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Transcriptome integrated 
metabolic modeling of carbon 
assimilation underlying storage 
root development in cassava
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Treenut Saithong1,2*

The existing genome-scale metabolic model of carbon metabolism in cassava storage roots, rMeCBM, 
has proven particularly resourceful in exploring the metabolic basis for the phenotypic differences 
between high and low-yield cassava cultivars. However, experimental validation of predicted 
metabolic fluxes by carbon labeling is quite challenging. Here, we incorporated gene expression data 
of developing storage roots into the basic flux-balance model to minimize infeasible metabolic fluxes, 
denoted as rMeCBMx, thereby improving the plausibility of the simulation and predictive power. 
Three different conceptual algorithms, GIMME, E-Flux, and HPCOF were evaluated. The rMeCBMx-
HPCOF model outperformed others in predicting carbon fluxes in the metabolism of storage roots 
and, in particular, was highly consistent with transcriptome of high-yield cultivars. The flux prediction 
was improved through the oxidative pentose phosphate pathway in cytosol, as has been reported 
in various studies on root metabolism, but hardly captured by simple FBA models. Moreover, the 
presence of fluxes through cytosolic glycolysis and alanine biosynthesis pathways were predicted with 
high consistency with gene expression levels. This study sheds light on the importance of prediction 
power in the modeling of complex plant metabolism. Integration of multi-omics data would further 
help mitigate the ill-posed problem of constraint-based modeling, allowing more realistic simulation.

Carbon assimilation is an essential metabolic process underlying the biosynthesis of basic building blocks for 
organismal growth and development. In plants, the process is related to the conversion of atmospheric carbon 
dioxide captured during photosynthesis to carbon-derived compounds composed of cellular biomass1. Car-
bon metabolism is highly conserved across species and, even, kingdoms. Comprehension of its complexity has 
remained elusive2,3. Despite similarities in carbon assimilation pathways in plants, there is an abundance of 
diverse metabolic products varying in quantity. In addition to the sophisticated and highly redundant relation-
ships between metabolic reactions and metabolites, the process dynamically changes depending on prevailing 
conditions. Isotope labeling is typically used to gain insights into the metabolic conversion of carbon4; none-
theless, its application in plants is challenging due to expensive instrumentation, the short half-life of labeled 
precursors, and heterogeneity of plant cells, i.e. multicellular organisms with diverse cellular compartments5,6, 
among others.

Genome-scale metabolic models (GSMMs) have been introduced to complement experimental studies7 and 
enhance our understanding of complex metabolic pathways in plants. They enable interpolation of flux conver-
sion for metabolic intermediates between the measurable biomolecules, connecting metabolic phenotypes to the 
physiological growth of plants. GSMMs are basically constructed from the entire metabolic reactions annotated 
for any studied genome8 and simulated according to the thermodynamic mass balance and condition-specific 
constraints, so-called constraint-based modeling (CBM)9. The first model of the minimal sets of metabolic 
reactions required for plant growth under heterotrophic conditions was developed for Arabidopsis10. Genome-
wide metabolic models exploring primary and secondary cellular metabolisms in plants, e.g. AraGEM11, as 
well as models enabling the study of tissue-level (leaves, roots, seeds, flowers, etc.) metabolism12 have also been 
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developed. Moreover, CBM has deepened our understanding of metabolism, yield improvement and stress 
response in major crop plants, for example, changes in metabolic behavior in response to drought and flooding 
in rice13, lipid biosynthesis and accumulation in developing embryos of rapeseed14, and metabolism underly-
ing photosynthesis, photorespiration, and respiration in maize15. During the past year, CBM was used to study 
carbon assimilation in cassava storage roots (rMeCBM)16 through a simple flux balance analysis (FBA). The 
rMeCBM model demonstrated cultivar-dependent differences in carbon utilization for storage root develop-
ment, particularly between KU50 (Kasetsart 50), a high-yield cultivar, and HN (Hanatee), a low-yield cultivar. 
In addition, rMeCBM described the growth phenotype of cassava storage roots and robustly predicted carbon 
assimilation in both cultivars, but direct validation of the interpolated intracellular fluxes was experimentally 
infeasible. Performing a C-labeling experiment with tuber plants such as cassava remains a challenge.

