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Single-cell RNA sequencing (scRNA-seq) has significantly deepened our insights into complex tissues, with the latest tech-

niques capable of processing tens of thousands of cells simultaneously. Analyzing increasing numbers of cells, however,

generates extremely large data sets, extending processing time and challenging computing resources. Current scRNA-seq

analysis tools are not designed to interrogate large data sets and often lack sensitivity to identify marker genes. With

bigSCale, we provide a scalable analytical framework to analyze millions of cells, which addresses the challenges associated

with large data sets. To handle the noise and sparsity of scRNA-seq data, bigSCale uses large sample sizes to estimate an

accurate numerical model of noise. The framework further includes modules for differential expression analysis, cell clus-

tering, and marker identification. A directed convolution strategy allows processing of extremely large data sets, while pre-

serving transcript information from individual cells. We evaluated the performance of bigSCale using both a biological

model of aberrant gene expression in patient-derived neuronal progenitor cells and simulated data sets, which underlines

the speed and accuracy in differential expression analysis. To test its applicability for large data sets, we applied bigSCale to

assess 1.3 million cells from the mouse developing forebrain. Its directed down-sampling strategy accumulates information

from single cells into index cell transcriptomes, thereby defining cellular clusters with improved resolution. Accordingly,

index cell clusters identified rare populations, such as reelin (Reln)-positive Cajal-Retzius neurons, for which we report

previously unrecognized heterogeneity associated with distinct differentiation stages, spatial organization, and cellular func-

tion. Together, bigSCale presents a solution to address future challenges of large single-cell data sets.

[Supplemental material is available for this article.]

Single-cell RNA sequencing (scRNA-seq) is at the forefront of tech-
niques to chart molecular properties of individual cells. Recent
microfluidic-based methods are scalable to tens of thousands of
cells, enabling an unbiased sampling and in-depth characteriza-
tion without prior knowledge (Klein et al. 2015; Macosko et al.
2015; Zheng et al. 2017). Consequently, studies are less confined
by the number of cells and aim to produce comprehensive cellular
atlases of entire tissues, organs, and organisms (Regev et al. 2017).
Increasing cell numbers, however, generate extremely large data
sets, which extend processing time and challenge computing re-
sources. Current scRNA-seq analysis tools are not designed to ana-
lyze data sets larger than thousands of cells and often lack
sensitivity and specificity to identify marker genes for cell popula-
tions or experimental conditions.

To address the challenges of large scRNA-seq data sets, we de-
veloped bigSCale, an analytical framework for the sensitive detec-
tion of population markers and differentially expressed genes,
being scalable to analyze millions of single cells. Unlike other
methods that use simple or mixture probabilistic models with pre-
defined distributions to handle the noise and sparsity of scRNA-
seq data (Kharchenko et al. 2014; Finak et al. 2015; Satija et al.
2015; Korthauer et al. 2016), bigSCale does not assume an a priori

defined distribution. Instead, bigSCale uses large sample sizes to es-
timate a highly accurate and comprehensive numerical model of
noise. The framework further includes modules for differential ex-
pression (DE) analysis, cell clustering, andpopulationmarker iden-
tification. Moreover, a directed convolution strategy allows the
processing of extremely large data sets, while preserving the tran-
script information from individual cells.

We evaluate the performance of bigSCale using a defined bi-
ological model for reduced or elevated gene expression levels by
performing scRNA-seq of neuronal progenitors derived from in-
duced pluripotent stem (iPS) cells of Williams-Beuren (WB)
(Pober 2010) and 7q11.23 microduplication (Dup7) (Morris et al.
2015) syndrome patients. Simulated data sets of different size
and sparsity were utilized to underline the accuracy and speed of
bigSCale in DE analysis. To demonstrate its suitability for unsuper-
vised clustering and population marker identification using its
probabilisticmodel of cell-distances, we applied bigSCale to cluster
cell types of the somatosensory cortex and hippocampus from
adult mouse brains (Zeisel et al. 2015). Lastly, the bigSCale frame-
work was applied to convolute and characterize 1.3 million cells
derived from the developing mouse forebrain, detecting profound
heterogeneity in rare neuronal subpopulations. We believe
bigSCale presents an adequate solution for the processing and
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analysis of scRNA-seq data from millions of single cells. Its speed
and sensitivitymake it suitable to address future challenges of large
single-cell data sets.

Results

The bigSCale framework

Data sets from scRNA-seq display sparse and noisy gene expression
values, among other sources due to drop-out events, amplification
biases, and variable sequencing depth. The bigSCale framework
builds a probabilistic model to define phenotypic distance be-
tween pairs of cells that considers all sources of variability.
Compared with other methods that assume negative binomial,
gamma, or Poisson distributions in simple or mixture probabilistic
models, bigSCale estimates a highly accurate and comprehensive
numerical model of noise. The model allows to quantify distances
between cells, which provide the basis for DE analysis and cell clus-
tering (Fig. 1, Methods).

1. To generate the model, cells featuring highly similar transcrip-
tomes are grouped together. Next, the expression variation
within groups is used as an estimator of noise. Unlike previous
methods, bigSCale models differences in expression levels rath-
er than expression levels themselves. Therefore, a P-value is as-

signed to each gene, representing the likelihood of a change of
expression from one cell to another. Notably, variations in the
preclustering step (change in correlation metric, linkage, pre-
cluster numbers) only marginally affect the final results
(Supplemental Fig. S1). Prior to model computation, a module
for batch effect removal can be applied.

2. For DE, bigSCale assigns a P-value to each gene, representing
the likelihood of an expression change between two groups of
cells. To this end, all pairwise cell comparisons between two
groups are performed. Genes repeatedly differing in expression
between cells cumulate higher scores, which are next adjusted
and normalized into P-values.

3. Cellular clustering is achieved by computing all pairwise cell
distances to generate a distance matrix and to assign cells into
groups (via Ward’s linkage). Specifically, the distance matrix
is computed over a set of overdispersed genes, namely, genes
presenting a high degree of variation across the data set. To im-
prove the feature quality, skewed, isolated, and perfectly corre-
lating genes are discarded. The latter are prone to generate
artificial transcript clusters and consist of genes with a common
3′-end, being indistinguishable by digital counting scRNA-seq
methods. Undesired confounding signatures, such as gender-
related or cell cycle–related genes, can be identified and isolated
to improve cluster information (Supplemental Fig. S2).

