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Innate Lymphoid Cells in Response
to Intracellular Pathogens: Protection
Versus Immunopathology
Anna A. Korchagina, Ekaterina Koroleva and Alexei V. Tumanov*

Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio,
San Antonio, TX, United States

Innate lymphoid cells (ILCs) are a heterogeneous group of cytokine-producing
lymphocytes which are predominantly located at mucosal barrier surfaces, such as
skin, lungs, and gastrointestinal tract. ILCs contribute to tissue homeostasis, regulate
microbiota-derived signals, and protect against mucosal pathogens. ILCs are classified
into five major groups by their developmental origin and distinct cytokine production. A
recently emerged intriguing feature of ILCs is their ability to alter their phenotype and
function in response to changing local environmental cues such as pathogen invasion.
Once the pathogen crosses host barriers, ILCs quickly activate cytokine production to
limit the spread of the pathogen. However, the dysregulated ILC responses can lead to
tissue inflammation and damage. Furthermore, the interplay between ILCs and other
immune cell types shapes the outcome of the immune response. Recent studies
highlighted the important role of ILCs for host defense against intracellular pathogens.
Here, we review recent advances in understanding the mechanisms controlling protective
and pathogenic ILC responses to intracellular pathogens. This knowledge can help develop
new ILC-targeted strategies to control infectious diseases and immunopathology.
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INTRODUCTION

Numerous human infectious diseases are caused by intracellular pathogens that include bacteria, fungi,
parasites, and viruses. In the majority of cases, infection is controlled by the host immune system which
leads to the clearance of the pathogen in a relatively short period of time. However, infections with some
intracellular pathogens result in long lasting course of disease accompanied by severe chronic
inflammation with high morbidity and mortality, especially in individuals with compromised immune
Abbreviations: ILCs, innate lymphoid cells; NK cells, natural killer cells; Th1, type 1 T helper cells; Th0, naïve T cells; IFNg,
interferon gamma; NCR, natural cytotoxicity receptor; T-bet, the interferon-g inducible T-box transcription factor; RORgt,
retinoic acid-related orphan receptor gt; M1, M1 type macrophage; iNOS, inducible nitric oxide synthase; ROS, reactive oxygen
species; APC, antigen-presenting cell; MHC, major histocompatibility complex; LTa1LTb2, heterotrimeric lymphotoxin
complex; CCL2, C-C motif ligand 2; CXCL10/11, C-X-C motif chemokine ligand 10/11; LTbR, lymphotoxin beta receptor; LT,
lymphotoxin; LIGHT, lymphotoxin-like inducible protein that competes with glycoprotein D for herpes virus entry on T cells;
HVEM, herpes virus entry mediator; MLN, mesenteric lymph node; IDO, indoleamine 2,3-dioxygenase; iBALT, inducible
bronchus-associated lymphoid tissue; T. gondii, Toxoplasma gondii; C. jejuni, Campylobacter jejuni; Y. enterocolitica, Yersinia
enterocolitica; Mtb, Mycobacterium tuberculosis; C. muridarum, Chlamydia muridarum; C. rodentium, Citrobacter rodentium.
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system (Thakur et al., 2019). Traditionally, intracellular pathogens are
categorized into two groups based on their dependence on host cells:
facultative and obligate intracellular pathogens (Leon-Sicairos et al.,
2015; Casadevall and Fang, 2020). Facultative intracellular pathogens
are capable of surviving and replicating both inside and outside the
cell, whereas obligate intracellular pathogens entirely rely on
intracellular resources of the host cell to reproduce and grow
(Leon-Sicairos et al., 2015; Casadevall and Fang, 2020). Most
pathogens invade the host through the barrier and mucosal
surfaces such as skin, respiratory, reproductive, and digestive tracts.
Pathogen invasion leads to acute inflammation, which is
characterized by immediate and non-specific production of
cytokines and chemokines, directing the innate lymphoid cells
(ILCs) to the site of inflammation. Controlled acute immune
response usually results in pathogen elimination and restoration of
tissue homeostasis. However, dysregulated immune response that
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
persists for a long time without resolution can lead to tissue damage
and chronic inflammation.

Interferon gamma (IFNg) is known as one of the key cytokines
which modulates the innate and adaptive immune responses against
intracellular pathogens (Schroder et al., 2004; Kak et al., 2018).
Although the majority of studies have been focused on the role of
IFNg-producing T cells in host protection against intracellular
pathogens, recent studies revealed the crucial role of ILCs in
orchestrating type I immunity to pathogens. ILCs are an emerging
heterogeneous family of tissue-resident innate lymphocytes that are
critical for maintaining mucosal tissue homeostasis and promoting
early immune response during inflammation (Vivier et al., 2018).
Mirroring the subsets of CD4+ effector T cells, ILCs are classified into
five major groups: Natural killer cells (NK), group 1 ILCs (ILC1),
group 2 ILCs (ILC2), group 3 ILCs (ILC3) and lymphoid tissue-
inducer cells (LTi) (Vivier et al., 2018) (Figure 1). ILCs are enriched
FIGURE 1 | Classification of innate lymphoid cells. ILCs can be divided into 5 main subsets (NK cells, ILC1, ILC2, ILC3 and LTi cells) based on the differentiation stages,
signature transcriptional factors and function. All ILCs develop from common lymphoid progenitor (CLP), which gives rise to three main subtypes of ILCs precursors: NK cell
precursor (NKP), innate lymphoid cell precursor (ILCP), and lymphoid tissue inducer progenitor (LTiP). NKPs give rise to NK cells, ILCPs to ILC1s, ILC2s, and ILC3s, LTiPs – to
LTi cells. Development and function of each ILC subset depends on corresponding specific transcriptional factors. Main signature transcriptional factors are illustrated: Eomes
(Eomesodermin), T-bet (T-box transcriptional factor), GATA3 (GATA binding protein 3), RORgt (RAR-related orphan receptor gt). Additional transcriptional factors participate in
subsequent cell lineage differentiation: ID2, PLZF, TCF7, TOX, NFIL3, RORa, AHR, RUNX3, BCL11b and others (not shown). IL-15 is required for the development of NK cells
and ILC1s, whereas IL-7 and IL-2 are required for the development of ILC2s and ILC3s. NK cells and ILC1s contribute to defense against intracellular bacteria by producing
TNF and IFNg. NK cells are the cytotoxic ILCs which require Eomes for their development. Both ILC1s and NK cells express T-bet and produce IFNg as a signature cytokine.
ILC2 subsets contribute to immunity against large extracellular parasites and allergens by producing type 2 cytokines IL-13, IL-9, IL-10, IL-5. ILC2s are defined by high KLRG1
and GATA3 expression. Inflammatory and conventional ILC2s are classified based on response to IL-25 and IL-33 cytokines, respectively. ILC3s and LTis require RORgt
expression for their development. ILC3s contribute to immune response against extracellular pathogens. ILC3 subsets include natural cytotoxicity receptor (NCR)+ ILC3s, NCR-

ILC3s, and NCR+ILC1s derived from NCR-ILC3s due to plasticity (ex-ILC3s). IL-22, IL-17 and membrane lymphotoxin LTa1LTb2 are key cytokines produced by ILC3s. In
contrast to ILC3s, LTis express CCR6+ and CD4 but lack NCR. LTi contribute to the development of lymph nodes and gut-associated lymphoid tissues by expressing
membrane lymphotoxin LTa1LTb2 complex.
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at mucosal surfaces, where they are located in close proximity to
epithelial surfaces and rapidly initiate cytokine production in
response to tissue damage and invading pathogens. The role of
ILCs in regulation of protective responses to pathogens has been
discussed in recent reviews (Beck et al., 2020; Seo et al., 2020).
However, accumulating evidence suggests that dysregulated ILC
responses can result in tissue damage and immunopathology
(Buonocore et al., 2010; Vonarbourg et al., 2010; Bernink et al.,
2013; Klose et al., 2013; Munoz et al., 2015; Muraoka et al., 2021).
Additionally, dysregulation of ILCs can lead to chronic inflammation
and autoimmunity, promoting diseases such as psoriasis (Villanova
et al., 2014; Ward and Umetsu, 2014; Bielecki et al., 2021), atopic
dermatitis (Brüggen et al., 2016), asthma (Cayrol and Girard, 2019)
and inflammatory bowel disease (IBD) (Bernink et al., 2013; Bernink
et al., 2015; Forkel and Mjosberg, 2016; Forkel et al., 2019). The
mechanisms controlling the balance between protective and
pathogenic responses mediated by ILCs remain poorly understood.
In this review, we will focus on recent updates in ILC-dependent
mechanisms that control protective and pathogenic responses
induced by intracellular pathogens.
ILC SUBSETS IN HOMEOSTATIC
CONDITIONS AND DISEASE

NK cells and ILC1s contribute to immune response against
intracellular pathogens by producing TNF and IFNg (Vivier
et al., 2018; Seo et al., 2020). NK cells were initially included in
the ILC1 group because of the similarities between NK cells and
ILC1s. Thus, both populations express transcription factor T-bet
and produce IFNg in response to IL-12 stimulation. IL-15 is
required for differentiation, homeostasis, and function of NK
cells and ILC1s (Daussy et al., 2014). In addition to IFNg, both
NK cells and ILC1s can rapidly produce TNF in response to
intracellular pathogens (Vivier et al., 2018; Seo et al., 2020).
Similarly to NK cells, ILC1s express natural cytotoxicity
receptors (NCRs) including NK1.1 and NKp46 (Fuchs et al.,
2013). However, in contrast to NK cells, ILC1s require T-bet for
their development, whereas NK cells need T-bet only for
maturation but require Eomes for their differentiation (Gordon
et al., 2012; Daussy et al., 2014). Moreover, NK cells and ILC1s
arise from the different subpopulations of common lymphoid
progenitors (CLPs): NK cells develop from NK cell precursors
(NKP), whereas ILC1, 2, and 3 develop from innate lymphoid
cell precursors (ILCP) (Klose et al., 2014; Vivier et al., 2018)
(Figure 1). Therefore, based on the emerging functional,
transcriptional, and epigenetic analyses of NK cells and ILC1s,
they are now considered as distinct lineages within the
ILC family.