Given their simplicity and minimal data requirement, FBA models often weakly predict metabolic fluxes at elabo-
rate branched-chain reactions and in a cyclic pathway, for example, pentose-phosphate pathway and non-cyclic TCA, 
where fluxes change dynamically with prevailing environments17–19. Hence, omics data is incorporated into the model 
to improve the prediction quality, thereby making the model context-specific20,21. According to the central dogma of 
gene to protein function, metabolic reactions cannot achieve their function unless the enzymatic protein-coding genes 
are expressed. Transcriptome data, which provide genome-wide gene expression information, are then exploited to 
trace the active reactions associated with metabolic processes under specific conditions. Covert et al. proposed the 
first transcriptome-integrated CBM, investigated metabolic fluxes in central carbon metabolism of Escherichia coli (E. 
coli), and demonstrated the effect of transcriptional regulation on metabolism22. Various computational methods have 
been developed to constrain inactive metabolic reactions under context-specific conditions during the last decades. 
Among them, GIMME (Gene Inactivity Moderated by Metabolism and Expression) pre-defines inactive reactions 
based on a low-level of enzymatic gene expression under a set threshold and then minimizes fluxes through these 
reactions. The method incorporates gene expression to constrain the CBM model as demonstrated for E. coli23 and 
in Arabidopsis leaves under drought stress24. To avoid the bias of threshold setting, E-Flux was proposed to directly 
constrain predicted fluxes to the measured level of gene expression. This method was originally developed to study 
changes in metabolic flux capacity in Mycobacterium tuberculosis25, and Arabidopsis rosettes26. Later, Lee et al. proposed 
a method to maximize the correlation between the magnitude of reaction fluxes and expression levels of corresponding 
enzymatic genes27. The HPCOF (Huber Penalty Convex Optimization Function) approach uses the Huber penalty 
function to resolve local optima problems in the previous approaches. The method was successfully applied to study 
metabolic fluxes in both E. coli and yeast metabolism28. Although gene expression data do not directly relate to fluxes 
because of post-transcriptional and translational modifications, they can confine the viable flux space to reflect the 
biological behavior better than the generic CBM model26. To date, very few studies have incorporated transcriptome 
data into CBM models of plants24,26,29,30, especially plant storage organs.

Here, transcriptome-integrated CBMs (rMeCBMx) were developed to improve metabolic flux prediction of carbon 
assimilation in cassava storage roots (rMeCBM). The models were constructed based on transcriptome data of devel-
oping storage roots31, using three different conceptual methods, denoted as rMeCBMx-GIMME, rMeCBMx-EFlux, 
and rMeCBMx-HPCOF. The performance of the models was analyzed through the consistency of the predicted fluxes 
and expression of corresponding genes in various datasets of cassava storage roots. Results showed the prediction 
by rMeCBMx-HPCOF corresponded best to the metabolic gene expression observed in cassava storage roots, espe-
cially in the high-yield cultivar. Compared to the original rMeCBM model, rMeCBMx-HPCOF showed a significant 
improvement in carbon flux prediction in the complicated branched pathways: (1) carbon substrates supplied via 
oxidative pentose phosphate pathway, (2) TCA cycle and glycolysis in respiration pathway, and (3) carbon precursors 
for alanine biosynthesis. These reactions were consistently weakly predicted by the basic FBA model. This study showed 
that integration of gene expression data could enhance the prediction power of the rMeCBM model, yielding more 
biologically relevant information on carbon assimilation in developing storage roots of cassava.