Figure 1. Schematic representation of the bigSCale framework for analyzing millions of single-cell transcriptomes. The analytical framework includes a
numerical model step to determine distances between single cells and modules for differential expression (DE) analysis, cell clustering, and population
marker identification. An optional convolution strategy allows the processing of extremely large data sets (preserving the transcript information from in-
dividual cells).
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4. Following the identification of cell clusters, bigSCale conducts
an iterativeDE analysis between populations of cells for the sen-
sitive detection of markers, defined by genes unevenly ex-
pressed across populations. Notably, most current tools lack
the option to model multifaceted phenotype structures with
overlyingmolecular signatures of cells. Conversely, bigSCale al-
lows disclosure of multiple alternative phenotypes of a given
cell by orderingmarkers in a hierarchical structure, in which in-
creasing layers of phenotypic complexity (from cell types to
subtypes or states) are represented by markers at increasing hi-
erarchical levels.

5. While bigSCale’s intrinsic speed allows the direct analysis of
data sets up to a 100,000 cells, adjustments are needed to han-
dle millions of cells. For these scenarios, the cell numbers are
scaled down by pooling (convoluting) information from cells
with analogous transcriptional profiles into index cell (iCell)
profiles. Here, iCells are defined by adding transcript counts
from pools of similar single cells, significantly increasing mole-
cule and gene counts, and overall improving the expression
profile quality. Accordingly, iCells allow discrimination of
subpopulations with higher precision and sensitivity. Most im-
portantly, iCells preserve the transcript information from indi-
vidual cells and can be deconvoluted for targeted analysis of
populations of interest.

Identification of differentially expressed genes

We evaluate the performance of bigSCale using a biological model
for reduced and elevated gene expression levels. Specifically, we
performed scRNA-seq of 1920 neuronal progenitor cells (NPCs) de-
rived from iPS cells of two patients with WB and two with Dup7
syndrome. Both are multisystemic disorders caused by a heterozy-
gous deletion or duplication, respectively, of 1.5–1.8 Mb at the
chromosome band 7q11.23. This region is flanked by segmental
duplicationswith high sequence identity that canmediate nonho-
mologous recombination with the consequent loss or gain of 26–
30 contiguous genes, whose transcriptional levels vary in linewith
their allele dosage (Pober 2010; Morris et al. 2015). To benchmark
bigSCale against other common single-cell DE tools, NPCs from
four syndromic patients (WB1/2, n = 742; Dup7.1/2, n = 735)
were compared to NPCs derived from a healthy donor (WT, n =
369 cells). The sensitivity of each algorithm was evaluated by
counting the number of genes detected to be significantly down-
or up-regulated in patients against the control. To achieve the
same level of specificity among tools, the top 1500, 2000, and
2500 deregulated genes were used in each comparison.

For the WB1 sample harboring a deleted allele, bigSCale pre-
sented the highest sensitivity by detecting 12 down-regulated
genes, followed by Monocle2 (Qiu et al. 2017), BPSC (Vu et al.
2016), SCDE (Kharchenko et al. 2014), MAST (Finak et al. 2015),
Seurat (Satija et al. 2015), and scDD (Fig. 2A; Korthauer et al.
2016). Notably, bigSCale finds the same genes as the other best-
performing tools, plus additional events (Fig. 2B). Consistently,
bigSCale displayed the highest sensitivity also in the remaining
three comparisons (Supplemental Fig. S3A–C), with an overall av-
erage of 11.5 detected down-regulated genes in WB patients and
nine up-regulated genes in Dup7 patients (Fig. 2C). Moreover,
bigSCale proved to be the most sensitive method at all tested spe-
cificity levels, with an average of 8.75 (top 2000) and 6.75 (top
1500) detected DE genes (Supplemental Fig. S3D). These results in-
dicate that bigSCale outperforms other methods for single-cell DE
analysis in sensitivity when using biological data.

To further test the performances in determining DE genes, we
benchmarked bigSCale against the previous tools using simulated
data sets. For data simulation, we used Splatter (Zappia et al. 2017),
which allows to generate and control true-positive DE genes.
Simulations have been performed estimating parameters from
two data sets representing different characteristics of large-scale ex-
periments, namely, our NPC data set (sim_NPC) and a droplet-
based experiment consisting of approximately 2500 cells se-
quenced to low coverage (10x Genomics, sim_10×G; Methods).
The two data sets widely differed in the number of detected genes
per cell, sparsity, and heterogeneity (Fig. 2D; Supplemental Fig.
S4A). In both simulations, we recreated distributions of gene ex-
pression levels and library properties highly similar to the original
data sets and preserved the original number of cells and genes. Six
cell types of different proportions were simulated in each data set,
allowing for testing of DE between groups of proportions 1:1 (1×),
1:2 (2×), and 1:10 (10×). Each tool has been applied to the com-
plete data set at the model-building step prior to test DE between
groups of cells.

The ability to correctly classify true DE genes against non-DE
genes was evaluated calculating the area under the curve (AUC) of
a receiver operating characteristic (ROC) curve, ranking genes in
their order of significance as determined by the tools. To test the
capacity of controlling false-positive events, we focused on the par-
tial AUCwith high specificity being >90%. All tools performed bet-
ter in the simulated NPC data set, and the order of tools was
consistent across all group sizes (Fig. 2E,F; Supplemental Fig.
S4B–E). bigSCale outperformed the other tools, reaching the high-
est levels of sensitivity and specificity in all tested conditions (Fig.
2G). The BPSC performance was the closest to bigSCale, with the
gap being more evident in more distinct proportional contexts
(10×) (Supplemental Fig. S4C,E). To evaluate the impact of varying
settings, we evaluated different parametric tests (negative binomi-
al and Poisson) implemented in the Seurat pipeline, in addition to
the default setting (bimodal) (Supplemental Fig. S5). We found
that bigSCale also outperformed negative binomial and Poisson
in five out of six scenarios using different simulated data sets.
The bigSCale framework further allows the integration of external
tools for additional data normalization. As a prototypical example,
we applied scran normalization (Lun et al. 2016) to simulated data
and compared the pAUCwith the bigSCale defaultmethod (library
size normalization). We found no significant differences and a
nearly perfect correlation of scran and library size coefficients
(Supplemental Fig. S6).

