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Importins involved in the
nuclear transportation of
steroid hormone receptors:
In silico and in vitro data

Konstantina Kalyvianaki †, Athanasios A. Panagiotopoulos †,
Maria Patentalaki , Elias Castanas* and Marilena Kampa*

Laboratory of Experimental Endocrinology, School of Medicine, University of Crete,
Heraklion, Greece
The nuclear receptor superfamily (NRS) consists of 48 receptors for lipophilic

substances and is divided into 7 different subfamilies, with subfamily 3

comprising steroid hormone receptors. Several nuclear receptors usually

bind their cognate ligands in the cytosol and the complex (mono- or

dimerized) is transported to the nucleus, where it acts as a transcription

initiating factor for a number of genes. The general structure of nuclear

receptors consists of an N-terminal activating domain (A/B), important for

the binding of activating or inhibitory co-factors, the DNA-binding domain (C),

responsible for the association of the receptor-ligand-co-factor complex to

the nucleus, the ligand-AF2 domain (E/F), where ligand binding occurs as well

as that of ligand-dependent activating/inhibiting factors, and a flexible/non-

structured domain (D), linking the DBD and LBD, called hinge region, on which

a significant number of post-translational modifications occur. This hinge

domain, for the sub-class of steroid receptors, is a non-structured domain

and was reported as mainly responsible for the nuclear transport of steroid

receptors, since it contains a specific amino acid sequence (Nuclear

Localization Signal-NLS), recognized by importin a. In addition to the

importin a/b complex, a number of other importins have been discovered

and reported to be responsible for the nuclear transport of a number of

significant proteins; however, the corresponding recognition sequences for

these importins have not been identified. Recently, we have reported the

identification of the NLS sequences for importins 4, 5 and 7. In this work, we

provide in silico data, followed by experimental in vitro validation, showing that

these alternative importins are responsible for the nuclear transportation of

steroid hormone receptors such as ERa, AR and PR, and therefore they may

consist of alternative targets for the pharmacological manipulation of steroid

hormone actions. Moreover, we provide additional in silico data for the hinge

region of steroid hormone receptors which is highly enriched with NLS

sequences for importins 4, 5 and 7, in addition to the recognition NLS for

importin a/b.

KEYWORDS

nuclear translocation, importins, NLS, steroid receptors, hinge region
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fendo.2022.954629/full
https://www.frontiersin.org/articles/10.3389/fendo.2022.954629/full
https://www.frontiersin.org/articles/10.3389/fendo.2022.954629/full
https://www.frontiersin.org/articles/10.3389/fendo.2022.954629/full
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fendo.2022.954629&domain=pdf&date_stamp=2022-09-06
mailto:kampam@uoc.gr
mailto:castanas@uoc.gr
https://doi.org/10.3389/fendo.2022.954629
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://doi.org/10.3389/fendo.2022.954629
https://www.frontiersin.org/journals/endocrinology


Kalyvianaki et al. 10.3389/fendo.2022.954629
1 Introduction

With the seminal discovery of Jensen (1) that estradiol

might bind to an intracellular protein, the field of nuclear

receptors initiated. This discovery was followed by the

identification and preliminary characterization of the

receptor protein (2, 3) and gene (4). At the same time, the

discovery of other hormone receptors genes [reviewed in (5)

and references herein] established the notion that all these

receptors have a similar structure; this was the onset of the

nuclear receptor superfamily group of receptors. With more

than 300 receptors, spanning in all animals from porifera to

mammals (6), nuclear receptors are involved in a great

spectrum of cellular functions, including reproduction and

development, lipid metabolism, xenobiotic and bile acid

metabolism, and CNS and basal metabolism [(7), http://

nr resource .o rg / educa t ion/genera l - in fo rmat ion/nr-

functional-classification/], acting as transcription factors (see

(5, 8), for reviews and references herein). In humans, 48

different nuclear receptors have been identified (9), classified

in seven distinct subfamilies (NR0-6, NR Nomenclature -

Nuclear Receptor Resource (nrresource.org)), with Subfamily

3 encoding steroid hormone receptors (NR3A: Estrogen

Receptors, NR3B: Estrogen Related (orphan) Receptors,

NR3C: 3-ketosteroid (AR, GR, MR) receptors). It is

important to note, however, that from the very early time of

steroid research, alternative (rapid) effects of steroids have

also been identified [(10), also mentioned in the first

publication about a putative steroid receptor (1)], a field

which took more than 30 years to be acknowledged, but

which led to recent interesting findings and physiological

implications (the interested reader should consult the

proceedings of the Rapid Response to Steroid Hormones –

RRSH – biannua l meet ings , a l l pub l i shed in the

Journal Steroids).