ILC2s are essential for control of helminth infections (Neill
et al., 2010; Price et al., 2010) and tissue repair (Palm et al., 2012)
and are involved in pathogenesis of asthma and allergy (Ho et al.,
2015; Silver et al., 2016; Xiao et al., 2021) by secretion of type 2
cytokines IL-5, IL-9 and IL-13. Moreover, IL-2 and IL-7 are
required for both ILC2s and ILC3s development and function
(Vivier et al., 2018). ILC2s require the transcription factors
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
GATA3 and RORa for their development and maintenance
(Mjosberg et al., 2012; Wong et al., 2012; Walker and
McKenzie, 2013; Ferreira et al., 2021). ILC2s are classified into
two subtypes based on their response to distinct cytokines.
Inflammatory ILC2 (iILC2s) respond to IL-25 and contribute
to helminth expulsion, whereas natural ILC2s (nILC2s) are
mainly present at a steady state and respond to IL-33 (Huang
et al., 2015; Huang and Paul, 2016). Recently, a new population
of ILC2s was identified in the lungs, which can produce IL-10 in
response to IL-33 (Seehus et al., 2017; Golebski et al., 2021;
Howard et al., 2021). IL-10-producing ILC2s are characterized
by decreased expression of proinflammatory genes and have
reduced ability to recruit eosinophils to the lungs (Seehus et al.,
2017). Moreover, these cells have a distinct transcriptional profile
which separates them from recently identified IL-10 producing
ILCs in the gut named ILCregs (Seehus et al., 2017). Recent
studies showed that ILC2s can upregulate the expression of T-bet
and acquire ILC1-like effector program in inflamed lung tissue of
patients with chronic obstructive pulmonary disease (COPD) as
well as in inflamed nasal tissue (Bal et al., 2016; Silver et al.,
2016). However, IL-10-producing ILC2s fail to acquire T-bet and
IFNg expression upon IL-33-mediated activation, suggesting that
they are distinct from IFNg-producing ILC1-like cells (Seehus
et al., 2017). Additionally, a recent study demonstrated that
human ILC2s produce IL-10 to maintain epithelial integrity
upon allergen exposure and can inhibit Th2 responses in an
IL-10-dependent manner (Golebski et al., 2021). Although ILC2s
have been extensively studied in the lungs, limited data is
available on the role of ILC2s in the intestine. So far, the
protective role of ILC2s activated by IL-33 was demonstrated
in DSS colitis model (You et al., 2020; Ngo Thi Phuong et al.,
2021) in which activated ILC2s produced IL-13 thereby inducing
goblet cell expansion and intestinal barrier repair (Klose et al.,
2017). Additionally, IL-13 from ILC2s may promote M2
macrophage polarization leading to reduced intestinal
inflammation (You et al., 2020). However, the role of ILC2s in
intestinal inflammation in humans remains largely unexplored.
An increased ILC2 numbers have been reported in IBD patients
(Lim et al., 2016; Forkel et al., 2019). Recent study revealed an
increase of SLAMF1+ (Signaling Lymphocytic Activation
Molecule Family Member 1) ILC2s in the intestine of Crohn’s
disease patients compared to healthy individuals (Mazzurana
et al., 2021). Moreover, the frequency of SLAMF1+ ILC2s
negatively correlated with disease progression (Mazzurana
et al., 2021). Another study found that SLAMF1 expression
was associated with IL-13 expression by ILC2s in the lung
(Mazzurana et al., 2021). However, IL-13-producing ILC2s
from intestinal samples of Crohn’s disease patients can also
produce IFNg (Lim et al., 2016), which could contribute to
intestinal pathology. Thus, the role of ILC2s in intestinal
inflammation needs to be further clarified.

Several studies showed that ILC2s activation can be
controlled by neuroregulators such as neuromedin U (NMU)
(Nagashima et al., 2019; Pu et al., 2021). ILC2s are located in
close proximity to cholinergic neurons that secrete NMU in the
intestine and lungs (Cardoso et al., 2017; Klose et al., 2017;
December 2021 | Volume 11 | Article 775554
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Wallrapp et al., 2017). ILC2s express high levels of NMU
receptor, Nmur1, which is required to induce type 2 cytokines
for protection against worm infection in the lungs and intestine
(Cardoso et al., 2017; Wallrapp et al., 2017). Interestingly, NMU
triggers immediate production of IL-5, IL-13 and IL-9 by ILC2s,
whereas IL-33 and IL-25 stimulation delays activation of ILC2s,
suggesting rapid neuronal-dependent activation of immune
mechanisms in response to changing environmental cues
(Cardoso et al., 2017; Klose et al., 2017). Additionally, ILC2s
activated by NMU produce IL-9, which in turn induces
expansion of IL-17A-producing gd T cells in the lung during
sepsis (Chen et al., 2021). NMU regulates ILC2 protective
responses through induction of IL-10, which inhibits IL-33-
mediated eosinophil recruitment to the lungs (Bando et al.,
2020). Another neuropeptide, Calcitonin gene-related peptide
(CGRP), suppresses IL-33- and NMU-activated ILC2s
proliferation and IL-13 production but promotes IL-5 secretion
during helminth infection (Vivier et al., 2009; Nagashima et al.,
2019). These studies demonstrate the complexity of
neuropeptide- ILC2s interactions, which are context- and
tissue-dependent.

Recent findings indicate that ILC2s can migrate from the
intestine to the lungs in response to helminth infection or
cytokine stimulation (Huang et al., 2018; Pu et al., 2021).
Moreover, gut microbiome can influence the immune
responses locally or systemically. Stomach microbiota induces
IL-7 and IL-33 production, leading to expansion of ILC2s. In
turn, ILC2s produce IL-5 for IgA-mediated control of
Helicobacter pylori in the stomach (Satoh-Takayama et al.,
2020). Gut microbiota can also contribute to asthma
development in infants via regulation of ILC2s effector
function (Chua et al., 2018). Intestinal dysbiosis activates colon
epithelial cells to secrete IL-33, IL-25 and TSLP, leading to IL-13
production by ILC2s to induce migration of dendritic cells and
differentiation of Th2 cells (Chua et al., 2018). IL-5 produced by
ILC2s and Th2 cells recruits eosinophils to colon and lungs,
thereby promoting asthma development (Chua et al., 2018).
While the detailed mechanism of microbiota-mediated
regulation of ILC2s migration from the gut to the lungs
remains to be determined, it has been recently demonstrated
that IL-33/CXCL16 axis regulates migration of nILC2 to the
lungs, whereas IL-25/CCL25 axis facilitates migration of iILC2s
to the intestine during infection (Pu et al., 2021).

ILC3s predominantly respond to extracellular pathogens and
fungi by producing type 3 cytokines (IL-22, IL-17) and
lymphotoxin (LT) (Colonna, 2009; Vivier et al., 2009;
Tumanov et al., 2011; Kruglov et al., 2013). The development
and differentiation of ILC3s is dependent on the constitutive
expression of transcription factor retinoic acid-related orphan
receptor gt (RORgt). Accordingly, RORgt-deficient mice lack
ILC3s (Cupedo et al., 2009; Sanos et al., 2009; Buonocore et al.,
2010). ILC3s express the membrane complex LTa1LTb2 and
soluble LTa3, which signal to lymphotoxin beta receptor (LTbR)
and TNFRs respectively (Tumanov et al., 2011; Kruglov et al.,
2013). LTa1LTb2 is not required for the development of ILC3s
and LTi cells but contributes to IL-22 production by these cells
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
via ILC3s interactions with dendritic cells and intestinal
epithelial cells (Tumanov et al., 2011; Macho-Fernandez et al.,
2015). Accordingly, mice lacking LTb on ILC3s fail to produce
IL-22 in response to the mucosal bacterial pathogen Citrobacter
rodentium (C. rodentium) and succumb to infection (Wang et al.,
2010; Tumanov et al., 2011). LT expression by ILC3s also
controls the development of NK cells via LTbR signaling on
stromal cells (Kim et al., 2014; Shou et al., 2021). Additionally,
aryl hydrocarbon receptor (Ahr) controls the maintenance and
postnatal expansion of ILC3s (Kiss and Diefenbach, 2012; Klose
et al., 2013). ILC3s are divided into at least two subsets based on
expression of natural cytotoxicity receptor (NCR): NCR+ILC3s
and NCR-ILC3s. NCR+ILC3s require T-bet for their
differentiation from NCR-ILC3 precursor cells (Cupedo et al.,
2009; Sanos et al., 2009; Klose et al., 2013). Moreover, ILC3s can
undergo conversion toward ILC1s (Klose et al., 2013; Bernink
et al., 2015). The plasticity between ILC populations is controlled
by distinct cytokines and transcription factors (Bal et al., 2020).
For example, NCR-ILC3 to NCR+ILC1 plasticity is controlled by
the balance of RORgt and T-bet (Vonarbourg et al., 2010; Bal
et al., 2020).