In the view of increasing data sets sizes, we further evaluated
bigSCale’s speed in DE analysis. In the biological model (NPC),
bigSCale proved to be the fastest tool (3.1 min) in performing
DE, followed by MAST (4.0 min) (Fig. 2H). The slowest tool was
SCDE (684 min), as reported in previous studies (Sengupta et al.
2016; Jaakkola et al. 2017). We next compared the scalability of
bigSCale toMASTwith respect to samples sizes. To this end, we cre-
ated a simulated matrix of 40,000 genes and 32,000 cells and per-
formed DE analyses between pairs of groups with sizes ranging
from 2000–32,000 cells. bigSCale was faster for all conditions
(Fig. 2I). Moreover, bigSCale could process data sets larger than
8000 cells, whereas MAST was limited by the RAM requirements,
denoting a broader perspective of applicability for bigSCale.

Cellular clustering and population marker identification

Toevaluate theabilityofbigSCale to identify cell types and subpop-
ulations in complex tissues, we analyzed 3005 cells of the
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Figure 2. Benchmarking of sensitivity, specificity, and speed of bigSCale, SCDE, Seurat, MAST, scDD, BPSC, and Monocle2. (A) DE analysis in iPS cell–
derived neuronal progenitor cells (NPCs) from healthy and Williams-Beuren (WB) syndrome donors (WT vs. WB1). For the genes located in the deleted
region, the P-values of each tool are shown in Z-score scale. (Red) Down-regulated; (blue) up-regulated. Genes correctly detected as down-regulated
are highlighted (gray). Total numbers of correctly assigned genes are indicated (below). (B) Venn diagrams for WT versus WB1 comparing the identity
of correctly assigned genes. (Orange) bigSCale; (blue) others. (C) Average number of detected down-regulated (red) and up-regulated (blue) genes in
the two WB and Dup7 patients, respectively, compared with a healthy donor. (D) Comparison of the mean-variance relationship in the two simulated
data sets (sim_NPC and sim_10×). (E,F) Partial AUCs of ROC curves computed across the tools in the two simulated data sets (sim_NPC, E; sim_10×, F )
with group sizes having proportions 1:1 (1×). The sensitivity at high level of specificity (>90%) is highlighted (gray area). (G) Barplots of partial AUC across
tools for all tested proportions (1×, 2×, 10×) in DE analysis of simulated data sets (sim_NPC and sim_10×). (H) Average required time for computing DE in
the NPC cell model (average 739 total cells per comparison, four comparisons, tools run on one CPU-core). (I) Scalability of bigSCale andMAST with large
data sets. MAST could not be tested beyond 8000 cells due to excessive RAM requirements (>16 Gb).
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somatosensory cortex and hippocampus
dissected from the adult mouse brains
(Zeisel et al. 2015). Consistentwith previ-
ous analyses (Zeisel et al. 2015; Fan et al.
2016), bigSCale was able to segregate all
major brain cell types, namely, somato-
sensory pyramidal neurons, different
types of CA1/2 pyramidal neurons, inter-
neurons, astrocytes, oligodendrocytes,
and vascular cells (Fig. 3A). We increased
the number of differentially expressed
genes across brain cell populations
four-/fivefold comparedwith the original
analysis using BackSPIN (Zeisel et al.
2015) and, moreover, defined markers
of higher-order cell types (Fig. 3A).
Specifically, bigSCale determined 9258
differentially expressed genes across pop-
ulations, including 7167 previously un-
identified genes (Supplemental Table
S1). The expression patterns of the novel
markers were highly specific to the re-
spective populations of cells, as shown
for astrocytes (Fig. 3B), oligodendrocytes,
vascular cells, neurons, and interneurons
(Supplemental Fig. S7A,B), pointing to a
high accuracy of bigSCale. In line, exter-
nal bulk RNA-seq signatures supported
the novel markers to be highly specific
for the respective populations (Lein
et al. 2007; Zhang et al. 2014) (astrocytes,
P < 4.9−62; oligodendrocytes, P = 9.9−18;
interneurons, P = 9.8−19; neurons, P =
2.3−34; vascular,P = 1.0−67). Furthermore,
the novel markers included established
marker for brain subtypes, such as
Atp1a2 (Gritz and Radcliffe 2013),
Slc1a3 (Roales-Buján et al. 2012), Mt1
(Chung et al. 2008), and Aqp4 (Hubbard
et al. 2015) for astrocytes or Stmn3
(Chauvin and Sobel 2015) and Snap25
(Antonucci et al. 2016) for neurons (Sup-
plemental Fig. S8A–C).

Differently to other methods,
bigSCale marker genes are organized in
a hierarchical structure, allowing stratifi-
cation of the analysis into different lay-
ers of tissue organization. This enabled
the assignment of markers to subpopula-
tions but also higher-order cell types,
such as glia cells or neurons (Sup-
plemental Fig. S7B). In this regard,
current experimental designs fail to reli-
ably separate intact neurons from glia
cells, as established markers (e.g., NeuN)
are located in the nuclear membrane
and are not suitable for isolating entire
neurons. Our analysis identified 1656
marker genes silenced in glial cells and
expressed in neuronal populations (Sup-
plemental Table S1), such as the neuro-
nal surface receptor CD90 (Thy1) (Fig.

A

B

Figure 3. bigSCale analysis of scRNA-seq data from 3005mouse cortical and hippocampal cells (Zeisel
et al. 2015). (A) Dendrogram and expression plots reporting examples of hierarchical markers.
Dendrogram was cut at 20% of its total depth to segregate nine different clusters of cells, which corre-
spond to the main brain cell types. In the expression plots, UMI counts are shown at single-cell level for
markers of different hierarchical marker levels (Methods). Marker genes for decreasingmarker levels, rep-
resenting distinct brain cell types are displayed. (B) Comparison of bigSCale and BackSPIN (Zeisel et al.
2015) in the detection of gene markers for astrocytes. bigSCale identified 167 additional markers with
high specificity for astrocytes (high expression, yellow; lowexpression, blue). Vice versa,markers uniquely
identified by BackSPIN display a weak specificity and achieved low scoring in bigSCale.
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3A), potentially suitable for isolating intact neurons from complex
brain samples.