All nuclear receptors share a common structure,

comprising an N-terminal activating domain (A/B),

contains the activation function 1 (AF-1) responsible for

the binding of activating or inhibitory co-factors, the DNA-

binding domain-DBD (C) responsible for the association of

the receptor-ligand-co-factor complex with the DNA, the

ligand binding domain-LBD (E), where the ligand binding

occurs, the activation function 2 (AF-2) domain (F) where

ligand-dependent activator/inhibitory factors bind, and a

flexible/non-structured domain (D), linking the DBD and

LBD, called the hinge region [(5, 6), Figure 1A]. As its name

implies, the hinge region was considered a linking region of

the receptor(s). However, it was later revealed to have several

important functions. It is mainly responsible for the nuclear
Abbreviations: ER, Estrogen Receptor; PR, Progesterone Receptor; AR,

Androgen Receptor; GR, Glucocorticoid Receptor; MR, Mineralocorticoid

Receptor; NLS, Nuclear Localization Signal; IPO, Importin.

Frontiers in Endocrinology 02
translocation of steroid receptors, since it contains (at the

interface between DBD-hinge region) a specific amino acid

sequence (Nuclear Localization Signal-NLS), recognized by

importin a (14–24). Moreover, as it was found for estrogen

receptor alpha (ERa), it possesses an intrinsic activity for

calmodulin binding (25) and is the site of a number of post-

translational modifications. In addition, we have reported

that a fragment of this region [potentially regulated by the

intense trafficking of the receptors (26–28)] possesses specific

activities, including pro-estrogenic (25), pro-apoptotic (29)

actions, while it modulates the migratory activity of human

breast cancer cells in vitro (30), interacting with specific

isoforms of ERa (31).

All receptors share a higher homology in their DBD, as

expected, followed by a relatively high homology at their LBD, as

all bind lipophilic molecules (32, 33).

Early observations on the mechanistic steps of ER

act ivat ion revea led the nuclear trans locat ion and

dimerization of the receptor (2), after hormone binding

(34–37). In parallel, the role of (nuclear) ERs in breast

cancer and other endocrine-related tumors had been

advanced (38, 39), reviewed in (40). Subsequently, the mode

of action and the role of nuclear translocation of nuclear

receptors in different hormone actions has been described

and pharmacologically exploited (41, 42). However, the

proteins and the signals involved in their nuclear

translocation have not been fully elucidated.

The cytoplasmic-nuclear transport of proteins is

orchestrated by a class of cellular proteins, collectively

known as karyopherins, involving exportins, importins and

adaptor proteins [see (43) for a review]. Cargo proteins have

specific motifs named Nuclear Localization Signals (NLS),

responsible and necessary for the identification and the

binding of importins. Until recently, only a few NLS motifs

were recognized [see references (44, 45) for reviews] for

importin a (46) and the M9 NLS (recognized by importin

b2, also known as transportin) (47–49). An increasing

number of prote ins are ident ified to conta in the

monopartite classical importin a NLS sequences, KRRR and

KRKXK (50–57). Recently, using a bio-informatics approach,

based on bibliographic and simulation data, and experimental

in vitro validation, we have presented the sequence EKRKI(E/

R)(K/L/R/S/T) as a recognition motif for binding with

Importin 7 (58), a result recently confirmed by another

group (59) while recent data [(60) under review] identified

the sequences LPPRS(G/P)P and KP(K/Y)LV as recognition

motifs for importins 4 and 5 binding, respectively.

In this work, using these new data, we have interrogated

the sequences of steroid hormone receptors (NR3 group) for

importins’ recognition sequences. We report an abundance of

NLS sequences in all receptor structures for importins a, 4, 5
and 7, in the whole span of the receptor molecules.