Methods
Transcriptome data analysis of cassava storage roots.  Eight RNA-seq datasets of developing storage 
roots of cassava were collected from the literature31,32. The transcriptome data included expression of 33,033 genes in 
developing storage roots of four cassava cultivars (Supplementary Table S1). Expression data of 762 metabolic genes 
associated with biochemical reactions in rMeCBM were analyzed by Cufflinks33, and then we calculated the fragments 
per kilobase of transcript per million mapped reads (FPKM)34. The rMeCBMx models were constrained using gene 
expression data from Wilson et al.31, which contained the highest number of replications among available transcrip-
tome datasets.

The predictive performance of the models was assessed by comparing the metabolic fluxes with the expressed 
enzymatic genes in three representative scenarios: (1) in developing storage roots of cassava (eight RNA-seq datasets 
from Wang et al.32; Wilson et al.31; scenario 1), (2) in developing storage roots of high-yield cultivars (six datasets of 
KU50 and Arg7 from Wang et al.32; scenario 2), and (3) in developing storage roots of the KU50 cassava cultivar (three 
datasets from Wang et al.32; scenario 3). A meta-transcriptome analysis of datasets in each scenario was performed, 
and only concurrently expressed genes across datasets were collected to represent genes expressed in the condition. 
Genes were considered similarly expressed between datasets under similar conditions (same scenario) if the coefficient 
of variation (CV) of expression across datasets was less than 25 percent.

Transcriptome‑integrated constraint‑based metabolic models of cassava storage roots.  rMeCB‑
Mx.  The genome-scale metabolic model of cassava storage roots (rMeCBM) by Chiewchankaset et al.16 formed the 
basis of this study. The rMeCBM model covers seven pathways: the starch and sucrose biosynthesis pathway (SSP), 
respiration pathway (RES), pentose-phosphate pathway (PPP), cell wall biosynthesis pathway (CEL), amino acid bio-
synthesis pathway (AMI), fatty acid biosynthesis pathway (FAT), and nucleotide biosynthesis pathway (NUC), es-
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sentially representing carbon assimilation toward the biosynthesis of storage root biomass. It contains 393 metabolites 
and 468 reactions, namely 330 biochemical reactions associated with 762 enzymatic genes in cassava genome version 
6.1, 116 transport and exchange reactions, and 22 auxiliary and non-gene reactions. In this study, the model of car-
bon assimilation in developing storage roots of cassava was simulated according to growth and physiological data 
of the KU50 cassava cultivar as presented in the original publication (specific sucrose uptake rate to roots = 0.0548 
mmolSucgDW−1storage roots day−1 and storage root growth rate = 0.0090 day−1)16. To refine the prediction of metabolic 
conversion in storage roots, the rMeCBM model was further constrained with high-resolution gene expression data 
of developing storage roots of cassava31, denoted as rMeCBMx (Fig. 1). The transcriptome-integrated constraint-
based models were constructed by three methods, i.e. GIMME, E-Flux, HPCOF, and named accordingly: rMeCBMx-
GIMME, rMeCBMx-EFlux, and rMeCBMx-HPCOF. The rMeCBMx-GIMME and rMeCBMx-EFlux were carried 
out using COBRA Toolbox 2.0.535, while rMeCBMx-HPCOF was performed using HPCOF algorithms28 with CVX 
solver (version 2.0)36,37. All models were simulated in MATLAB (The Math Works, version R2019b) environment.

rMeCBMx‑GIMME.  As guided by gene expression levels, GIMME23 minimized predicted fluxes through inac-
tive reactions in the metabolism of developing storage roots (Eq. 1). The inactive reactions were defined by the 
weak expression of responsible genes relative to set thresholds, which herein were the 25th (low-rank), 50th 
(middle-rank), and 75th (high-rank) percentiles of all enzymatic gene expression in the rMeCBM model.