Convolution of large data sets into iCells

To analyze very large data sets of millions of cells, bigSCale convo-
lutes the original cells into iCells with improved transcriptional
profiles after the numerical model has been computed using the
entire data set (Methods). To ensure that the convolution strategy
does not deteriorate cellular phenotypes and related cell cluster-
ing, we evaluated its performance by analyzing 20,000 brain cells
(randomly downsampled data set, 10x Genomics). Specifically, we
tested the cluster assignment of all cell pairs within the data set be-
fore and after increasing degree of convolution (from 4587 to
2,101 iCells) and for different cluster numbers (n = 2–32).
Similarities of classification were defined by the Rand index (RI),
a metric suitable for comparative cluster assessment (Wang et al.
2017), where RI = 100% implies complete similarity of clusterings.
We observed a highly similar cluster assignment between original
and convoluted data sets with RI > 80% (Fig. 4A). The RI was also
stable with increasing cluster numbers or degree of convolution,
indicating a robust strategy to reduce cell numbers. In line, visual-
izing cells in two-dimensional plots (t-SNE) confirmed the high
similarity of cluster assignment between original and iCells (Fig.
4B). Together, the results support the utility of bigSCale convolu-
tion to reduce data set sizes without the introduction of artifacts.

Analysis of 1,306,127 cells of the developmental pallium

Among the most extensive data sets to date for scRNA-seq are
1,306,127 sequenced mouse brain cells from the developmental
(E18) dorsal and medial pallium. The data were produced using
droplet-based library preparation (Chromium v2) and are publicly
available (10x Genomics). Despite being the sole developmental
scRNA-seq data set of crucial regions such as cortex, hippocampus,
and the subventricular zone, its large size yet prevented any de-
tailed analysis. We reasoned that the bigSCale analytical frame-
work would be suitable to analyze such large data set and
performed an in-depth analysis of cell types and states, including
rare and poorly described subpopulations. This analysis serves as
proof-of-concept for bigSCale’s suitability to process millions of
cells from complex tissues in an unbiased manner.

Initially, we applied our convolution strategy to reduce the
data set size 50-fold from 1,306,127 cells to 26,185 iCells. As ex-
pected iCells were of improved quality with average library size in-
creasing 50-fold (from 4890 to 238,500 UMIs) and detected genes
per cell increasing fivefold (from 2009 to 9360). In line, average ex-
pression level increased from to 2.4 UMIs to 25.5 UMIs. The con-
volution retained 1,244,298 cells (95.27%), discarding 61,829
cells (4.73%). Clustering of the iCells revealed 16 major cell popu-
lations and captured 16,242 differentially expressed markers (Fig.
5A,B; Supplemental Table S2). We classified the 16 populations
in four main cell types: nonneuronal (1–4), neuronal progenitors
(5–8), radial glia (9–11), and post-mitotic neurons (12–16). We
compared our cell types and markers with results from another
developmental brain scRNA-seq data set (E12 to E18) (La Manno
et al. 2016) and to transcriptional profiles of the adult human
brain (Hawrylycz et al. 2012). Although stringent similarities could
not be expected given the different brain areas (forebrain against
midbrain) or developmental stage (E18 against adult brain), we
found significant gene set enrichments pinpointing to the validity
of our clusters (Supplemental Tables S3, S4).

The hierarchical markers of bigSCale allowed to sharply dis-
entangle cell types and subtypes, as well as stages of lineage com-
mitment. Higher-order markers, such as Tubb3 and Slc1a3, mark
the two main cell types: post-mitotic neurons of the intermedi-
ate/marginal zones (MZs) and radial glia and progenitors of the
ventricular zone, respectively (Fig. 5A,C). Similarly, bigSCale cap-
tured the hallmarks of the main stages of the neuronal lineage
(Englund et al. 2005), indicated by the expression of Pax6 (radial
glia), Eomes (TBR2, committed progenitors), andTbr1 (differentiat-
ed neurons) (Fig. 5A). On the other hand, the most significant
markers shaping the heterogeneity of post-mitotic neurons are
Stmn2 (silenced in neuroblasts), Meg3 (interneurons and Cajal-
Retzius [CR] neurons), Nrp1 (glutamatergic neurons), Tac1 (neuro-
blasts), Reln (CR neurons), and Gad2 (gabaergic interneurons).

As expected, some radial glia (C9, C10) and progenitor popu-
lations (C5, C7, C8) represent dividing cells, indicated byTop2a ex-
pression and other cell cycle genes (Fig. 5A; Supplemental Table
S2). bigSCale also identified a population of dividing GABAergic
progenitors (C5) characterized, among other markers, by simulta-
neous expression ofGad2, Pax6, and Top2a. Subpatterns of expres-
sion within populations of cells further indicate the presence of
subtypes of cells, as displayed by the uneven expression of the

BA

Figure 4. Assessment of the cell convolution strategy in bigSCale. (A) Comparison of original and convoluted clusteringwith the Rand index (RI). Pairwise
cell comparisons were performed for three increasing degrees of convolution (Conv1,2,3) into iCells (numbers indicated). Similarity of clustering (RI; y-axis)
were evaluated at different resolution (n cluster numbers; x-axis). RIwere >80% for all tested combinations, pointing to highly similar cluster assignment for
original and iCells. (B) t-SNE plots comparing original and convoluted clustering. The example displays a comparison with RI = 82% and 12 clusters. The
high degree of concordance between experiments is visible through the consistent cluster assignment of cell pairs.
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signaling molecule Nxph2within Gad2-positive interneurons (Fig.
5A). Given the association of Nxph2 with an attention-deficit/hy-
peractivity disorder (Porfirio et al. 2012), Gad2/Nxph2-positive
cells could represent a previously unknown developmental sub-
type of interneurons with roles in behavior and neurocognitive
functions.

Deconvolution for high-resolution subpopulation analysis

While bigSCale enabled the convolution of 1.3 million cells to
characterize the main cellular types of the developmental pallium
with unprecedented detail, the information of single-cell tran-

scriptional profiles was maintained. Consequently, population-
specific deconvolution allows the in-depth analysis of populations
of interest at the resolution of individual cells. We were especially
interested in the population of Reln-positive cells, also known as
Cajal-Retzius (CR) neurons, a transient type of neuron that regu-
lates the laminar formation of the developing neocortex and
whose malfunctioning causes major neurodevelopmental disor-
ders like autism or schizophrenia (Fatemi 2005).