Interestingly, the hinge region of all receptors has 1 to 3
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sequences and in combination with its small size and its non-

structured conformation renders it as an important element

for steroid receptor nuclear translocation. Among the

receptors studied, it is to note that ERa and ERb have only

importin a NLSs, while other receptors like AR and PR have

NLS sequences for multiple importins.
2 Material and methods

2.1. Identification of NLS sequences in
steroid hormone receptor structures

Amino-acid sequences for ERa and b, PR, AR, GR and MR

were retrieved from NCBI (https://www.ncbi.nlm.nih.gov/

protein) (#P03372, Q92731, P06401, P10275, P04150 and

P08235 respectively). The hinge region in each sequence was

retrieved from the same database (see Supplemental Table 1).

Multiple alignments for each NLS sequence [monopartite

Importin a NLS KRRR and KRKXK (50–57), (L)PPRS(G/P)P,

KP(K/Y)LV for Importins 4 and 5 respectively (60) and EKRKI

(E/R)(K/L/R/S/T) for importin 7 (58)] were identified with the

online Clustal Omega tool on the EMBL-EBI server (https://www.

ebi.ac.uk/Tools/msa/clustalo/) (61, 62). Only sequences with at

least 50% homology in the amino acids of each NLS were retained.

Hinge regions alignment was constructed, analyzed and visualized

in JalView v2.11.1.7 (12).
Frontiers in Endocrinology 03
2.2. Bio-informatics detection of active
and inactive NLS sequences

Due to the presence of a large number of unstructured

regions in the sequence of steroid hormone receptors, their

crystallization has not been described. However, fragments

(especially of their E-F regions (binding domains and AF2)

have been reported. Recently, using AI methods, a prediction

of ~1000000 protein 3D structure was reported (AlphaFold and

AlphaFold2 (63–65). Here, we have used the crystal structures of

the C-terminal domain of the steroid hormone receptors, bound

to an agonist or antagonist, and the structural prediction of

domains A-C (AF-1 and DBD) from the AlphaFold protein

structure database (https://alphafold.ebi.ac.uk/). The same

database was used for the structure of the unliganded LBD-

AF-2 domain (see Supplemental Table 2). For each identified

steroid hormone receptor fragment, we have manually

annotated the NLS sequence we have identified (see previous

paragraph) and reported it as “active” if it is located at the

surface of the protein (and therefore accessible to importins) or

as “inactive” if not (see Results and Supplemental Figures 3–8,

for further details). In the hinge region, all NLS were

characterized as “active”, as this part of the receptor molecule

is unstructured and therefore accessible for an interaction

with importins.

The validity of the AlphaFold2 solutions were verified by

comparing them to data obtained with the Galaxy Web server

(66–69) (https://galaxy.seoklab.org/cgi-bin/submit.cgi?type=TBM),
A B

D

C

FIGURE 1

(A) Schematic representation of nuclear receptors functional domains. (B) Table summarizes the identified importins a, 4, 5 and 7 NLS
sequences in the structure of steroid hormone receptors (columns 2-5), according to data presented in Supplemental Figure 1. In column 6, the
detailed number of putative NLS sequences in the hinge region of each receptor is presented, while in column 7 the percentage of the hinge
region-identified NLS over the total NLS sequences is presented. (C)Alignment of the hinge regions of steroid hormone receptors, with the
MafftWS algorithm (11) in JalView V2.11.2.2 (12). Coloring of amino acids is presented according to the CrustalW color scheme (13) (see http://
www.jalview.org/help/html/colourSchemes/clustal.html for details). (D) Similarity tree of the hinge region of steroid hormone receptors with the
Blosum62 algorithm, performed in JalView.
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while the ERRAT2 score (70) (https://saves.mbi.ucla.edu/)

was <80%, suggesting a valid prediction (Supplemental Figure 2).
2.3. Experimental validation of
bio-informatic data