Subject to

where Sij is the stoichiometric coefficient of metabolite i participating in reaction j; vj represents flux through 
reaction j; vj,min and vj,max respectively represent lower and upper bounds of the flux through reaction j; xj is the 
normalized expression level of genes associated with reaction j; xthreshold is the gene expression threshold, and 
cj is the penalty score.

rMeCBMx‑EFlux.  Here, it was assumed that the gene expression level determined the activity of enzymes 
in each metabolic reaction. The capacity of fluxes was estimated based on the abundance of enzymatic gene 
expression25. The rMeCBMx-EFlux model employed information on the gene expression level (x) to set the 
boundary of flux for each reaction (j), enabling the optimization of biomass production to simulate the growth 
of cassava storage roots (Eq. 2). In particular, the gene expression data was normalized by percentile rank to 
reconcile the range of expression between datasets and then employed to constrain the reaction fluxes by scaling 
to the original viable space of the model. The boundary of flux solution was set to constraint-free for non-gene-
associated reactions.

Subject to

rMeCBMx‑HPCOF.  The HPCOF model28 minimizes the distance between the predicted fluxes ( vj ) and gene 
expression levels ( xj ) using the Huber penalty function ( ∅(u) ), exploiting the ability of the ℓ1-norm regulariza-
tion ( IIvII1 ) to perform feature selection (Eq. 3). The Huber penalty function is a robust penalty convex function 
that confers a unique solution for global optimization.

Subject to

(1)Minimize

n
∑

j=1

cj ·
∣

∣vj
∣

∣.

n
∑

j=1

Sijvj = 0, ∀ metabolite i,

vj,min < vj < vj,max , ∀ reaction j,

cj =
{

xthreshold − xj where xthreshold > xj , 0 otherwise
}

,

(2)Maximize vbiomass.

n
∑
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0 ≤ vj ≤ xj , ∀ irrevesible reaction j,

−xj ≤ vj ≤ xj , ∀ revesible reaction j.
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Figure 1.   Overall methodology. (A) Transcriptome data analysis of gene expression in developing storage 
roots of cassava. (B) Genome-scale metabolic model of cassava storage roots, rMeCBM, obtained from 
Chiewchankaset et al.16. (C) Development of transcriptome-constrained GSMM models through GIMME, 
E-Flux, and HPCOF methods. Metabolic fluxes of each reaction were constrained by the relative expression level 
of the highest expressed genes responsible for the reaction. (D) Evaluation of model performance based on the 
consistency of predicted fluxes with gene expression levels, both qualitatively and quantitatively. (E) Plausibility 
testing of the transcriptome-constrained GSMM model by simulation of storage root growth of the high-
yielding cultivar CMC-9, sensitivity analysis, and analysis of the consistency of predicted flux distribution with 
the gene expression data.



5

Vol.:(0123456789)

Scientific Reports |         (2021) 11:8758  | https://doi.org/10.1038/s41598-021-88129-3

www.nature.com/scientificreports/

where, ∅(u) =
{

u2, |u| ≤ 1

2|u| − 1, |u| > 1.

Analysis of model predictions for consistency with transcriptome data.  The concurrence of the 
flux predictions and transcriptome data was assessed on both qualitative and quantitative bases. The predicted 
fluxes were compared with gene expression in developing storage roots of cassava, developing storage roots of 
high-yield cassava cultivars (KU50 and Arg7), and developing storage roots of the KU50 cassava cultivar. The 
reactions with zero- and non-zero fluxes were firstly contrasted based on the absence and presence of enzy-
matic gene expression, respectively. The activity of reactions linked to multiple enzymatic genes was considered 
depending on the highly expressed genes in the set relative to the thresholds: 25th (low-rank) and 75th (high-
rank) percentiles of enzymatic gene expression in the rMeCBM model. The active reactions, predicted non-zero 
fluxes, were compared with their responsible gene expression, and the consistency was evaluated using a confu-
sion matrix with the following indices: accuracy (ACC), sensitivity (SEN), specificity (SPC), negative predictive 
value (NPV), and positive predictive value (PPV).

In addition, the sum of square difference (SSD; Eq. 4) was employed to measure the distance between the 
levels of predicted fluxes and responsible gene expression. Percentile ranks of both entities were used to deter-
mine the SSD as follows:

where vj and zj are percentile ranks of the predicted flux and the associated gene expression level of the jth reac-
tion, respectively.