To date, a comprehensive phenotypic characterization of the
CR cells and its potential subtypes remains elusive, mostly due to
their transient nature and to the lack of unambiguous markers. To
unravel the diversity of CR cells, we deconvoluted 480 Reln-

C

B

A

Figure 5. bigSCale analysis of 26,185 iCells (convoluted from 1,306,127 single cells) of the embryonic pallium (E18). (A) Dendrogram of 16 iCell clusters
representing the major cell types (split by color) and subpopulations (cluster 1–16). Single-cell expression plots (UMI counts) present marker genes (de-
creasing levels of hierarchical markers) for the main subpopulations and specific markers for neuronal differentiation (lower panel). (B) t-SNE representation
of the 16 populations of pallial cells identified by bigSCale clustering. (C ) In situ hybridization data for Tubb3 and Slc1a3. Post-mitotic neurons (Tubb3 pos-
itive) locate to the outer neocortical layers, including cortical plate (CP) andmarginal zone (MR), and radial glia and progenitors (Scl1a3 positive) are found
in the ventricular and subventricular zone (VZ).
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positive iCells to 17,543 individual Reln-positive cells, an unprece-
dented resource to phenotype this cell type (Fig. 6A). Reln was ex-
pressed uniformly in all deconvoluted cells, confirming the
specificity of the convolution strategy (Fig. 6B). Furthermore,
Trp73 (also known as p73), a well-known marker of neocortical
CR cells of later developmental stages (E18), was also uniformly ex-
pressed. Expression of Trp73 indicates that the CR cells were orig-
inated from the cortical hem, which is the major source of
neocortical CR cells (Kirischuk et al. 2014). We determined CR
cell–specific markers, in addition to Reln and Trp73, which includ-
ed Cacna2d2, a calcium channel subunit, and Eya2, a transcrip-
tional coactivator (Methods). Unsupervised clustering revealed
eight major subpopulations of CR cells (Fig. 6A) and a total of
8174 differentially expressed markers genes (Supplemental Table
S5). The clusters also included cell doublets, an inevitable artifact
of microfluidic-based sample processing, recognizable by cells
with simultaneous expression of Reln and erythrocytes genes
(Fig. 6A).

The eight subclusters pointed to a yet-undescribed heteroge-
neity of CR cells and to spatial and functional differences within
the developmental pallium.We foundCxcl12, a chemokine secret-
ed by the meninges and regulating the tangential migration of the
CR cells (Kirischuk et al. 2014), to be also expressed by subtypes of
CR cells (Fig. 6B). Notably, in situ hybridization data from E18
mice (Allen Brain Atlas: Mouse Brain) indicated that Cxcl12+/
Reln+ CR cells are located within the MZ, whereas Cxcl12-/Reln+
are positioned outside theMZ, in the inner layers of the neocortex.
This points to a self-regulated migration capacity of the CR
neurons of the MZ.

The bigSCale analysis further unveiled potentially distinct
differentiation stages of CR cells, marked by either Sox11/
Neurod2 or Nnat/Igf2 (Fig. 6A,C). Likewise, we found a population
of CR cells (CR8) expressing higher levels of mitochondrial
genes, an indicator of apoptotic or disrupted cells (Fig. 6A,C).
Considering that we did not find a similar cluster in the other pal-
lial cell types, we excluded a technical artifact and suggest a cell

A B

C

D

Figure 6. Subtypes of Cajal-Retzius (CR) cells disentangled by bigSCale. (A) Dendrogram and heatmap of the five top-scoring population markers (CR1–
8; high expression, yellow; low expression, blue). (B) Comparison of Reln (top) and Cxcl12 (bottom) expression spatially resolved (in situ immunostaining
[left] and fluorescence-staining [center]; source Allen Brain Atlas: Mouse Brain). Reln consistently marks all CR cells (t-SNE; right) located in the MZ and the
CP. Cxcl12 is expressed in a CR subpopulation and in situ experiments indicate that Cxcl12-positive cells are exclusively located in the MZ. (C) t-SNE rep-
resentation ofNeurod2-positive, Igf2-positive, andMt-nd1–positive subpopulations of CR cells. (D) DE of AMPA receptor subunits in CR cells. (Left) Heatmap
(Z-scores) representing the relative expression level of each AMPA subunit in the CR subpopulations. (Red) Higher expression; (blue) lower expression.
(Right) Expression of AMPA receptors displayed by UMI counts (y-axis). Significant DE is indicated; (∗∗∗) Z-score > 10.
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subtype–specific phenotype. CR cells were previously shown to
initiate cell death at post-natal stages (Kirischuk et al. 2014).
Consequently, CR8 cells could represent an intriguing population
of CR neurons committed to die already at the last stages of embry-
onic development (E18).

Lastly, neurotransmitter receptors are one of the most impor-
tant features of CR cells. We specifically interrogated the expres-
sion of the 62 subunits of the nine major receptor types. We
found a number of subunits to be differentially expressed, point-
ing to CR subtypes with different membrane properties (Supple-
mental Fig. S9). The most striking variation was found for the
Gria2, a pivotal subunit of AMPA channels strongly influencing re-
ceptor properties, assembly, trafficking, and long-term synaptic
plasticity (Fig. 6D).

Discussion

Current scRNA-seq analytic tools use simple or mixture probabilis-
tic models that require predefined distributions to handle noise
and sparsity. bigSCale bypasses this requirement by estimating a
numerical model of noise. Furthermore, it determines the extent
of the variation between cells without estimating actual gene ex-
pression value. These stratagems allowed us to build a highly
optimized code, which can rapidly process large cell numbers
while showing an improved sensitivity and specificity to detect
differentially expressed genes, as shown for biological and simulat-
ed data sets.

Several tools for the analysis of scRNA-seq data sets have been
proposed. Typically, scRNA-seq analysis starts with data normali-
zation, accounting for technical sources of variation. Additionally,
effects of confounding signatures can be removed to facilitate in-
terpretation. Methods then proceed to cell clustering, gene mark-
ers extraction, DE analysis, pseudotime inference, and other
high-level analyses. bigSCale presents a complete standalone
package combining the aforementioned analysis steps. Of note,
bigSCale can be used in combination with external normalization
tools (Lun et al. 2016; Bacher et al. 2017), as we have shown for
scran normalization applied to our simulated data sets (Supple-
mental Fig. S6).