2.3.1 Cell lines and culture conditions
T47D and LNCaP cell lines were purchased from DSMZ

(Braunschweig, Germany), and were cultured in RPMI-1640

(Gibco™, Thermo Fisher Scientific) supplemented with 10%

Fetal Bovine Serum (Qualified, Gibco™, Thermo Fischer

Scientific), at 37°C and 5% CO2. The selection of the

specific cell lines was determined due to their levels of

expression of Progesterone Receptor (PR), Estrogen

Receptor alpha (ERa) for T47D cells and Androgen

Receptor (AR) for LNCaP and T47D cells (CCLE, Cancer

Cell Line Encyclopedia database (https://sites.broadinstitute.

org/ccle/ ) (71). Expression levels of importin a, 4, and 5 for

the specific cell lines, were also taken into consideration (The

Human Protein Atlas, https://www.proteinatlas.org/ (72) and

our results). All media were purchased from Fisher Scientific

and all chemicals from Sigma (St. Louis, MO), unless

otherwise stated.

2.3.2 Transfection method for importins
(IPOs) silencing

Cells were seeded at an initial of 5 × 105 cells/well in a 6-

well plate with 1 ml medium per well and incubated for 24

hours. Attractene Transfection Reagent (QIAGEN) was used,

according to standard protocols, to transfect the cells with the

specific siRNAs (0.05 mg siRNA and 0.2 ml Attractene

Transfection Reagent/104 cells) for IPO4 (AM16708, ID:

109561), IPO5 (AM16708, ID: 106742), IPOA1 (AM16708,

ID: 11126) or scrambled siRNAs (AM16708, ID: 149158)

(Thermo Fischer Scientific, Waltham, MA USA). After 24 h,

fresh medium was added and 24 h later cells were collected

and analyzed or fixed with 4% paraformaldehyde in PBS

for 10 min.

2.3.3 RNA isolation and real time PCR
Transfection efficiency was evaluated bymeasuring the receptor

gene expression through real-time quantitative PCR (real-time

qPCR). Total cell RNA from the 6 well plates was isolated using

the RNA isolation Kit (Nucleospin, Macherey-Nagel, DE), cDNA

was synthesized using the PrimeScript™ RT Kit (TaKaRa Bio Inc)

and real time PCR was performed using the KAPA SYBR FAST

qPCR Master Mix (Kapa Biosystems, Inc. Wilmington, MA, USA)

as previously described (73). The following primer pairs

(synthesized by Eurofins Genomics, Ebersberg, Germany) were
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used (5’->3’): IPO4, forward ACGGAACAGCTCCAGATCGT,

reverse AGCAAAAGCCCCATCTCTCTC, IPO5, forward

CTGCTGAAGAGGCTAGACAAATG, reverse TCTGCCGCAA

TATCACAAACTT, IPOA1, forward ATTGCAGGTG

ATGGCTCAGT, reverse CTGCTCAACAGCATCTATCG and

Cyclophilin A, forward ATGGTCAACCCCACCGTGT, reverse

TTCTGCTGTCTTTGGAACTTTGTC. In all cases transfection

efficiency ranged between 40% to 70% (Supplemental Figure 10).
2.3.4 Immunofluorescence-confocal
microscopy and analysis of data

Paraformaldehyde fixed cells were incubated with

blocking buffer containing Triton X-100 0.2% w/v for

10 min and were stained using primary antibodies against

ERa, AR, PR and nuclear envelope lamins (for labelling of the

nucleus) and fluorescently labelled secondary antibodies (see

Supplemental Table 3 for the specific antibodies and dilutions

used). Initially cells (pretreated for 90 min with 10-7 M DHT

for AR or ORG 2058 for PR and untreated for ERa) were

washed with PBS and incubated with the primary antibodies

for AR, PR or ERa respectively for 1hr at RT, followed by 2

PBS washes and a 45min staining with the fluorescent

secondary antibodies. Afterwards cells were incubated for

45 min with a primary antibody for lamin B1 or A/C

(nuclear envelope markers) at RT, washed with PBS (x2)

and stained for 45 min with the appropriate secondary

antibody. Fixed-stained cells were mounted with Mounting

Medium (Inova Diagnostics, Inc, San Diego) containing DAPI

and observed on an inverted confocal scanning microscope

(Leica SP5) using a 63× objective lens with oil immersion and

an optical zoom 2x.