LTi cells are critical for the development of lymph nodes and
Peyer’s patches (PP) during embryogenesis (Mebius et al., 1997;
Eberl et al., 2004). Expression of surface LTa1LTb2 complex on
LTi cells is critical for the development of lymph nodes, PPs,
isolated lymphoid follicles, and cryptopatches in the intestine via
interactions with LTbR on lymphoid tissue organizer cells (Bar-
Ephraïm and Mebius, 2016; Onder and Ludewig, 2018).
Accordingly, mice lacking surface lymphotoxin on LTi cells fail
to develop lymph nodes and gut-associated lymphoid tissues
(Kruglov et al., 2013). Fetal LTi cells are replaced by bone-
marrow derived hematopoietic stem cells during adulthood
(Simic et al., 2020; van de Pavert, 2021). However, the role of
LTi cells in mucosal immune response in adulthood remains
poorly understood. CCR6+LTi-like cells are the adult
counterpart of LTi cells, which participate in formation of
isolated lymphoid follicles and cryptopatches via LTa1LTb2
expression and remodeling of secondary lymphoid organs
during infection and inflammation (Scandella et al., 2008;
Colonna, 2009; Vivier et al., 2009). Additionally, ILC3s can
regulate adaptive immune response directly by cell contact-
dependent interactions or indirectly via cytokine production
(Hepworth et al., 2013; Hepworth et al., 2015; Castellanos
et al., 2018; Rao et al., 2020).

ILC3s play a critical role in maintaining epithelial cells integrity
during homeostasis and regulate rapid repair of epithelial barrier
during inflammation (Vivier et al., 2018). ILC3s can be activated by
multiple signals including cytokines, metabolites, microbial and
neuronal signals (Chun et al., 2019). Myeloid-derived IL-23 and
IL-1b activate ILC3s to produce IL-22 that targets epithelial and
stromal cells to induce proliferation and release of antimicrobial
peptides in response to C. rodentium (Tumanov et al., 2011; Qiu
et al., 2012; Melo-Gonzalez and Hepworth, 2017). Glial cell-derived
neurotrophic factor family ligands through neuroregulatory receptor
RET promote IL-22 secretion by ILC3s (Ibiza et al., 2016). ILC3s also
secrete IL-22 in response to vasoactive intestinal peptide (VIP)
December 2021 | Volume 11 | Article 775554
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produced by enteric neurons via VIPR2 (Seillet et al., 2020; Talbot
et al., 2020). Recent studies revealed additional pathways which
contribute to IL-22 production by ILC3s. Epithelial cell-derived IL-
17D can induce IL-22 production by ILC3s through CD93 receptor
during physiological and pathological conditions (Huang et al.,
2021). Additionally, in response to bacterial metabolites such as
short-chain fatty acids, free fatty acid receptor 2 (Ffar2) on colonic
ILC3s contributes to IL-22 production (Chun et al., 2019). Besides
the essential role of ILC3s in tissue repair, ILC3s can directly
recognize neutrophil apoptosis during intestinal inflammation and
after skin damage (Wang et al., 2021). Neutrophils, which undergo
apoptos i s dur ing intes t ina l inflammat ion , re lease
lysophosphatidylserine which can be sensed by ILC3s through
GPR34 resulting in IL-22 production (Wang et al., 2021).
Accordingly, mice lacking CD93, GPR34, or Ffar2 expression on
ILC3s showed reduced IL-22 levels in the colon and increased
bacterial burden following C. rodentium infection, although mice
were able to survive the infection (Chun et al., 2019; Huang et al.,
2021; Wang et al., 2021). Thus, multiple redundant pathways
regulate IL-22 production by ILC3s to ensure robust IL-22
response to protect against mucosal pathogens and tissue damage.

Dynamic changes caused by chronic inflammation can result
in phenotypical and functional changes in ILCs composition
thereby contributing to disease pathology in patients with IBD
(Geremia et al., 2011; Bernink et al., 2013; Bernink et al., 2015;
Forkel et al., 2019). For example, number of ILC1s is increased
whereas NCR+ILC3 subset is reduced in inflamed tissue of IBD
patients (Takayama et al., 2010; Bernink et al., 2013; Forkel et al.,
2019) and changes in ILCs composition correlated with disease
severity (Forkel et al., 2019). Physiologically, ILC2s represent the
major ILC subset in the skin, however during chronic
inflammatory skin disease ILC2s undergo transition to ILC3s
(Bielecki et al., 2021). Moreover, psoriasis patients treated with
TNF blockers display reduced numbers of ILC3s suggesting their
role in psoriasis pathogenesis (Villanova et al., 2014). In contrast
to psoriasis, ILC2s are increased in patients with atopic
dermatitis and ILC2s promote atopic dermatitis-like lesions in
mouse models (Kim et al., 2013; Salimi et al., 2013; Imai et al.,
2019). Thus, these studies suggest that the plasticity or disbalance
between ILC subsets can contribute to pathogenesis of
inflammatory diseases.
PROTECTIVE AND PATHOGENIC
EFFECTS OF IFNg PRODUCED
BY ILCs IN RESPONSE TO
INTRACELLULAR PATHOGENS

IFNg can be synthesized by various immune cells such as NK
cells and antigen-specific T cells (Okamura et al., 1998; Frucht
et al., 2001). However, recent studies demonstrated that ILC1s
and ILC3s can also secrete IFNg in response to activation (Vivier
et al., 2018). Accumulating evidence suggests that IFNg produced
by ILCs contributes to early host defense against pathogens,
whereas IFNg produced by T cells is critical for adaptive immune
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
response. IFNg secreted at early stages of infection enhances
antigen presentation by antigen-presenting cells (APCs), such as
macrophages and dendritic cells, by inducing MHC expression
(Amaldi et al., 1989; Steimle et al., 1994; Xaus et al., 2000;
Schroder et al., 2004). Additionally, APCs secrete IL-12, IL-15,
and IL-18, which stimulate IFNg secretion at the infection site.
Moreover, IL-12 can synergize with IL-18 to enhance IFNg
production (Okamura et al., 1998; Tominaga et al., 2000;
Frucht et al., 2001; Tait Wojno et al., 2019). IFNg production
by ILCs is strictly regulated by lineage-defining and signal-
dependent transcriptional factors and cytokines (Mikami et al.,
2018; Stabile et al., 2018). IL-12 binding to IL-12 receptor leads to
STAT4 phosphorylation and induction of IFNg expression.
Moreover, IFNg production by ILC1s and NCR+ILC3s is
amplified by high levels of STAT4 expression induced by T-bet
(Mikami et al., 2018; Yin et al., 2018). Additionally, coordinated
expression of STAT4 and T-bet induces IFNg production by
ILC3s after IL-23 activation (Mikami et al., 2018). Furthermore,
Runx3 transcriptional factor modulates IL-12/STAT4 axis to
promote secretion of IFNg by ILCs during bacterial infection
(Yin et al., 2018). Bacterial lipopolysaccharides and other
pathogen-associated molecular patterns directly induce IL-12
production by activated monocytes, macrophages, neutrophils
and dendritic cells. In turn, IL-12 can further amplify IFNg by
ILCs and T cells (Darwich et al., 2009; Tait Wojno et al., 2019)
(Figure 2). Although both human and mouse ILCs express TLRs
(Crellin et al., 2010; Maggi et al., 2017), it has yet to be
demonstrated if activation of TLRs can directly induce IFNg
production by ILCs. IFNg stimulates expression of CXCL9,
CXCL10, and CXCL11 chemokines which promote CXCR3-
dependent recruitment of T cells and ILCs (Metzemaekers
et al., 2017). In addition, IFNg activates macrophages, leading
to increased phagocytosis as well as enhanced production of
reactive nitric oxide (NO), and indoleamine 2,3-dioxygenase
(IDO)-mediated tryptophan depletion (Decker et al., 2002;
Popov et al., 2006) (Figure 2). NO is generated in immune
cells from L-arginine and oxygen via inducible NO synthase
(iNOS) (Bogdan, 2015). iNOS contributes to protection against
intracellular pathogens such as Toxoplasma gondii (Dunay and
Diefenbach, 2018), Listeria monocytogenes (Lu et al., 2015),
Mycobacterium tuberculosis (Pahari et al., 2016; Braverman
and Stanley, 2017) and Salmonella typhimurium (Yadav et al.,
2020), as mice with inactivation of Nos2 gene are highly
susceptible to these infections. The induction of IDO1 and
consequent tryptophan degradation is an effective antimicrobial
mechanism accelerated in response to IFNg. For instance, IDO1
activation is an effective inhibitor of T. gondii replication (Dunay
and Diefenbach, 2018), while IDO was shown to be not essential
for control of M. tuberculosis (Blumenthal et al., 2012).

In contrast to protective effects of IFNg in response to
intracellular pathogens, an increased or prolonged IFNg
production results in tissue damage. For example, during the onset
of inflammation, IFNg promotes epithelial cell proliferation through
activation of AKT-b-catenin signaling pathway, which is potentiated
by TNF (Nava et al., 2010). However, extended IFNg and AKT-b-
catenin activation inhibits epithelial cell proliferation and induces
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apoptosis by activating Wnt inhibitor DKK1 (Nava et al., 2010).
Increased IFNg production can also induce depletion of Paneth cells
which produce cytotoxic antibacterial proteins and promote
proliferation of Lgr5+ intestinal stem cells (Eriguchi et al., 2018).