Plausibility analysis.  The rMeCBMx-HPCOF model was validated similarly to rMeCBM16. The model was 
employed to simulate the growth of storage roots of cultivar CMC9, to ensure specificity of simulation to the 
modeled conditions. Besides, the sensitivity of the model was analyzed to support its performance. Simulation of 
the biomass growth rate was performed under a varying range of SGAM (stoichiometric coefficients of energy for 
root growth), for each of which the deviation from the best fit model was determined (Eq. 5.)16.

where ε is the percent error of model simulation ( vp ) relative to the measured cassava storage root growth rate (vo).

Model verification by multi‑omics data.  The predictions of the rMeCBMx were validated with multi-
omics data of cassava storage roots, consisting of seven transcriptome data (Wang et  al.32; Supplementary 
Table S1), five proteome data (Sheffield et al.37, Li et al.38, Owiti et al.39, Vanderschuren et al.40, and Naconsie 
et al.41; Supplementary Table S2), and 20 metabolome data (Drapal et al.42 and Obata et al.43; Supplementary 
Table S3). Correspondence of the predicted active and inactive reaction fluxes to the gene expression, proteins 
and metabolic compounds in cassava storage roots was examined. For the transcriptome data, gene expression 
was measured from three cassava cultivars at different ages using the Illumina sequencing technology. It should 
be noted that only genes with expression levels above the 50th percentile rank were used. For the proteome data, 
existing proteins in developing storage roots were measured from five cassava cultivars through 2D SDS-PAGE 
and high-resolution liquid chromatography mass spectroscopy (LC-MS). The proteins were BLASTp searched 
against cassava genome v.644 using identity percentage ≥ 60, coverage percentage ≥ 80 and e-value ≤ 10−10. For 
the metabolome data, metabolic compounds in storage roots were retrieved from 20 studied conditions, includ-
ing fourteen cassava cultivars planted in different systems. The analyses were based on gas chromatography-
mass spectrometry (GC-MS) and LC-MS.

Results and discussion
Discrepancies between rMeCBM prediction and metabolic gene expression in cassava storage 
roots.  To study carbon utilization in cassava storage roots, the rMeCBM model is compartmentalized into 
cytosol, mitochondria, and plastid and covers 468 reactions associated with 393 metabolites, 181 enzymes, and 
762 genes. The model was employed to study the partitioning of assimilated carbon in low (HN) and high-yield 
(KU50) cassava cultivars to determine the metabolic basis for their distinct root biomass. Simulation results 
obtained for KU50 were comparable to those for CMC-9, a high-yield cultivar from an independent study used 
for the validation, confirming its reliability, along with the sensitivity analysis of the predictions16. However, 
direct verification of the metabolic fluxes proved elusive, and there remains a knowledge gap between the simu-
lated yield phenotypes and the true metabolic flux distribution in carbon metabolism.

Gene expression is one simple indication of active reactions in the metabolism under a particular condition 
because metabolic reactions cannot achieve their functions unless related enzymatic genes are transcribed. 

