
Dosimetric indexes CC clinical CC prediction p? EC clinical EC prediction pP
PTV
HI 0.09 + 0.02 0.10 + 0.01 0.126 0.1 + 0.02 0.12 + 0.01 0.000
Dgge, (Gy) 48.96 + 0.49 48.89 + 0.19 0.263 48.92 + 0.41 48.27 + 0.44 0.000
Bladder
Dpean (GY) 40.53 + 2.84 41.48 + 1.96 0.067 40.04 + 2.72 40.36 + 1.84 0.478
Dyec (Gy) 53.50 + 0.83 53.89 + 0.46 0.033 53.87 + 0.67 53.95 + 0.67 0.494
Vo (%) 52.20 + 12.61 54.01 + 9.21 0.093 50.50 + 11.72 47.72 + 7.20 0.370
Colon
Dinean (GY) 23.31 + 5.25 23.41 = 5.19 0.911 25.54 + 3.53 25.16 + 3.16 0.044
Dyec (Gy) 51.62 + 1.01 52.28 + 1.05 0.014 51.55 + 0.60 52.07 + 0.76 0.004
Vg (%) 20.07 + 10.3 19.60 + 10.02 0.108 24.83 + 8.68 2442 + 8.47 0.370
Femoral head left
Dpean (GY) 23.53 + 4.73 23.01 + 4.57 0.126 26.09 + 3.98 26.06 + 2.54 0.391
Vo (%) 4.86 + 3.67 2.56 + 2.41 0.000 492 + 842 3.11 + 3.56 0.036
Femoral head right
Dpean (GY) 23.35 + 4.85 22.59 + 4.96 0.067 26.08 + 3.77 2512 + 2.65 0.108
Vo (%) 455 + 4.42 2.95 + 3.27 0.050 4.86 + 9.18 2.63 + 3.68 0.015
Rectum
Dpean (GY) 40.01 + 3.88 40.51 + 2.93 0.351 38.91 + 3.07 39.27 + 2.76 0.501
Dy (GY) 51.68 + 1.08 51.69 + 1.33 0.911 52.38 + 0.71 52.43 + 0.90 0.911
Vg (%) 55.90 + 18.02 56.60 + 13.55 0.526 52.04 + 9.35 52.29 + 8.99 0.970
Small intestine
Dpean (GY) 25.39 + 6.01 25.26 + 6.14 0.601 2416 + 3.67 2473 + 449 1.000
Dyec (Gy) 50.91 + 2.86 51.13 + 5.01 0.013 50.99 + 2.28 51.40 + 2.42 0.001
Vo (%) 18.00 + 10.98 17.00 + 9.82 0.030 14.35 + 6.56 14.05 + 7.16 0.126

Note: Dyean is the average dose, V, is the volume of receiving 40 Gy dose, p? is the statistical p-value of cervical cancer clinical and prediction results, and p® is the

statistics p-value of endometrial cancer clinical and prediction results.

Abbreviations: CC, cervical cancer; EC, endometrial cancer; HI, homogeneity index; PTV, planning target volume.

cancer accurately. For some small to medium institu-
tions, this is extremely important, because it is difficult or
impossible for them to collect enough cases to establish
high-quality dose prediction models for different can-
cers. Therefore, it is of great significance to explore the
generalization of the dose distribution prediction model
with a relatively large number of cancer cases to a rela-
tively small number of other cancer cases.

In this study, the cervical cancer dose prediction model
can predict the dose distribution for endometrial can-
cer cases accurately, suggesting the possibility of model
generalization. The reason we consider the successful
generalization of the model is that both cervical can-
cer and endometrial cancer are postoperative cases,
and the OARs that need to be protected are the same,
mainly the bladder, left and right femoral heads, colon,
rectum, and small intestine. The same delivery tech-
nique of VMAT and the prescribed doses of 50.4 Gy
were used for both sites. Also, the dose distributions
were similar for both sites. Therefore, the model can be

generalized from cervical cancer to endometrial can-
cer. Kandalan et al2* explored the generalization of the
dose prediction model for prostate cancer treated with
VMAT. The possibility of generalization between differ-
ent dose distribution styles of the same cancer site was
investigated. Different styles of cases were added to
the source model to improve the generalization perfor-
mance.

There are some limitations to this study. Firstly, the
results initially show the feasibility of model generaliza-
tion on different cancer sites. Although the dose distribu-
tion is clinically acceptable for endometrial cancer, it is
not optimal, which may be caused by the structure differ-
ence between cervical cancer and endometrial cancer.
The PTV volume of cervical cancer was larger than
that of endometrial cancer, and the distance between
PTV and OAR of cervical cancer was greater than that
of endometrial cancer, which made the predicted dose
of OARs of endometrial cancer higher than the clinical
dose distribution. Some cases of endometrial cancer
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FIGURE 6 The representative dose—volume histograms (DVHSs) of the tested cases. The upper picture shows the result of the cervical
cancer case, and the lower picture shows the result of the endometrial cancer case

could be added to the training set to further improve
the generalization performance of the model in future
studies. Secondly, to accelerate the training process, we
first down-sampled the slice of 3D volume to 256 x 256,
and then clip the data to 128 x 128. The clipped data
contain main information without enormous unneces-
sary voxel. During testing phase, we can apply data
with slice size of 256 x 256 or 512 x 512 since our
model is a fully convolutional network. However, this clip
operation may miss some information of 3D volume

which may degrade the model performance. Thirdly, it is
difficult to predict a personalized dose distribution for a
specific patient using this model. For example, in clinical
practice, clinicians may prefer to preserve the patient’s
rectum or bladder, and the model cannot create such a
specific plan for rectum sparing or bladder sparing. In
future work, the dose distribution of some specific plans
such as rectum sparing or bladder sparing plans should
be included to create a specific deep learning model
to meet certain preferences. The maximum standard
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deviation of MAE was about 3% and 5% for only a few
cervical cancer and endometrial cancer patients and
less than 3% for the majority of the tested patients for
both cervical and endometrial cancer, which is similar or
better than previous studies. The big error mainly
occurred in the cases with different target and OARs
configuration from the majority cases. In addition, the
contour variations within or between institutions may
also influence the model performance, which is a future
work we will consider.

5 | CONCLUSION

A deep learning dose prediction model based on 3D-
Unet for cervical cancer VMAT plans was developed and
evaluated. The model can accurately predict the clinical
dose distribution for cervical cancer. It can also be gener-
alized to endometrial cancer cases with equivalent per-
formance.
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