Epithelial barrier integrity is critical to restrict entrance of
pathogens to the host and maintain tissue homeostasis.
Intercellular tight junctions are critical for the maintenance of
epithelial homeostasis (Chelakkot et al., 2018). Altered tight
junction complexes result in increased epithelial cell permeability
to pathogens and commensal bacteria, leading to altered barrier
functions, production of inflammatory cytokines, and tissue
damage (May et al., 1993; Zeissig et al., 2007; van der Gracht
et al., 2016). Activation of IFNg signaling in epithelial cells can
result in the weakening of intercellular tight junctions, thereby
promoting permeability of the epithelial barrier. Indeed, biopsy
samples from IBD patients demonstrated disrupted tight junctions
and increased epithelial cell permeability (Schmitz et al., 1999;
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
Zeissig et al., 2007; Ahmad et al., 2017; Odenwald and Turner,
2017). In addition to impaired tight junctions, high rates of
apoptosis in epithelial cells are also linked to IBD development
(Zeissig et al., 2007; Chelakkot et al., 2018). Collectively, IFNg
orchestrates numerous protective pathways to maintain tissue
homeostasis and induce rapid immune response to reduce
microbial burdens. However, excessive production of IFNg can
lead to exacerbation of immune response, tissue damage, and
chronic inflammation (Figure 2).
ILCs IN IMMUNE RESPONSE TO
INTRACELLULAR PATHOGENS

Toxoplasma gondii
Toxoplasma gondii (T. gondii) is an obligate protozoan parasite
that can infect all warm-blooded vertebrates and cause
FIGURE 2 | Role of IFNg in protective and pathogenic responses to intracellular pathogens. The IFNg-mediated effects are context-dependent and can contribute to
both pathogen clearance and tissue damage. NK cells, ILCs and T cells are primary producers of IFNg under inflammatory conditions. 1) IFNg induces polarization of M1
macrophages that produce high levels of reactive oxygen species (ROS) and nitric oxide (NO) which results in death of pathogen-infected cells and tissue damage. 2)
IFNg stimulates antigen-presenting cells to produce IL-12, which in turn induces more IFNg production by ILCs, NK and T cells through a positive feedback loop. 3) IFNg
induces MHC I and MHC II expression which promotes antigen presentation. IFNg stimulates: 4) Th1 T cell polarization, 5) proliferation of epithelial cells and 6) expression
of inducible CXCL9, CXCL10, CXCL11 chemokines that recruit various immune cells via CXCR3. However, sustained activation of IFNg-R signaling can lead to chronic
inflammation and tissue damage. 7) IFNg regulates epithelial barrier permeability by altering intercellular tight junctions leading to increased permeability to intestinal
bacteria and pathogens. 8) IFNg can exacerbate intestinal inflammation through inhibition of epithelial cell proliferation and promotion of apoptosis. Green/red arrows
indicate protective/pathogenic responses.
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toxoplasmosis (Konradt et al., 2016; Dunay and Diefenbach,
2018). Infection with T. gondii may lead to parasite
dissemination to the central nervous system and muscle tissue
where T. gondii converts to bradyzoite-containing cysts that
remain lifelong in the host (Konradt et al., 2016; Dunay and
Diefenbach, 2018).

IFNg and IL-12 production is critical for protection against
T. gondii, as IFNg-/- mice or IL12p35-/- mice succumb to
infection (Suzuki et al., 1988; Scharton-Kersten et al., 1996;
Lieberman et al., 2004). Activation of DCs, macrophages, and
neutrophils in response to T. gondii results in the production of
proinflammatory cytokines, including IL-12, which primes NK
cells, ILCs, and T cells to secrete IFNg (Gazzinelli et al., 1994;
Mashayekhi et al., 2011) (Figure 3). While NK cells are
important for host resistance at early onset of T. gondii-
mediated disease, adaptive immunity mainly contributes to
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
protection during chronic phase of infection (Denkers et al.,
1993). NK cells produce IFNg which induces parasite destruction
(Denkers et al., 1993; Yarovinsky, 2014). Insufficient IFNg
production by NK cells during T. gondii infection is associated
with reduced numbers of IFNg-producing CD4+ and CD8+ T
cells (Goldszmid et al., 2007; Ivanova et al., 2020). Additionally,
IFNg produced by NK cells promotes differentiation of
monocytes into inflammatory IL-12-producing DCs which
contribute to protection (Goldszmid et al., 2012). Recent
studies indicate that NK cells not only contribute to early
protection against T. gondii but can also inhibit CD8+ T cells
in chronic toxoplasmosis (Ivanova et al., 2020). Thus, it was
shown that during chronic T. gondii infection, NK cells had
reduced IFNg production and increased expression of CD107a –
a surface marker of NK cell activity (Ivanova et al., 2020).
Depletion of these NK cells with anti-NK1.1 antibody rescued
FIGURE 3 | ILCs regulate the immune response to Toxoplasma gondii. Control of parasite is associated with type 1 immune response. Upon infection, parasite
infects ileum enterocytes. In response to T. gondii invasion, epithelial cells release cytokines (IL-8, CCL5 and CCL3), which activate antigen-presenting cells,
particularly dendritic cells (DCs) and macrophages (MФ). Additionally, T. gondii can directly activate DCs and MФ through TLR11 and TLR12. Parasite recognition by
DCs leads to production of IL-12, which primes NK cells, ILCs and T cells to secrete IFNg. IFNg production leads to parasite clearance. Additionally, IFNg from ILC1s
induces transcriptional factor IRF8 for differentiation of type I conventional DCs. T. gondii infection drives plasticity of NK cells to ILC1-like cells by downregulating
expression of Eomes. In contrast, pathogenic IFNg promotes polarization of M1 macrophages. M1 macrophages produce more IL-12 leading to excessive activation
of CD4+ T cells that can lead to tissue damage. Moreover, upon T. gondii infection intestinal epithelial cells produce IL-18 that enhances IFNg induction. Additionally,
DCs-derived IL-23 synergizes with IL-18 to induce IL-22 production by ILC3s. ILC3-driven IL-22 enhances production of IL-18 by epithelial cells resulting in
amplification of pathogenic positive feedback loop that exacerbates Th1-induced immune response.
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chronic T. gondii infected mice from CD8+ T cell exhaustion-
dependent death (Ivanova et al., 2020). NK cell depletion
reduced CD8+ T cell apoptosis, indicating that NK cells can
contribute to CD8+ T cell exhaustion by promoting apoptosis
(Ivanova et al., 2020). However, the molecular mechanisms by
which NK cells inhibit CD8+ T cells remain unclear.

Recent studies demonstrated that along with NK cells, ILC1s
also contribute to host defense against T. gondii and to parasite
clearance (Klose et al., 2014; Lopez-Yglesias et al., 2021). Genetic
deletion of T-bet resulted in profound loss of IFNg production
due to a deficiency of ILC1s, despite unaffected NK cell numbers
in the small intestine during T. gondii infection (Klose et al.,
2014). Furthermore, these studies suggest that ILC1s are a
primary cellular source of IFNg in the small intestine rather
than NK cells or NKp46+NK1.1+ILC3s.

Inflammatory monocytes directly limit early T. gondii
replication, whereas DCs are the major cellular source of IL-12,
which is produced upon activation of pattern recognition
receptors by parasite (Dunay et al., 2008). More recently, it
became evident that ILC1s and NK cells promote the recruitment
of inflammatory monocytes and DCs to protect against T. gondii
(Goldszmid et al., 2012; Klose et al., 2014). Thus, T-bet-deficient
mice lacking IFNg-producing ILC1s showed significant
reduction of IRF8+ inflammatory DCs and succumbed to
T. gondii (Lopez-Yglesias et al., 2021). Moreover, infection
with T. gondii promotes stromal cells to produce IL-33,
which synergizes with IL-12 to amplify IFNg production by
ILCs for protection (Clark et al., 2021). These data suggest that
IL-12, IL-33 and IFNg mediate the crosstalk between ILC1s,
stromal cells and DCs to protect against T. gondii infection.

T. gondii infection results in immunopathology associated
with Th1 immune response (Yarovinsky, 2014; Dunay and
Diefenbach, 2018) (Figure 3). It is important to note that the
parasite dose, strain, and infection route can influence the
outcome of infection (Dunay and Diefenbach, 2018). Thus,
infections with low parasite cyst numbers (<20 cysts) or with
less virulent strains lead to protective Th1 immune response,
whereas oral infections with higher parasite doses cause
extensive production of proinflammatory cytokines, leading to
exacerbation of ileitis induced by T. gondii (Munoz et al., 2011).
These differences may explain contradictory reports on the role
of IL-22 and IL-18 in T. gondii-mediated intestinal pathology
(Munoz et al., 2009; Wilson et al., 2010; Munoz et al., 2015;
Couturier-Maillard et al., 2018). Thus, sustained IL-22 and IL-18
production promoted intestinal inflammation in the high dose
oral infection model, as IL-22-/- and IL-18-/- mice exhibited
significantly less infection-induced ileitis (Munoz et al., 2015).
However, there was no difference in tissue pathology and the
number of IFNg+ cells between WT and IL-22-/- mice following
low-dose of intraperitoneal infection with T. gondii (Wilson
et al., 2010). IL-18 is known to protect against intracellular
pathogens by amplifying IFNg production together with IL-12
(Frucht et al., 2001; Shtrichman and Samuel, 2001; Ivashkiv,
2018). However, excessive production of IL-18 by epithelial cells
after infection with high dose of T. gondii contributes to
intestinal pathology by inducing IFNg (Munoz et al., 2015). In
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contrast, IL-18 only slightly induces IFNg after low dose of
infection (Vossenkamper et al., 2004; Munoz et al., 2009;
Dunay and Diefenbach, 2018). Furthermore, after high dose of
oral T. gondii infection, IL-18 synergizes with IL-23 for
production of IL-22 (Munoz et al., 2015). DC-derived IL-23
induces IL-22 production by ILC3s. In turn, IL-22 induces IL-18
production by epithelial cells, thereby amplifying this pathogenic
feedback loop (Wilson et al., 2010; Munoz et al., 2015; Victor
et al., 2017) (Figure 3). Whether IL-22 can contribute to
T. gondii- induced intestinal pathology independently from IL-
18 remains unclear.