We benchmarked the performance of bigSCale against tools
that largely differ in their assumptions and models to estimate
gene expression levels and DE genes. MAST uses a hurdle model
with logistic regression, normal and gamma distributions, and χ2

test (Finak et al. 2015). Monocle2 uses generalized additive models
(GAMs) with a Tobit model, normal distribution (for the error),
and a χ2 test (Qiu et al. 2017). scDD estimates the gene expression
via a Dirichlet process mixture (DPM) of normal distributions
(Korthauer et al. 2016). Lastly, SCDE uses a mixture mode of neg-
ative binomial and Poisson, Seurat features different parametric
tests (e.g., negative binomial), and BPSC uses a beta-Poissonmodel
(Kharchenko et al. 2014; Satija et al. 2015; Vu et al. 2016). Despite
the aforementioned differences, all tools make use of a priori de-
fined distributions (normal, negative binomial, gamma, beta,
Poisson, etc.) tomodel gene expression levels andDE. However, er-
roneous or suboptimal selection of the distribution function can
strongly affect the final results. In addition, each model suffers
from specific weaknesses. For example, it was recently pointed
out that hurdle models (e.g., MAST) cause a decrease in numerical
stability and design flexibility for the user (Qiu et al. 2017). In con-
trast, bigSCale offers a radical change of perspective by avoiding to
model gene expression (instead modelling directly the change of
expression) and using an empirical fitting that does not require

any a priori defined distribution. The principal weakness of empir-
ical fitting is the so-called overfitting (incorporating the noise into
themodel). However, according to the strong law of large numbers
(Glivenko–Cantelli theorem), the empirical distribution function
converges to the underlying distribution function with the in-
crease of sampling size. As a consequence, the large sample num-
bers of scRNA-seq data sets allow building of an empirical model
that does not suffer from overfitting (Supplemental Fig. S1).

With the advent of microfluidic-based scRNA-seq library
preparation methods and the associated decrease in costs, experi-
ments are now scalable to profile millions of cells simultaneously.
The latest methods even provide single-cell transcriptomes with-
out the physical separation of cells (through combinatorial index-
ing) (Cao et al. 2017), paving the way to affordable big-scale
projects and the comprehensive charting of tissue and organism
compositions. With bigSCale, we provide an analytical framework
that addresses the computational challenges of future large data
sets.While current tools are not applicable for experiments exceed-
ing thousands of cells, DE analysis and clustering with bigSCale is
practical for 100,000 cells. Beyond that, its convolutionmodule al-
lows the analysis ofmillions of cells as shownhere for the develop-
ing pallium. Further, we foresee a potential application of the
convolution strategy in other large data types, such as single-cell
mass cytometry data, where iCells could improve resolution and
decrease computation time (van Unen et al. 2016; Bendall et al.
2014).

With decreasing expenses for library preparation, sequencing
costs become a limiting factor. Here we showed that despite being
sequenced to low coverage (average 18,500 reads per cell), the anal-
ysis of more than a million cells is capable of identifying heteroge-
neity even in rare cell types. Indeed, the convolution into iCells
and related improvements of expression profiles allowed us to
draw a high-resolution atlas of the developing pallium, providing
a rich resource of novel marker genes for subsequent studies.
Further, the size of the data set enabled us to describe a yet-unprec-
edented heterogeneity in a rare, transient brain cell type (CR neu-
rons, 1% of total cells), producing novel, founded hypotheses that
can be used to enhance our mechanistic insights in brain develop-
ment. Overall, these results illustrate the value of lowly sequenced
large data sets. Nevertheless, for even sparser data sets, such as
those obtained from the sequencing of nuclei (Habib et al.
2017), the performance of bigSCale still needs to be evaluated.
Furthermore, the heuristic bigSCale uses for DE analysis leaves
space for future improvements. The current heuristic works by
adapting to groups of cells the numerical model built on pairwise
comparisons. This increases computational time and also creates
numerical instability that requires proper normalization steps
(see Methods).

Together, we present an analytical framework for scRNA-seq
analysis that provides a solution for challenges arising from future
large-scale efforts to systematically and comprehensively chart cel-
lular composition of complex organisms, including the human
body (Regev et al. 2017).

Methods

Numerical probabilistic model

The probabilistic model is established as follows. First, cells are
clustered in groups sharing similar expression profiles. We refer
to this clustering as preclustering, as it is different from the final
cell clustering achieved at the end of the pipeline. The purpose
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of the preclustering step is to group cells sharing highly similar
transcriptomes,which are next treated as biological replicates to al-
low evaluation of the noise. Preclustering is achieved by (1) nor-
malizing the reads/UMIs to library size (xij = cij/LS for i = 1,…,
tot_genes, where xij is the normalized expression for gene i in cell
j, c the nonnormalized expression and LS = Sum(cij) the library
size); (2) transforming the normalized expression levels in log10(x
+1); and (3) normalizing the log-transformedvalues to the same in-
terval for each gene. This step is required; otherwise, only highly
expressed genes would drive the clustering: (4) clustering the cells
using Pearson-correlation and hierarchical clustering with Ward’s
linkage. bigSCale automatically attempts to find the deepest possi-
ble cut (on average 10%–15%of total tree height) in the tree to en-
sure that only highly similar cells are grouped together. At the
same time, it avoids cuts that are too deep andwould produce clus-
ters that are too small for computing the numerical model (for de-
tails and pseudocode, see Supplemental Material).

To test the robustness of the numerical model and final clus-
tering against variations of the preclustering heuristic, we evaluat-
ed the similarity of the final clustering calculated from different
cutting depths andhence different numericalmodels (Supplemen-
tal Fig. S1). Forcing the cutting depth to 4% and 20% (unsuper-
vised heuristic cut was 7%) resulted in large variations in the
number of preclusters (nine and 1160, respectively). As the num-
ber of preclusters (20%, nine preclusters) must be higher than
the number of final clusters (11), higher cutting depths (>20%)
were not tested. Indeed, higher cuttingwould cause an overestima-
tion of the noise, as biologically different cells would be treated as
biological replicates. Similarly, testing values <4% would result in
too low numbers of data points to calculate the numerical model.
In fact, given the excessive fragmentation associated with cutting
depth = 4% (1160 preclusters), the number of data points for the
model was already reduced by greater than fivefold compared
with the unsupervised cut (7%). Importantly, these large changes
in the number of preclusters translate intomarginal changes of the
resulting numerical model and the final clustering (RI: 95%–97%)
(Supplemental Fig. S1).