The fluorescence intensity ratio of each receptor (ERa, PR
and AR) in the nucleus and the cytoplasm was quantified

using the Image J software (https://imagej.nih.gov/). The area

(nucleus or cytoplasm) in the cell of interest was selected

using the polygon selection tool and measurements of

different variables were taken. To calculate the corrected

total cell fluorescence (CTCF) the following formula was

used: CTCF = Integrated Density – (Area of selected cell X

Mean fluorescence of background readings). For the mean

background readings ten measurements from ten different

regions next to the cells were taken. The ratio of the

fluorescence intensity of the cytoplasmic region to the

nucleus quantifies the nuclear translocation of each

receptor. At least 50 cells per condition were analyzed

from at least 3 independent experiments. GraphPad

Prism 8.0.1 (GraphPad Software Inc. San Diego CA) was

used for parametric statistical analysis and results were

displayed as mean ± SEM. p-values < 0.05 were considered

statistically significant.
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3 Results

3.1. Identification of importins a, 4, 5 and
7 recognition signals in the sequence of
steroid hormone receptors by a bio-
informatic approach

Blast sequence alignment of the NLS sequences for importinsa,
4, 5 and 7 on steroid hormone receptors (ERa and b, PR, AR, GR,
MR) (Supplemental Figure 1), identified a receptor-specific pattern

of NLS recognition sequences summarized in Figure 1B.

Interestingly, for ERa and b, the only identified NLS sequences

were those for importin alpha, suggesting that this is the only

importin responsible for the nuclear import of the receptor. For the

androgen receptor (AR) the main NLS sequences (4/5) recognize

importin a, while an additional sequence (located at the boundary

of AF-1 and DBD (see Supplemental Figure 1) recognizes importin

4. For the PR, we have identified abundant NLS sequences (4 for

importin a, 4 for importin 4 and 1 for importin 5). In the

glucocorticoid receptor (GR) we have identified 12 NLS

sequences, 6 for importin a, 5 for importin 5 and 1 for importin

7. Finally, at the structure of themineralocorticoid receptor, we have

identified 3 NLS sequences (2 for importin a and 1 for importin 7).

These data provide novel evidence for the possible role of different

importins (a, 4, 5 and 7), in the ligand-dependent and -independent
nuclear translocation of liganded and unliganded steroid hormone

receptors. In addition, our data confirm the primary role of

importin a, for the nuclear translocation of all steroid

hormone receptors.

We have further concentrated on the analysis of the hinge

region of steroid hormone receptors. This short, unstructured

sequence of 40-60 amino acids, analyzed extensively especially for

ERa, has been reported to possess an intrinsic activity by binding

calmodulin (25) and being the site of a number of post-translational

modifications. Alignment and clustering of this region (Figures 1C,

D) revealed a very good match for ERa and b on one hand, and for
GR andMR on the other. Furthermore, 60% of ERa and bNLSs for
importin a, were located in the hinge region, positioning it as a

primary part of the receptor involved in its nuclear translocation.

This percentage was lower in other steroid receptors (11% in PR,

20% in AR, 25% in GR and finally 33% in MR of total NLS-

identified sites MR). It is important to note that importin selectivity

also varies among the different steroid hormone receptors, although

all possess recognition motifs for importin a and only GR hinge

region expresses sequences for importins 5 and 7 (Figure 1B). In

this respect, we provide an additional hint for the significance of the

hinge region, heavily involved in the nuclear transport of the steroid

hormone receptors.
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3.2. Validation of the identified NLS-
Importins’ role in steroid receptors’
nuclear translocation

3.2.1. In silico
The recognition signals and the importins that were

identified in the different steroid receptors were initially

validated in silico by examining their position in each

receptor 3D structure in order to find their accessibility for

binding to importins. If they are present at the surface of each

receptor 3D structure, they are characterized as “active” (i.e.

accessible to importins for binding). In contrast, when they

are buried in the structure, away from the surface, they are

inaccessible to importins and characterized as “inactive”.

Both liganded, unliganded and non-liganded LBD receptor

structures were examined. The great majority of the NLSs was

found either in non-structured regions of the receptor

molecules, or at the surface of structured regions, accessible

to importins for binding and therefore characterized as active

(Supplemental Figures 3–8). We have used the AlphaFold2

PDB files as templates (64, 65), for the characterization of

NLS sequences in the A-C N-terminal part of the receptors.