Recently the first study describing infection-induced
conversion of NK cells to ILC1-like cells was published in
T. gondii infection model (Park et al., 2019). A previous study
described the conversion of NK cells to ILC1-like cells within the
tumor microenvironment (Gao et al., 2017), but, in contrast to
tumor ILC1-like cells, T. gondii-induced ILC1-like cells were not
tissue-resident but were able to circulate under inflammatory
conditions (Park et al., 2019). Interestingly, ILC1-like cells were
maintained after the infection was cleared, similarly to immune
memory NK cells (Park et al., 2019). These findings suggest a
previously underappreciated plasticity between NK cells and
ILCs in immune response to T. gondii infection. The
physiological significance of NK cell conversion to ILC1-like
cells and the mechanisms that regulate this plasticity remain
unknown and require further studies.

Although NK cells and ILC1s are required for IFNg-
dependent resistance against T. gondii in mouse models, the
role of ILCs in human T. gondii infection and how findings in
mice translate to human diseases remains to be determined. Mice
as an intermediate T. gondii host potentially developed unique
resistance mechanism which could be different from response in
humans. Humanized animal models could provide a useful tool
to address the role of human ILCs in response to parasite. Recent
studies revealed that NK cells and ILC1s are present in the
central nervous system (CNS) of mice (Romero-Suárez et al.,
2019). Moreover, it has been shown that ILC1s can be recruited
to CNS during experimental autoimmune encephalomyelitis and
control the onset of neuroinflammation (Kwong et al., 2017).
Since previous studies of ILCs were mostly focused on the
periphery rather than CNS, it will be important to examine the
role of ILCs in cerebral toxoplasmosis.

Salmonella typhimurium
Salmonella is a facultative intracellular bacterium which causes
food-borne infectious gastroenteritis in humans called
salmonellosis. The clinical disease in humans and animals is
mainly caused by non-typhoidal Salmonella typhimurium and
S. enteritidis, and usually is self-limiting. However, the clinical
outcome of infection depends on the immunological status of
the individual and serovar of bacteria. Salmonella infection
can cause systemic disease that can be fatal, especially for
immunocompromised individuals (Pham and McSorley, 2015).
Although microfold cell (M cells) and DCs in PPs are the main
entry points for Salmonella, the bacterium can also use other
routes for invasion, such as intestinal epithelium, and can
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disseminate and replicate in the spleen, liver, and phagocytic cells
in bone marrow (Santos and Bäumler, 2004; Tahoun et al., 2012).

The innate immunity is essential for protection against
Salmonella infection (Pham and McSorley, 2015). Recent data
indicated that innate IFNg controls bacterial loads in the small
intestine and systemic bacterial dissemination (Songhet et al., 2011;
Kupz et al., 2013). Interestingly, NKp46+T-bet+ILCs are the primary
source of IFNg, whereas only a small fraction of NK cells contributes
to IFNg production (Klose et al., 2013). Cell fate-mapping
experiments revealed that the majority of NKp46+T-bet+ILCs
have a history of RORgt expression, suggesting that Salmonella
infection can induce transdifferentiation of NKp46-ILC3s to
IFNg-producing ILC1s (Klose et al., 2013) (Figure 4). T-bet is
required for conversion of NKp46+RORgt+ILCs from NKp46-

ILC3s because T-bet-deficient mice (Tbx21-/-) lack NKp46+T-
bet+RORgt+ILCs and have fewer IFNg-producing cells (Klose
et al., 2013). IL-12 is required for IFNg production by ILCs
after Salmonella infection (Klose et al., 2013). Although IL-12-/-

mice have normal numbers of T-bet+RORgt+ ILCs, IFNg
production in these mice is impaired (Klose et al., 2013). These
findings indicate that IFNg production by NKp46+RORgt+ ILC3s
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 9
is dependent on IL-12 and T-bet. Subsequent studies
demonstrated that IFNg production is dependent on the
transcriptional complex of T-bet and Runx3 (Yin et al., 2018).
Moreover, Salmonella infection induces Runx3 expression in
ILC1s and NCR+ILC3s, but not in NK cells (Yin et al., 2018).
Accordingly, genetic deletion of Runx3 in ILCs leads to high
susceptibility of mice to Salmonella infection accompanied by
decreased numbers of ILC1s and NCR+ILC3s (Yin et al., 2018).
Although IFNg produced by NKp46+RORgt+ ILCs contributes to
bacterial clearance, it can also induce epithelial damage, as
Tbx21-/- and Ifngr1-/- mice displayed reduced intestinal
pathology 48h after infection (Klose et al., 2013). Additionally,
IFNg produced by mucosal NK cells and T cells can delay the
resolution of intestinal inflammation by inducing STAT1
activation and blocking of IL-22-RegIIIb-mediated
antimicrobial defense (Dolowschiak et al., 2016). These studies
suggest that IFNg-producing ILCs can also contribute to intestinal
pathology during Salmonella infection (Figure 4).

NCR-ILC3s contribute to the protection against Salmonella by
producing IL-22, which in turn induces production of RegIIIb and
RegIIIg antibacterial proteins by epithelial cells (Goto et al., 2014).
FIGURE 4 | ILCs regulate the immune response to Salmonella typhimurium. Salmonella use microfold cells (M cells), intestinal epithelial cells as an entry point to
invade the host. Following ingestion, bacterium enters lamina propria, where it encounters dendritic cells (DCs) and macrophages (MФ) which can spread bacteria to
other tissues. Early control of S. typhimurium depends on the IFNg production from activated ILCs and NK cells. S. typhimurium induces transition of NCR-

RORgt+ILC3s to NCR+T-bet+ILC1s via NCR+T-bet+RORgt+ILC3s intermediates. IFNg plays a dual role in pathogenesis of Salmonella infection: it stimulates bacteria
clearance and activates mucus production but also induces tissue damage resulting in exacerbation of enterocolitis. A minor population of T-bet+ RORgt+ ILC3s can
also migrate to mesenteric lymph node where ILC3s along with NK cells produce IFNg. ILC3s can also contribute to protection against Salmonella via controlling
fucosylation of epithelial cells by producing IL-22 and membrane LTa1LTb2 lymphotoxin complex.
December 2021 | Volume 11 | Article 775554

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Korchagina et al. ILCs in Response to Intracellular Pathogens
Additionally, IL-22 stimulates expression of enzyme
fucosyltransferase 2 (Fut2), which is required for epithelial
fucosylation (Goto et al., 2014). Accordingly, RORgt-/- mice and
Fut2-/- mice display an increased susceptibility to Salmonella infection
(Goto et al., 2014). Interestingly, LTa-/- mice and mice treated with
LTbR-Ig inhibitor displayed reduced levels of Fut2 and fucosylation,
suggesting that LTbR signaling is required for epithelial fucosylation
(Goto et al., 2014). It is currently unclear whether LTbR signaling
directly regulates Fut2-dependent fucosylation in epithelial cells or
activates an indirect mechanism by inducing IL-22 production by
ILC3s (Figure 4). LT expression by ILC3s is known to enhance IL-22
production by these cells via crosstalk with IL-23-producing
mononuclear phagocytes and intestinal epithelial cells in response
to extracellular bacterial pathogen C. rodentium or epithelial injury
(Tumanov et al., 2011; Macho-Fernandez et al., 2015); however, it
remains to be determined whether similar ILC3-LT-dependent
mechanism is important for protection against Salmonella. A
recent study demonstrated that LT expression by both ILC3s and
B cells contributes to protection against Salmonella (Wroblewska
et al., 2017). It was also found that LTbR-/- mice display an impaired
production of IFNg in response to chronic Salmonella infection
(Wroblewska et al., 2017). Whether LT controls IFNg production by
ILCs or adaptive immune cells remains to be determined.

Although ILCs are largely tissue-resident cells, there is
emerging evidence that minor ILC populations can migrate to
and within the tissues in response to the local environmental
signals (Gasteiger et al., 2015; Kastele et al., 2021). A recent study
showed that a small ILC population can migrate from the
intestine to the mesenteric lymph node (MLN) in steady state
and under inflammatory conditions (Kastele et al., 2021).
Increased numbers of migratory RORgt+T-bet+ILCs were
found in the lymph nodes of Salmonella-infected mice, which
served as an early source of IFNg along with NK cells (Kastele
et al., 2021). However, the mechanism of ILC migration and its
role in the regulation of adaptive immune response during
inflammation remains poorly understood (Figure 4).

The major function of ILCs is to strengthen the epithelial barriers
through various mechanisms. IFNgwas shown to induce production
of mucins by goblet cells. Mucins form the inner mucus layer to
protect epithelial cells from bacterial invasion (Songhet et al., 2011;
Klose et al., 2013). A previous study demonstrated that MUC2-
deficient mice showed an increased susceptibility to Salmonella
infection (Zarepour et al., 2013). Fewer goblet cells filled with
mucus were observed after infection with Salmonella (Klose et al.,
2013). Moreover, Tbx21-/- mice, which lack IFNg-producing
Nkp46+RORgt+ILCs, showed a decrease in mucus secretion.
Experiments with depletion of ILCs revealed reduced IFNg and
mucus secretion after Salmonella infection (Klose et al., 2013). These
studies suggest that IFNg-producing ILCs regulate goblet cells in
response to Salmonella infection, although the detailed mechanism
of ILC-dependent mucus secretion remains to be determined.