We further tested the cluster robustness against a change of
the correlation metric. Namely, instead of Pearson correlation
(suitable to quantify linear relationships between random vari-
ables), we applied Spearman correlation, which is less sensitive
to outliers and can detect monotonic relationships between ran-
dom variables. Again, this change translates into a neglectable var-
iation of the final clustering (RI = 97.26%) (Supplemental Fig. S1),
indicating high robustness of the preclustering and numeric mod-
el heuristic. Finally, we tested the effects of changes in the linkage
metric by switching from Ward’s linkage to complete linkage or
weighted average distance (WPGMA). Single, average, and centroid
linkage could not be tested because they produced an excessive
chaining of the cells that prevented the assignment of clusters.
In line with previous results, the change of the linkage, although
associated with a massive increase in the number of preclusters
(from 52 up to 1683 with complete linkage), causes only marginal
changes in the final clustering (Supplemental Fig. S1). Overall,
these results indicate the heuristic to be robust and capable of
adapting to different data sets in a completely unsupervised way.

At this stage, we now treat the cells within each group as rep-
licates, assuming their changes of expression to be solely due to
noise and not to biological differences. Second, all within-group
pairwise comparisons between cells are enumerated in order to
determine how rare/common (i.e., assigning a P-value) each com-
bination of expression values is. Specifically, if a precluster con-
tains n cells, it produces C(n,2) = n∗(n−1)/2 combinations of cells.
Each of these combinations contain k couples of expression values
(Xcell1, Xcell2), where k is equal to the total number of genes and

Xcell1, Xcell2 is the expression of a gene in the two compared cells.
Each couple of expression values of each combination is summed
into a 3D histogram that represents a numerical approximation of
a cumulative distribution function (Supplemental Fig. S10A,B).
The assigned P-values are related to the difference in gene expres-
sions across all cells. For instance, if a gene has zero UMIs in cell X
and two UMIs in cell Y, its P-value would be larger than for a gene
with zero UMIs in cell X and 20 UMIs in cell Y, as such differences
are rare.

The fitting takes into account the library size, meaning that it
accounts for the higher dispersion of values of low-sized libraries.
Specifically, when two cells of one precluster are compared during
the enumeration, they are normalized for the library size according
to the formula xij = cij/Sum(cij)∗((LS1+LS2)/2) for i = 1,..,tot_genes,
where xij is the normalized expression for gene i in cell j = 1 or j =
2, c is the nonnormalized expression, and LS1,LS2 are the library
sizes of cells j = 1 and j = 2.

Learning this numerical, probabilistic model from the data is
possible because single-cell data sets contain hundreds to thou-
sands of cells, which allows us to enumerate up to hundreds of bil-
lions of couples and, hence, to gain a high precision in the
estimated P-values. Ultimately, the model allows to assign a P-val-
ue to each gene, indicating the probability of a difference in the ex-
pression when comparing two cells.

DE model and hierarchical markers

The purpose of DE analysis is to assign P-values to genes that indi-
cate the likelihood of an expression change between two groups of
cells. The core of bigSCale is the empirical, numerical model of ex-
pression change between one cell to another.While this is directly
applicable to find a DE gene when comparing two cells, its use to
identify DE between groups of cells needs special adjustments. In
particular, each cell of one group is compared to each of the cells
of the other group, resulting in a total of n1∗n2 comparison, where
n is the number of cells of each group. For each gene, the n1∗n2 log10
transformed P-values (derived from the probabilistic model and
signed to represent up- or down-regulation) are summed into a to-
tal raw score. Genes up(down)-regulated in one group compared
with the other will cumulate high (positive or negative) total raw
scores. Here, the raw score is an empirical measure indicative of
the likelihood of an expression change between the two groups.
In this aspect, bigSCale radically differs from the other tools
benchmarked for the DE, which either perform parametric fitting
followed by, for example, binomial or Poisson tests or use nonpara-
metric tests that do not estimate a model of the noise.

The raw score is next adjusted (1) for the total number of com-
parison, using a curve smoothing spline (the rationale for this ad-
justment is to take into account that genes with sparser expression
will produce smaller scores compared to genes expressed in high
frequency) (Supplemental Fig. S10C) and (2) for the within-group
variability, which is estimated by running a DE analysis between
randomly reshuffled cells in a way that cells of the same group
are compared. Specifically, two null-groups are created by taking
an equal proportion of cells from the two original groups. For ex-
ample, in the case of two groups of 100 cells each, the null-groups
will each be formed bymixed 50+50 cells randomly extracted from
original group one and two, respectively. For comparison involv-
ing fewer than 2000 total cells, five such permutations are per-
formed. Each of the five permutations will determine an average
expression value for any given gene, which is centered on its ex-
pected value with a very low standard deviation. For this reason,
we found that five permutations are enough for group sizes involv-
ing fewer than 2000 total cells. For comparison involving more
than 2000 total cells, the number of permutations is progressively
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scaled down with the increase of cell numbers. The reason is that
large groups allow to fit the within-group variability already with
one or few permutations.

Aside from being a standalone tool, the DE script is also iter-
atively applied between clusters at the end of the clustering pipe-
line to isolate markers genes, that is, genes expressed only in
specific cell types (i.e., clusters). Upon completion of the cluster-
ing, a DE analysis is performed among all the pairs of clusters, re-
sulting in (N2) comparisons, where N = number of clusters.
Generally, the user can select the desired number of clusters, ac-
cording to the desired detail of analysis. Nonetheless, bigSCale
will calculate a hierarchical structure of the markers, which allows
recognition of the main cell types even when setting a high N to
inspect cell subtypes. In this way, the number of clusters N can
be freely set to any level without the risk of losing phenotypic
information.

As the last step, genes presenting significant changes of ex-
pression throughout the data set are selected and organized in a hi-
erarchical structure. Genes that are up-regulated in one population
compared with each of the other populations are classified as
markers specific to that population (Level 1 markers). Level 1
makers capture the phenotypes being unique and peculiar to pop-
ulations of cells. Each Level 1 marker has a score, which corre-
sponds to the highest (less significant) log10 transformed P-value
out of the N−1 comparison. In the next step, Level 2 markers are
calculated. These markers are up-regulated in at most two popula-
tions of cells compared with each of the other populations.
Essentially this means that Level 2 markers are genes expressed
in two populations of cells among all populations. This computa-
tion iteratively continues up to Level N− 1 markers. For example,
we assume four populations: radial glia, neuronal progenitors, di-
viding neuronal progenitors, and differentiated neurons. Level 1
markers would represent genes expressed only in one of the popu-
lations, such as radial glia–specific markers. Level 2 markers would
be genes shared by two populations, such as the neuronal progen-
itors markers, which are expressed both in the neuronal progeni-
tors and in the dividing neuronal progenitors. Lastly, Level 3
markers are shared by three populations, for example, neuronal
markers, which are expressed in the dividing and nondividing pro-
genitors and in the differentiated neurons.