As expected, all sites, situated in the non-structured regions

of the receptors are active, while a receptor-dependent active

or inactive sites are identified in the structured parts of the N-

terminal regions (see Figure 1B, Supplemental Figures 1, 3–

8). Structured data of the AlphaFold solution (https://

alphafold.ebi.ac.uk/), was verified through an ab initio 3D

conformation in the Galaxy Server (https://galaxy.seoklab.

org/cgi-bin/submit.cgi?type=TBM) (66–69) showing a very

good match (RMSD<2Å in all cases), and the ERRAT

program (Supplemental Figure 2) (70). Data concerning the

hinge region (a preferential site for all NLS sequences), which

is non-structured and therefore all identified sites are labeled

as active, are also presented in Figures 1B–D (please see the

previous paragraph and Discussion section for additional

details). Interestingly, no NLS was identified in ERa, ERb
and MR LBD, suggesting that their nuclear translocation

(at least through importin a, is independent of ligand

binding Supplemental Figures 3, 4, 8). Androgen agonists

and antagonists binding to the AR do not modify the active

NLS identified at the LBD (Supplemental Figure 5). In

contrast, one of the two identified NLS (for importin a
binding) in the LBD of the PR is inactive after agonist

binding and active in the unliganded and antagonist-bound

form (Supplemental Figure 6), while for the GR the one NLS

of the LBD is predicted as always accessible to importin 5

(Supplemental Figure 7).
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3.2.2. In vitro
The role of the in silico identified importins for the nuclear

transportation of the steroid receptors was also validated in vitro.

The nuclear presence of three different receptors, ERa, AR and PR,

was examined in cells expressing the specific importins

(Supplemental Table 4) in the absence or presence of specific

siRNAs that inhibit their expression (see Supplemental Figure 10

for the effect of each siRNA in each cell line). As it is shown in

Figure 2, nuclear ERa is significantly decreased in T47D cells

transfected with IPOA1 siRNA (for importin a), as expressed by

an increase in the ratio of cytoplasmic/nuclear receptor localization.

Such an effect was not observed when IPO4 siRNA (for importin 4)

was utilized (Figure 2), verifying the in silico data that only importin

a NLSs are present in the ERa sequence (Figure 1B and

Supplemental Figure 1). For AR both importins a and 4 NLSs

were identified in silico; in LnCaP (Figure 3) and T47D cells

(Supplemental Figure 9) we show that, reducing the expression of

either importin with specific siRNAs, significantly decreased the

nuclear localization of AR. Finally, for the PR, we have found NLS

for importin a, 4 and 5 (Figure 1B and Supplemental Figure 1); in

T47D cells, the IPOA1 and IPO5 siRNAs were able to significantly

decrease nuclear PR translocation (Figure 4). Surprisingly, IPO4

knocking down, with a specific siRNA, did not significantly inhibit

PR transfer to the nucleus (Figure 4B). It seems therefore that

importin 4 might have not a significant role in PR nuclear

transportation, in T47D cells (in contrast to AR), a result that

needs further investigation.
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4 Discussion

It is now widely accepted that steroid hormone receptors in

order to fulfill their role as transcription factors, must translocate

(either in their free or ligand-bound form) from the cytoplasm to

the nucleus. Importins seem to play a significant role and based

on this a sustained research effort for their interactions

was initiated.

For ERa, nuclear accumulation is mediated through an

interaction with importin a (14, 17, 23) through a specific

NLS, at the interface of DBD and hinge region (amino acids

266-269, a result in accordance with our findings) and importin

3 (23), or passive transport (23, 74). It was also noted that

untreated (unliganded ERa) or SERM-treated breast cancer cells

(tamoxifen-ERa) show a diffuse nuclear staining, while agonist-

treated cells (estradiol-ERa) form numerous nuclear focal

accumulations (75). For ERb, although there is a great

homology at the DBD-hinge region, where the NLS for

importin a in ERa exists, no specific mechanisms have been

identified but only a diffusion through nucleoporin 153, in

association with eNOS (76) has been reported.