In summary, IFNg-producing ILCs play a dual role in
Salmonella infection. IFNg production by ILCs is critical for
bacterial clearance in the gut and to restore the epithelial barrier.
However, IFNg from ILCs can also induce mucus production
and impair tight junction during infection, potentially leading to
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 10
an additional tissue damage. Additional mechanistic studies are
needed to dissect the role of ILC-produced IFNg in maintaining
the integrity of epithelial barrier during Salmonella infection.

Yersinia enterocolitica
Y. enterocolitica and Y. pseudotuberculosis are food-borne
enteropathogens which typically cause self-limiting infections
of GI tract (Hering et al., 2011; Bancerz-Kisiel et al., 2018).
However, in some cases these infections cause enteritis and
mesenteric lymphadenitis. Yersinia invades intestinal barrier
via M cells. After epithelial barrier invasion, bacteria replicates
within PPs and then disseminates to the major lymphatic organs,
particularly MLN in humans, as well as the spleen, liver, and
lungs in rodents (Handley et al., 2005).

A recent study revealed protective role of ILC3s in early host
response against Y. enterocolitica (Seo et al., 2018). Transfer of
CCR6- ILC3s, but not CCR6+ ILC3s, derived from small intestine
lamina propria of naïve Rag1-/- mice, rescued Rag2-/-Il2rg-/- mice
from rapid weight loss caused by Y. enterocolitica infection (Seo
et al., 2018). IFNg, but not IL-17A or IL-22, was critical for mice
survival (Seo et al., 2018). IFNg is predominantly produced by
NKp46-RORgt+ ILC3s and only a small fraction of ILC1s and NK
cells after Y. enterocolitica infection (Seo et al., 2018) (Figure 5). It
remains to be determined whether ILC3s undergo plasticity
during Y. enterocolitica infection to produce IFNg. Surprisingly,
IFNg production by ILC3s was dependent on LIGHT-HVEM
signaling (Seo et al., 2018). Although the cellular source of LIGHT
has not been identified in this study, it is known that all ILC
subsets in small intestine express LIGHT and HVEM, thus both
autocrine and paracrine mechanisms of HVEM activation are
possible (Seo et al., 2018). Interestingly, Y. pseudotuberculosis
infection is known to cause mesenteric lymphadenopathy due to
disruption of lymphatic system, which results in compromised
function of mucosal DCs shifted from MLN to adipose tissue
(Fonseca et al., 2015). Therefore, future studies are needed to
elucidate the role of ILCs in Yersinia-induced immunopathology
in different tissues.

Chlamydia Infection
Chlamydiae are obligate intracellular bacteria which can cause
persistent infection in mammals and birds (Yeruva et al., 2013;
Rank and Yeruva, 2014). Although in the majority of animals
Chlamydia resides in theGI tract and infections occur via oral-fecal
route (Yeruva et al., 2013; Rank and Yeruva, 2014), Chlamydia
trachomatis is associated with human genital infection and is a
leading cause of sexually transmitted bacterial diseases in humans
(Vasilevsky et al., 2014; Zhong, 2021). Most chlamydial infections
are asymptomatic andmaypersist in thegenital tract for a long time.
The data in humans suggest that Chlamydia can also establish an
infection in the GI tract and lungs (Rank and Yeruva, 2014; Howe
et al., 2019).C.muridarum is amouse pathogen commonly used to
study chlamydial genital infection. It also persistently colonizes the
intestine (Igietsemeet al., 2001;Yeruvaet al., 2013).Gastrointestinal
Chlamydia infection can spread to the genital tract, leading to
genital tract pathology (Dai et al., 2016; Tian et al., 2020; Zhong,
2021). In contrast, intestinal C. muridarum infection can protect
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mice against subsequent genital tract infection, which is dependent
on CD4+ T cells and B cells (Wang et al., 2018).

IFNg is critical for protection against Chlamydia infection
(Johansson et al., 1997; Perry et al., 1997; Mercado et al., 2021).
Although IFNg production by CD4+ T cells in response to
Chlamydia infection has been described (Johansson et al.,
1997; Perry et al., 1997), the role of distinct innate immune
cell populations remains poorly defined.

The ILC-dependent protective mechanisms vary depending on
the particular strain of Chlamydia and the route of infection. For
example, IFNg-producing NK cells are important for protection
from genital C. trachomatis but not from pulmonary infection
with C. pneumonia (Tseng and Rank, 1998; Rottenberg et al.,
2000). Early studies demonstrated that IFNg+ NK cells are
recruited to the site of C. trachomatis infection as early as 12
hours after intravaginal inoculation of immunocompetent hosts
and depletion of NK cells with anti-asialo-GM1 antibody led to
impaired IFNg production (Tseng and Rank, 1998). However,
other studies showed that Rag1-/- mice depleted of NK cells are
resistant to C. pheumoniae (Rottenberg et al., 2000; Rottenberg
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 11
et al., 2002). Since experimental strategies to deplete NK cells with
anti-NK1.1 and anti-asialo-GM1 antibodies can also target ILC1s
and ILC3s, the role of distinct ILC populations in immune
response to Chlamydia remained unclear.

Recent studies addressed the role of ILCs andNKcells inGI and
genital tract Chlamydia infection (Koprivsek et al., 2020; Xu et al.,
2020; Barth et al., 2021; He et al., 2021; Mercado et al., 2021)
(Figure 6). A study using a Chlamydia mutant strain, which is
unable to maintain long-lasting colonization in the GI tract,
demonstrated that IFNg-producing NK1.1+ILC3s can protect
against colonization of the colon (Koprivsek et al., 2020).
Furthermore, adoptive transfer of enriched ILC3s inhibited
colonization of C. muridarum in the colon and restored IFNg
production in IL7R-/- mice (He et al., 2021). Interestingly, it
appears that NK cells are dispensable for the clearance of bacteria
from the colon because adoptive transfer of RORgt+ILCs, but not
RORgt–ILCs, restored colonization resistance ofChlamydiamutant
in the colon (He et al., 2021). As someRORgt+ILCs expressed IFNg,
it was proposed that ex-ILC3s contribute to protection against
C.muridarummutant colonic colonization (He et al., 2021). Future
FIGURE 5 | ILCs regulate the immune response to Yersinia infection. Y. enterocolitica and Y. pseudotuberculosis invade host through microfold cells (M cells).
Bacteria replicate within Peyer’s patches after invasion and disseminate to mesenteric lymph nodes (MLN) and spleen. Protection against Yersinia is mediated by
IFNg production by ILC3s and ILC1s. HVEM signaling in NCR- ILC3s by LIGHT activates IFNg production. LIGHT is shown as a membrane bound form or secreted
homotrimer. Sustained inflammation triggered by Y. pseudotuberculosis can lead to disruption of MLN lymphatics and accumulation of neutrophils which alter
migration of DCs from MLN to mesenteric adipose tissue.
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cell fate mapping experiments will be required to test
this hypothesis.

ILCs were also found to protect against Chlamydia in the genital
tract (Xu et al., 2020; Mercado et al., 2021). Thus, Rag2-/-Il2rg-/-mice
lacking all ILCs subsets succumbed earlier to genital C. muridarum
infection compared to Rag1-/- mice (Mercado et al., 2021). Increased
bacterial titers were found in genital tracts of C. trachomatis-infected
Rag2-/-Il2rg-/-mice in comparison with Rag1-/- mice (Xu et al., 2020).
Depletion of NK1.1+ cells in Rag1-/- mice reduced IFNg production
and increased C. trachomatis titers in the endometrial tissue (Xu
et al., 2020). NK1.1+ cell population contains a mixture of NK cells,
ILC1s, and IFNg-producing NK1.1+T-bet+RORgt+ILC3s. In line
with this data, another study showed that ILCs can provide
a source of IFNg during C. trachomatis infection, as RORgt- and
T-bet-deficient mice showed an increased bacterial burden in the
genital tract (Xu et al., 2020). Additionally, depletion of NK1.1+ cells
with anti-NK1.1. antibody reduced IFNg production and increased
C. trachomatis burden in the endometrial tissue (Xu et al., 2020).
Recent comprehensive analysis of ILC populations by flow
cytometry during the course of genital C. muridarum infection
revealed that NK cells were the predominant ILCs, and they
expanded 2-3 fold during infection (from ~50,000 cells in naïve
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mice to 150,000 cells by day 30 post infection) (Barth et al., 2021).
ILC1s also expanded 5-10 fold (~4,000 cells in naïve mice to 20,000
cells by day 30). In contrast, ILC3 numbers remained very low
throughout the infection (100-400 cells per genital tract). The genital
tract also contained a small number of ILC2s (2000-3000 cells per
genital tract). Furthermore, cell fate-mapping experiments revealed
that only 10% of ILC1s had a history of RORgt expression (Barth
et al., 2021). It remains unclear whether these very small numbers of
ILC3s and ex-ILC3s could contribute to the protection against
genital Chlamydia infection. The mechanism leading to specific
expansion of ILC subsets in the genital tract remains to be
determined and could potentially include proliferation of tissue-
resident cells, recruitment, and differentiation. Although RORgt-
deficient mice showed increased bacterial titers in the genital tract
(Xu et al., 2020), other developmental defects in these mice, such as
lack of lymph nodes and gut-associated lymphoid tissues could
contribute to this phenotype. The role of ILC1s in protection is also
unclear, as only about 25% of ILC1s produced IFNg on day 4 after
infection, but almost none did on day 30, although the accumulation
of these cells in the genital tract continued until at least day 30 after
infection (Barth et al., 2021). The role of ILC1s in Chlamydia
infection remains contradictory, as NKp46-/- mice did not display
FIGURE 6 | ILCs regulate the immune response to Chlamydia infection. Chlamydia colonizes epithelium of GI and genital tract. Infection activates dendritic cells
(DCs) and macrophages (MФ), which produce IL-12. Activated epithelial cells produce IL-18 which synergizes with IL-12 to amplify IFNg production by NK cells,
ILC1s, and ILC3s, contributing to Chlamydia clearance. Chlamydia infection induces plasticity of RORgt+ ILC3s to IFNg-producing ILC1s (ex-ILC3s). CCR2+ myeloid
cells can induce expansion of ILCs in the tissue. Excessive activation of ILCs and infiltration of neutrophils can lead to tissue pathology.
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reduced numbers of ILC1s (Barth et al., 2021), in contrast to previous
report (Wang et al., 2018). We speculate that the contribution of
distinct populations of ILCs for protection vary between genital
versus GI tract infection. It is possible that local cytokine
microenvironment in GI tract influenced by signals from
microbiota predominantly supports expansion of IFNg-producing
ex-ILC3s, whereas genital tract infection drives expansion of IFNg-
producing NK cells and ILC1s. As IFNg-producing NK cells and
ILC1s accumulate at mucosa at the same time post infection, it will
be important to define whether these subsets play unique or
redundant roles during infection. Further studies using more
specific genetic targeting of distinct ILC populations are required
to better define the specific contribution of ILC subsets to protection
following GI and genital tract infections.