Overview of the clustering

Once the probabilisticmodel has been fitted, it is possible to calcu-
late distances between cells. First, overdispersed genes, namely,
genes with high variation of expression throughout the data set,
are determined by means of empirical noise model learned from
the data (Supplemental Fig. S10D–F). To further improve the fea-
tures section, extremely skewed genes (Supplemental Fig. S10G)
and isolated genes (not correlated with any others) are discarded.
Furthermore, perfectly correlating genes are discarded as they
belong to families with shared 3′-exons (such as Pcdh or Uty), for
which most scRNA-seq techniques (e.g., MARS-Seq [Jaitin et al.
2014; Paul et al. 2015] or chromium-based [Zheng et al. 2017]
methods) cannot differentiate between transcripts. These families
can otherwise generate artificial clusters, as it happens with other
tools (Fan et al. 2016).

Second, distances for all pairs of cells are calculated, and the
obtained distance matrix is used to cluster the cells (hierarchical
clustering, Ward’s linkage). The distance between two given cells
is calculated as the sum of the log10 transformed P-values of over-
dispersed genes. Cells presenting many overdispersed DE genes
will cumulate higher sums and eventually result very distant.
Only genes with DE P-values <0.01 are retained in the sum to en-
sure that only significant changes determine the final distance.

Hierarchical clustering is a direct clustering type that provides
a visual aid (dendrogram) to put the increasing complexity of cell
types into context. More importantly, in the bigSCale workflow
the hierarchical clusters work in synergy with the hierarchical
markers of higher-order cell types, as shown, for example, in
Figure 3.Without a hierarchical clustering, it wouldnot be possible
to clearly visualize the association between cell types and higher-
order markers such as Thy1 or Gria1. The combined strength of hi-
erarchical clustering and hierarchical markers further allows us to
overcome the difficulties of determining cluster numbers, as high-
er-order phenotypes (the main cell types corresponding to the
minimal, informative, cluster number) are always recollected and
visible. Furthermore, unlike other kinds of clustering such as k-
means, hierarchical clustering allows us to use directly the distanc-
es calculated by bigSCale’s numerical model to cluster cells.

Prior to the calculation of the numerical model and distance
matrix, batch correction can be applied to level out the batch-relat-
ed variance in expression. Briefly, batch correction forces each
gene to follow the same distribution in each batch, condition-
wise (Supplemental Fig. S10H). In this way, the batch-effects are re-
moved while preserving the original distributions of expression
(Supplemental Fig. S10H,I). Similarly, confounding gene expres-
sion signatures, such as gender-related or cell cycle–related genes,
can be isolated by bigSCale and removed (or reduced) to allow a
clustering of informative differences (Supplemental Fig. S2).

Convolution of large data sets

To convolute large data set, bigSCale performs the following pipe-
line. (1) The numerical model of the data set is calculated. (2) For
each cell, its distances against a number n of other random cells
are calculated. The number of random cells n is normally set to
thousands. The higher n, the longer the computational time, but
the lower the distortion introduced by the convolution. The final
output of this step is a m∗n matrix, wherem is the number of cells
in the original data set and n is the number of random cells for
which distances are calculated. (3) A pooling algorithm is applied
to them∗n distancematrix to determine all groups of cells that will
be summed into iCells. The rationale of the algorithm is that, for
each cell, its closest neighbor among the n other random cells
can be considered as an analogous phenotype. To increase the con-
volution factor, k closest neighbors, instead of one, can be chosen.
The pipeline pools the cells in order of similarity, starting with the
closest ones, up to a maximum distance determined by percentile
values. Initially, the algorithm starts with a stringent percentile
value (P = 5% of the total computed distances) and attempts pool-
ing k closest neighbors for each cell. When there are no more cells
with k closest neighbors within the maximum distance (P = 5%), k
is relaxed to k− 1. This cycle continues until k = 1, to which point
the maximum distance allowed is increased to P = 10%. These in-
ner (k) and outer (p) cycle continue until P = 50%. Cells ending
up with no neighbors are considered outliers and discarded.
While it is easy to locate neighbors for cells belonging to abundant
(frequent) types, for rare cell types it becomes harder. Essentially,
the two k–p cycles maximize the probability to find neighbors
for every cell, both common and rare ones.

The ratio n/k is proportional to the quality of the convolution.
In fact, a high n/k ratio implies that the k-closest neighbors chosen
for each cell are selected from a much larger population of n ran-
dom cells, which increases the chances to find the “real” neigh-
bors, especially for rare cell types. Convolution of very large data
sets can be split inmultiple rounds to further reduce artifacts by us-
ing better n/k ratios, as done in the case of the 1.3million cells data
set (1.3 Million Brain Cells from E18 Mice, 10x Genomics; https://
support.10xgenomics.com/single-cell-gene-expression/datasets).
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Specifically, we convoluted the data set with a final factor k = 75 in
three rounds. In fact, calculating n = 4000 for 1.3 million cells
already requires approximately 12 h of CPU-time, nonetheless
yielding in a bad n/k = 4000/75 = 53,3 ratio, if convolution was in
one round. Therefore, we proceededwith three rounds of convolu-
tion. The convolution factors used for each round were (n1 = 4000,
k1 = 3), (n2 = 5000, k2 = 5), and (n3 = 7000, k2 = 5), which all showed
high, good n/k ratios (1333, 1000, and 1400, respectively). The first
round reduced the size to 456,274 iCells, the second round to
110,583 iCells, and the third round to 26,185 iCells.

Data access

Rawdata counts and the expressionmatrix for theNPC cell data set
from this study have been submitted to the NCBI Gene Expression
Omnibus (GEO; http://www.ncbi.nlm.nih.gov/geo/) under acces-
sion number GSE102934. bigSCale v1.0 is freely available at
GitHub (https://github.com/iaconogi/bigSCale) and as Supple-
mental Software.
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