For the androgen receptor (AR), nuclear translocation relies

also on importin a (20, 21), while the nuclear localization signal

that the authors reported resides at the junction of the DBD and the

hinge region (amino acids 617-635). This signal is also conserved in

the structure of the progesterone, mineralocorticoid and

glucocorticoid receptors (amino acids 625-643, 661-679 and 479-
A

B

FIGURE 2

(A) Representative confocal pictures of T47D cells stained for estrogen receptor alpha (ERa) (red) and lamin A/C (green) (3rd raw is their overlay).
T47D cells were either transfected with a scrambled siRNA or a specific siRNA for importin a (IPOA1) or importin 4 (IPO4), used as a negative
control, as our bioinformatics approach did not identify any importin 4 NLS. Magnification x1260 (scale bar, 40 mm). (B) Intensity of fluorescence
in the cytoplasm and nucleus was quantified (see Material and Methods for details) in at least 50 cells per condition from 4 independent
experiments (n=4) and is given as the Cytoplasm/Nuclear fluorescence ratio comparing cell with specific IPOA1 siRNA to those with the
scrambled siRNA. ** denotes statistical significance P< 0.01.
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A B

FIGURE 4

(A) Representative confocal pictures of T47D cells stained for progesterone receptor (PR) (red) and lamin A/C (green) (3rd raw is their overlay).
T47D cells were either transfected with a scrambled siRNA or a specific siRNA for importin a (IPOA1), importin 4 (IPO4) or Importin 5 (IPO5)
treated with ORG-2058 (10-7M) for 90 min to ensure nuclear localization. Magnification x1260 (scale bar, 40 mm). (B) Intensity of fluorescence
in the cytoplasm and nucleus was quantified (see Material and Methods for details) in at least 50 cells from 3 independent experiments (n=3)
and is given as the Cytoplasm/Nuclear fluorescence ratio in each condition. **** denotes statistical significance P< 0.0001.
A

B

FIGURE 3

(A) Representative confocal pictures of LNCaP cells stained for androgen receptor (AR) (red) and lamin B1 (green) (3rd raw is their overlay).
LNCaP cells were transfected either with a scrambled siRNA or a specific siRNA for importin a (IPOA1) or importin 4 (IPO4) and treated with
DHT (10-7M) for 90 min to ensure nuclear localization. Magnification x1260 (scale bar, 40 mm). (B) Intensity of fluorescence in the cytoplasm
and nucleus was quantified (see Material and Methods for details) in at least 50 cells from 4 independent experiments (n=4) and is given as the
Cytoplasm/Nuclear fluorescence ratio in each condition. **** denotes statistical significance P< 0.0001.
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497 respectively, an element also reported here) (20). In addition,

the glucocorticoid receptor (GR) translocates through additional

interaction with importin 7 (58, 77), a NLS comprised in the LBD of

the receptor (78) and identified here as a recognition motif for

importin 5, and importin 13 (79).

Progesterone receptor (PR) was reported to interact with

importin a at the DBD-hinge interface (15, 16, 18, 20) and a

ligand-dependent NLS at the DBD (16) that was also identified here

as an NLS for importin a. In addition, another NLS at the LBD (15)

has been described, which recognizes importin 4 (amino acids 685-

689) or importin 5 (amino acids 781-784 and 927-930), as reported

here. Finally, the mineralocorticoid receptor (MR) interacts with

importin a (19, 20, 22, 24). Moreover, two additional NLS

sequences have been identified, one in the DBD and another in

the LBD of the receptor (24), which, as reported here, are

recognition sequences for importin 7.

Even though nuclear translocation is a necessity for steroid

hormone receptors’ action, as mentioned above, a limited number

of NLS sequences were previously identified. Here we extend this

knowledge, reporting a higher number of putative NLS sequences,

expanding to the whole length of the receptors, which are active in

both the free and their ligand-bound forms. In this respect, the

recognition of the receptor by karyopherins is redundant,

presenting a repetition of recognition motifs for the same

importin (with importin a having the largest number of motifs in

all receptors examined), and complementary, expressing NLS

sequences for multiple importins, in all receptors, with the

exception of ERa, ERb and the MR. Moreover, our in vitro data

have verified the importance of the different, in silico identified,

NLS- importins, for the nuclear translocation of three different

steroid receptors (ERa, AR and PR) and revealed the significance of

importin a and the specific roles of importins 4 and 5, for the

receptors’ nuclear translocation. We have to mention, however, that

importin 4 seems not to play a significant role for PR nuclear

translocation in T47D cells, in contrast to its role for the nuclear

transfer of AR, in both T47D and LnCaP cells, an element which

needs further investigation. Therefore, our results (both in silico and

in vitro) confirm the primary role of importin a, as the primary

karyopherin involved in the cytoplasmic-nuclear shuttle of steroid

hormone receptors, in accordance with previous data (14–24).