Genital tract infection is known to promote inflammation-
associated scarring of the oviduct that leads to hydrosalpinx (Tang
et al., 2013; Lei et al., 2014). The role of ILCs in tissue pathology
remains poorly understood. Interestingly, oviduct weight as an
indicator of pathology correlated with expansion of NK cells and
ILC1s following genital C. muridarum infection (Barth et al., 2021).
Myeloid cells can promote expansion of ILCs because CCR2-/- mice
displayed reduced numbers of ILCs in the genital tract (Barth et al.,
2021). Additionally, depletion of neutrophils ameliorated tissue
damage in genital C. muridarum infection (Zortel et al., 2018).
Thus, interplay between ILCs and other immune cell populations
can shape the outcome of Chlamydia infection (Figure 6). It will be
important to define in future studies why some patients infected
with Chlamydia develop pathology whereas others remain
asymptomatic. A shift from Th1 to Th2 immune response was
suggested to promote scarring and pathology development (Barth
et al., 2021). As both ILC1s and ILC2s are present in the genital
tract (Doisne et al., 2015), it is possible that ILC1s and NK cells
predominantly contribute to bacterial clearance and host
protection whereas ILC2s can induce inflammation and fibrosis.

Mycobacterium tuberculosis
Tuberculosis disease has one of the highest fatality rates among human
infections. The causative agent,Mycobacterium tuberculosis (Mtb), is a
facultative mycobacterial pathogen which primarily resides in the
phagosomes of macrophages (Podinovskaia et al., 2013). Ingestion of
mycobacterium bacilli induces release of proinflammatory cytokines
and chemokines to activate immune response. Early studies revealed
an increased sensitivity of Rag2-/-Il2rg-/- mice to Mtb compared to
Rag-/- mice, which was attributed to the lack of IFNg-producing NK
cells in Rag2-/-Il2rg-/-mice (Feng et al., 2006). However, a recent study
implicated the role of ILC3s in protective immunity to Mtb (Ardain
et al., 2019a).

Although all ILC subsets were found in the airways, most studies
were focused on ILC2s that were thought to be important for allergic
airway inflammation (Halim et al., 2012; Yu et al., 2018; Xiao et al.,
2021), chronic rhinosinusitis (Mjösberg et al., 2011), and asthma
(McKenzie, 2014). While ILC2s are the predominant cells among
ILCs in the mouse lungs in steady state, ILC3s are prevalent in
human lung tissue in pulmonary disease (De Grove et al., 2016).
During Mtb infection, ILCs become activated and accumulated in
the lungs (Ardain et al., 2019a; Ardain et al., 2019b). While ILC2s
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accumulated at the later time points ofMtb infection in human and
mouse lungs, ILC3s but not ILC1s rapidly accumulated in the lungs
early during infection (Ardain et al., 2019a). Interestingly, the
accumulation of alveolar macrophages coincided with an increase
of ILC3s in the lungs (Ardain et al., 2019a). Moreover, mice lacking
ILC3s exhibited reduced accumulation of alveolar macrophages and
increased Mtb burden, suggesting that ILC3s contribute to early
immune control of Mtb (Ardain et al., 2019a).

Mtb infection leads to type 1 immunity development with high
levels of IFNg production. One study showed that IFNg-/- mice
and mice depleted of NK cells and NK1.1+ILC1s with anti-NK1.1
antibody did not show increased bacterial titers in the lungs,
suggesting that IFNg, NK cells and NK1.1+ILC1s are dispensable
for control of early immunity to Mtb (Ardain et al., 2019a).
Another study showed expansion of ILC1s in the lung as well as
ILC1-like cells that expressed ILC1 markers T-bet, CD49a, and
CD226 but were negative for NK1.1, NKp46, and Eomes (Corral
et al., 2021) at later time points of infection. Furthermore, ILC1-
like cells could originate from ILC2s duringMtb infection (Corral
et al., 2021). Both ILC1s and ILC1-like cells contributed to IFNg
production (Corral et al., 2021). Moreover, protection againstMtb
after BCG vaccination correlated with expansion of T-bet+ ILC1s
and IFNg production, indicating the protective role of ILC1s in
mouse model (Steigler et al., 2018; Corral et al., 2021). Consistent
with this data, recent study showed increased numbers of IFNg-
producing ILC1s in the blood of active tuberculosis patients (Pan
et al., 2021).

Following pulmonary infection, activated immune cells
infiltrate lungs, forming tertiary lymphoid structures known as
inducible Bronchus-Associated Lymphoid Tissue (iBALT), which
are important for generation of protective immune responses
(Ulrichs et al., 2004; Day et al., 2010). Stromal cells express
CXCL13 chemokine, which recruits lymphocytes in CXCR5-
dependent manner, thereby inducing formation of iBALT
(Marin et al., 2019; Zeng et al., 2020). In line with results
obtained in mice, high levels of CXCL13 were detected in lungs
of Mtb patients (Ardain et al., 2019a). Moreover, CXCR5- and
CD103-expressing ILC3s were detected in Mtb+ human lungs
(Ardain et al., 2019a), however the mechanisms underlying
migration of blood-resident ILCs to the lungs upon Mtb
infection remain unknown.

IL-22 and IL-17 are the main effector cytokines produced by
ILC3s (Vivier et al., 2018). Combined deletion of IL-22 and IL-17
affected the numbers of ILC3s, including CXCR5+ILC3s, but not
ILC1s or ILC2s (Ardain et al., 2019a). Additionally, IL-22-/-/IL-17-/-

mice had higher Mtb burden in the lungs, suggesting that both
IL-22 and IL-17 protect against Mtb infection (Ardain et al.,
2019a). IL-23 and IL-1b activate production of IL-17 and IL-22
by ILC3s in the lungs (Cupedo et al., 2009; Ardain et al., 2019a).
Moreover, it was shown that murine lung cells produce IL-23 in
response toMtb, and depletion of IL-23 leads to reduction of ILC3s
and alveolar macrophages (Ardain et al., 2019a). Importantly,
reduced accumulation of ILC3s in the lungs correlated with
decreased formation of iBALT, indicating the role of ILC3s in
formation of iBALT in a CXCL13-CXCR5-dependent manner.
However, the precise mechanisms by which ILC3s contribute to
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formation of iBALT and protection against Mtb infection still
needs to be defined.

Thus, accumulating evidence suggests that ILCs contribute to
Mtb infection, and the tissue microenvironment may change
ILCs phenotype and function during lung inflammation. The
relative contribution of different subsets of ILCs to Mtb
pathology remains unclear. Moreover, it remains to be
determined whether targeting of specific ILC populations could
have a therapeutic effect inMtb patients. Further research is also
needed to dissect the relative contribution of ILC subsets and T
cells to disease.

Campylobacter Infection
Campylobacter is a highly motile facultative bacteria causing the
food-borne gastroenteritis called campylobacteriosis (Young et al.,
2007). The main source of infection in humans is consumption of
contaminated poultry where Campylobacter is a commensal. Among
Campylobacter species, C. jejuni and C. coli are the major causes of
acute gastroenteritis worldwide (Man, 2011; Kaakoush et al., 2015).
In most cases, campylobacteriosis is self-limiting in healthy
individuals; however, increasing evidence suggests that
Campylobacter infection is associated with the development of
autoimmune disorders affecting the nervous system and
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 14
gastrointestinal tract (Ang et al., 2000; McCarthy and Giesecke,
2001; Nachamkin, 2002; Gradel et al., 2009). Moreover, patients
with C. jejuni gastroenteritis are at a high risk of developing IBD
(Navarro-Llavat et al., 2009; Antonelli et al., 2012; Arora et al., 2015).
Since conventionally housed wild-type mice colonized with C. jejuni
do not develop any adverse clinical signs or pathology (Mansfield
et al., 2007; Lippert et al., 2009), most immunological studies of
Campylobacter have been performed in mice with impaired IL-10
signaling. Oral inoculation of IL-10-/- mice with C. jejuni leads to
colon and cecum inflammation and immunohistopathological
features which resemble campylobacteriosis in humans (Mansfield
et al., 2007; Mansfield et al., 2008).