However, further research including mutagenesis experiments, is

required for confirming our findings and to better determine the

importance and function of each identified NLS motif, as the

binding of co-regulatory molecules, or HSP might mask some of

these sites. Nevertheless, our in silico data, presented here suggest

that LBD sites are, in their great majority, active in both the

unliganded and liganded AR, PR and GR receptors. In addition,

as derived from our data, even in the event of mutations in one part

of the receptor, it is rather improbable that the molecule will be

sequestrated in the cytoplasm.

For all steroid receptor molecules, the interface between DBD-

hinge region has a sequence (NLS) recognized by importin a (14–

24), a result also reported here. This finding pinpoints the hinge
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region as a primary interface for importin a recognition, and stress

its role for steroid hormone receptor nuclear translocation. In

addition, the non-structured conformation of this region ensures

that the NLS sequence is always accessible for importin binding.

The hinge region has emerged from an accessory part of the

receptor, linking the DBD to the LBD parts, to a site of great

importance, involved in post-translational modifications and co-

regulators (such as calmodulin) binding [see (25), for a discussion].

We have therefore analyzed this region for all steroid hormone

receptors. Alignment of all hormone receptor hinge sequences

identified two parts: the N-terminal part, which presents the

greater homology and expresses the conserved importin a NLS,

and a C-terminal part, which is receptor-specific, and shows a

limited homology among the different receptors. Interestingly,

clustering of the hinge regions revealed a greater homology

between the two ERs (ERa and ERb), and the three 3-ketosteroid

receptors (AR, GR and MR), with PR the other 3-ketosteroid

receptor, being positioned between the two groups. This result

parallels the evolution of steroid receptors in vertebrates, reported

by Thornton (80), from an initial functional ER, followed by the

apparition of PR and the other 3-ketosteroid receptors in that order.

In addition, we have identified in this hinge region a number of

additional putative NLS sequences for different importins, in a

receptor-specific manner, ranging from 11 to 60% of all identified

sites. In this respect, the hinge region expresses a significantly higher

number of NLS sequences (from ~3 to 6 times, as compared to the

length of this region as compared to the total length of each receptor

molecule) and verifies its importance for the nuclear translocation

of the receptors.

Interestingly our group has identified, at the C-terminal part

of the ERa hinge region (amino acids 295-311) a

decaheptapeptide, named ERalpha17p, which can be released

after proteasomal degradation of ERa and possesses estrogenic

(25, 27) and pro-apoptotic (29) actions and modulates the

migratory activity of human breast cancer cells in vitro (30) by

interacting with specific isoforms of ERa (31). It is to note, that

this peptide induces the dissociation of HSP70 from ER, having a

trophic effect on ERa+ breast cancer cells (81), and exhibits also

a proper transcriptional activity, acting in an estrogen receptor-

isoform-related and unrelated manner (31). Although, due to its

size, a passive diffusion through the nuclear pores is possible

(74), the identification of an importin a NLS in its sequence

suggests an additional regulated nuclear translocation, possibly

important for its proper transcriptional activity (31) or other

nuclear actions.

In conclusion, the findings of the present work clearly

show that steroid receptors in order to fulfill their role as

transcription factors have a large number of NLS sequences

ensuring their translocation to the nucleus. These sequences

expand to the whole length of the receptors with the hinge

region being highly enriched. Importin a has the largest

number of motifs in all receptors examined. However apart

from importin a, other importins seem to play a significant
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role in their transport to the nucleus. Therefore, if our

findings are further confirmed they may represent

alternative targets for the pharmacological manipulation of

diseases relating to steroid hormone action.
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