Campylobacter colonizes ileum and colon, adhering to the
mucus layer and invading epithelial cells. Upon bacterial
invasion, epithelial cells secrete proinflammatory cytokines,
including IL-8 and TNFa, to recruit innate immune cells for
bacterial elimination at the site of the infection (Hameed, 2019)
(Figure 7). Immune response to Campylobacter is characterized by
the induction of mixed type 1 (IFNg) and type 17 (IL-17A and IL-
22) cytokine responses in both humans and mice (Edwards et al.,
2010;Malik et al., 2014; Al-Banna et al., 2018). Both IFNg and IL-17
were shown to contribute to C. jejuni-induced pathology (Malik
et al., 2014; Muraoka et al., 2021). Analysis of cell types in the colon
FIGURE 7 | ILCs regulate the immune response to Campylobacter jejuni. Invasion of Campylobacter into epithelial cells leads to the damage of barrier structures. In
response to damage, intestinal epithelial cells secrete cytokines to recruit monocytes, macrophages, dendritic cells. These cells release IL-23 and IL-12, leading to
IFNg production by ILCs at early stages of infection and by T cells at later stages. IFNg can contribute to both protective and pathogenic responses to C. jejuni. IFNg
activates immune cells to help clear bacteria. Additionally, C. jejuni promotes conversion of ILC3s to IFNg-producing ILC1s which contribute to intestinal pathology.
IL-23 derived from antigen-presenting cells, such as dendritic cells, leads to IL-17 production by ILC3s and T cells which can also exacerbate colon inflammation.
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revealed that ILCs are the primary innate source of IFNg in early
onset ofC. jejuni-mediated colitis (Muraoka et al., 2021).Moreover,
it was shown that TCRb/d-/- mice, which lack T cells, exhibit
substantial intestinal inflammation in response to the infection
(Muraoka et al., 2021). Depletion of CD4+ T cells did not reduce
intestinal inflammation, demonstrating that CD4+ T cells are
dispensable for colitis development in this model (Sun et al.,
2012). Consistently, Rag2-/-Il2rg-/- mice were protected from
colitis, suggesting the role of ILCs in intestinal pathology at an
early onset of the disease (Muraoka et al., 2021). Neutralization of
IFNg in Rag2-/-Il2rg-/- mice also reduced bacterial burden in the
colon compared to Rag2-/- mice, suggesting that IFNg- producing
ILCs are dispensable for protection against C. jejuni. Additionally,
neutralization of IFNg reduced intestinal disease in IL-10-/-TCRb/
d-/- and IL-10-/-mice (Malik et al., 2014;Muraokaet al., 2021).These
studies suggest that IFNg producedby ILCs contributes toC. jejuni-
induced intestinal pathology but is dispensable for protection.

The role of IFNg in human campylobacteriosis remains
unclear. Earlier studies demonstrated that IFNg can enhance
killing of C jejuni by macrophages (Wassenaar et al., 1997). The
severity of disease was lower in healthy volunteers who exhibited
increased IFNg production by peripheral blood mononuclear
cells stimulated with heat-killed C. jejuni before experimental
infection (Tribble et al., 2010). However, another study did not
find a difference in the amount of C. jejuni-specific IFNg+CD4+ T
cells between protected and unprotected subjects (Fimlaid et al.,
2014). Development of animal models of C. jejuni-induced
disease using mice reconstituted with human immune system
will help to better understand the role of IFNg and ILCs in
human disease.

Expression of natural cytotoxicity receptors (NK1.1+ and
NKp46+) by ILC1s and ILC3s has been associated with the
production of IFNg (Klose et al., 2013). However, growing
evidence suggests that NK1.1-ILCs represent the primary
source of IFNg during inflammation. Analysis of ILCs in the
colon during C. jejuni infection revealed that NK1.1-ILCs were
the main innate source of IFNg (Muraoka et al., 2021). Some
IFNg-producing ILCs can arise from ILC3s that downregulate
RORgt and upregulate T-bet expression (ex-ILC3s) (Figure 7)
(Klose et al., 2013; Vivier et al., 2018). RORgt cell fate-mapping
experiments revealed that the majority of IFNg-producing ILCs
had a history of RORgt expression, indicating that C. jejuni
infection facilitates conversion of ILC3s to ILC1s (Muraoka et al.,
2021). The mechanism leading to ILC3>ILC1 plasticity during
C. jejuni infection remains poorly understood. ILC3s>ILC1s
plasticity was observed in response to IL-12 in human samples
(Bernink et al., 2015). IL-12 levels in the colon are increased
during C. jejuni infection (Edwards et al., 2010; Malik et al., 2014;
Muraoka et al., 2021). Therefore, it is possible that IL-12
regulates the plasticity of ILCs. However, additional studies are
required to test this hypothesis.

C. jejuni infection enhances the production of IL-17, IL-22
and IL-23 (Malik et al., 2014; Muraoka et al., 2021). Monocyte-
derived dendritic cells from human PBMCs showed upregulation
of both IL-17 and IL-22 cytokines after C. jejuni infection
(Edwards et al., 2010). A recent study revealed IL-23 as a
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 15
critical driver of inflammation during C. jejuni infection (Jing
et al., 2020). Additionally, previous studies showed the
pathogenic role of IL-23 in other models of infectious colitis
(Kullberg et al., 2006; Buonomo et al., 2013). IL-23 is a well-
known inducer of IL-22 and IL-17. Consistently, IL-23-deficient
mice displayed reduced intestinal pathology and low levels of
IFNg, IL-17 and IL-22 in the colon following C. jejuni infection
(Jing et al., 2020). However, in contrast to IFNg and IL-17,
abrogation of IL-22 signaling in mice with impaired IL-10
signaling did not have impact on C. jejuni-induced colitis and
bacterial clearance (Jing et al., 2020). Interestingly, in another
study in IL-10-sufficient mice, IL-22 deficiency led to increased
bacterial burden in the colon (Heimesaat et al., 2016), suggesting
that differences in intestinal microenvironment can affect
C. jejuni colonization and disease development. Furthermore,
IL-23 induced IL-17 and IFNg by ILC1s and ILC3s, promoting
colon inflammation during the early stage of C. jejuni infection
(Figure 7) (Jing et al., 2020). IL-17 is also known as an important
activator of innate immune responses that induce neutrophil
recruitment (Pappu et al., 2012). However, neutrophils can also
contribute to intestinal pathology during C. jejuni infection (Sun
et al., 2012).

Together, these studies demonstrate that ILCs are critical for
the initiation of inflammatory immune responses against
C. jejuni. Moreover, ILC3s undergo transdifferentiation to
ILC1s during infection. However, there are many critical
questions that remain to be addressed. Whether ILC subsets
contribute to intestinal pathology in human campylobacteriosis?
Whether effects of ILCs in immune response depend on the
Campylobacter strain and immunological status of the host?
Additionally, host microbiota can also regulate ILCs functions
and cooperation of ILCs with other immune cells (Mortha et al.,
2014). Therefore, understanding the role of microbiota in
activation and plasticity of ILCs during C. jejuni infection will
better define mechanisms of C. jejuni-induced intestinal pathology.
CONCLUSIONS

Over the last ten years research has identified ILCs as a
heterogeneous family of innate immune cells that have very
diverse functions in different barrier tissues. The precise role of
ILCs is context-dependent and is regulated by tissue
microenvironment. The environmental factors, including
commensal microbiota and pathogens, can influence immune
homeostasis and regulate plasticity and functions of ILCs.
Although ILCs comprise a relatively minor cell population
compared to other immune cell types, it is now well appreciated
that while ILCs are essential for the maintenance of tissue
homeostasis and elimination of pathogens, they can also
contribute to chronic inflammation and tissue pathology.

Despite significant progress that has beenmade in understanding
the function of ILCs in homeostatic conditions and during infection,
many questions still remain. Under inflammatory conditions
cytokines and tissue factors can change ILC composition.
Depending on the type of signal, ILCs can transdifferentiate and
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change the outcome of the disease. Accordingly, both ILC1s and
ILC3s can produce IFNgunder inflammatory conditions, whichmay
have different effects during acute and chronic infections. It is
important to study the relative functions of specific ILC subsets
under physiological and inflammatory conditions because different
subsets of ILCs can be protective or pathogenic (Table 1). Additional
studies aimed to characterize the effects of environmental cues, such
as dietary factors, metabolites and inflammatory mediators, on ILC
developmentand function,will further advanceourunderstandingof
ILCs contribution to the pathogenesis of infectious diseases.

Although recent progress has revealed the role of ILCs in shaping
the adaptive immune response by direct cell contact or by cytokine
production, a lotmore is still tobe explored touncover the functionof
ILCs in regulating the adaptive immune response following different
infections in various tissues. For example, it is still unclear how ILCs
regulateTh1 andTh17 immune responses during inflammation, and
whether these mechanisms are context-dependent. Identification of
mechanisms by which ILCs regulate the adaptive immune response
acrossdifferent infectionswill provide insights into the specific factors
that may control the disease initiation and progression. The role of
ILCs inprotectionandpathogenesisofhuman infections still needs to
be better defined.

Over the last few years many small molecules and monoclonal
antibodies that potentially may directly or indirectly target
effector functions of ILCs, have been developed, such as JAK
inhibitors (Schwartz et al., 2017; Robinette et al., 2018), TNF
inhibitors, vedolizumab (anti-a4b7 integrin mAb) (Cobb and
Verneris, 2021) and ustekinumab (IL-12/23p40 mAb) (Creyns
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 16
et al., 2020; Cobb and Verneris, 2021). However, their selectivity
and effects on ILCs are not fully characterized and need to
be proven. Whether the application of these molecules will be
beneficial for targeting ILCs in infectious diseases needs to be
determined. Future work should focus on understanding the
protective and pathogenic mechanisms of ILCs in different
infections combining knowledge obtained from mouse models
and human studies. These findings could uncover more specific
targets for disease treatment.
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