n
∑

j=1

Sijvj = 0, ∀ metabolite i,

0 ≤ vj ≤ xj , ∀ irrevesible reaction j,

−xj ≤ vj ≤ xj , ∀ revesible reaction j,

(4)SSDalgorithm,threshold =
(

vj − zj
)2
,

(5)ε(%) =
vp − vo

vo
× 100,
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By assuming that all enzymes functioned independently in the metabolism and were able to modulate each 
metabolic reaction individually, the active reactions were inferred from at least one expressed enzymatic gene 
responsible for the reaction. The reactions were considered active if the responsible gene expression was greater 
than the 50th percentile of overall gene expression in the model. The rMeCBM model was examined with the 
genome-wide gene expression data of KU50 storage roots at 150 DAP32 (Fig. 2, Supplementary Fig. S1 and Sup-
plementary Data 1). The results suggested that the metabolic pathway was partially active under the condition, 
denoted by 166 non-zero fluxes and 296 gene-expression guided active reactions from a total of 330 biochemical 
reactions in the rMeCBM model (Fig. 2A). Comparing the metabolic pathway activity based on active-inactive 
reactions, the model showed 178 predicted flux reactions, 155 non-zero fluxes (active) and 23 zero fluxes (inac-
tive), corresponding to the transcriptome data (black arrows in Supplementary Fig. S1). Despite, almost half 
of the predictions, 152 of 330 reactions, did not well agree with the transcriptome data. Supplementary Fig. S1 
highlights the mis-predicted reactions in the simplified pathway scheme, with blue and red arrows depict-
ing false negative (zero-flux prediction in transcriptome-active reactions) and false positive (non-zero flux for 
transcriptome-inactive reactions) predictions, respectively. These reactions are related to respiration, amino 
acid biosynthesis, and the pentose-phosphate pathway, which contains highly branched reactions. About 141 
active reactions, by expression data, were predicted to carry zero fluxes in rMeCBM (blue arrows in Supple-
mentary Fig. S1), whereas 11 inactive reactions by expression data carried fluxes in the simulation (red arrows 
in Supplementary Fig. S1, Fig. 2B). The rMeCBM model could not capture the cytosolic conversion of sugar 
phosphate to pyruvate in the respiration pathway for ATP production (marked as I. in Supplementary Fig. S1) 
and contradictorily predicted flux through serine-pyruvate transaminase (EC 2.6.1.51; R00585) reaction in the 
complex alanine biosynthesis pathway (marked as II. in Supplementary Fig. S1). These pathways are essential 
for energy production and biomass synthesis in cells. Studies in other plants have shown that glycolytic fluxes 
in cytosol were used to generate triose-phosphate and precursors for the TCA cycle14,19.

Transcriptome‑integrated metabolic models of carbon assimilation in developing storage 
roots of cassava.  To improve metabolic flux prediction of carbon assimilation in cassava storage roots, gene 
expression data were incorporated to confine the optimization of the basic constraint-based model (rMeCBM), 
hereafter referred to as rMeCBMx. The storage root transcriptome of 3-month-old plants31 was employed to rep-
resent the gene expression landscape in the root. The dataset was one of the only few RNA-Seq measurements with 
multiple replications that investigated in a similar stage of storage root development to the previous rMeCBM 
study. The integrative model was constructed based on three different conceptual methods, GIMME, E-Flux, and 
HPCOF, to ensure optimal methodological setting. The models were simulated to fit the specific growth rate of 
the KU50 cultivar (Supplementary Table S4). GIMME uses the transcriptome data to guide the set of active reac-
tions by assuming that reactions are supposed to be active once the expression of related genes is greater than a 
threshold and minimizes flux through inactive reactions23. In our analysis, the active reactions were determined 

Figure 2.   Comparison of 330 biochemical reactions from the rMeCBM model to transcriptome data of 
developing storage roots of cultivar KU50 at five months old under field conditions, from Wang et al.32. (A) The 
number of active and inactive reactions based on transcriptome data of KU50 storage roots and flux prediction 
from the rMeCBM model. (B) Comparison of reactions inferred from transcriptome data and flux prediction 
(see more details in Supplementary Data S1).
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if the expression of related genes were above the 25th and 75th percentiles of overall metabolic gene expression in 
rMeCBM, representing the maximal and minimal set of active reactions, respectively (Fig. 3A, Supplementary 
Figs. S2, S3, Supplementary Table S5). The rMeCBMx-GIMME-P25 (25th percentile) model predicted 251 non-
zero flux (active) and 217 zero-flux reactions, including two reactions with inferior gene expression recovered 
from predefined inactive reactions during optimization (Supplementary Figs. S2, S3A, Supplementary Table S5), 
while 249 non-zero flux (active) and 219 zero-flux reactions, including 62 recalled from the predefined inactive 
reactions (Supplementary Figs. S2, S3B, Supplementary Table S5) were predicted at the 75thpercentile threshold 
(rMeCBMx-GIMME-P75). These models showed improved flux prediction relative to rMeCBM, owing to the 
metabolic gene expression information. They predicted the use of pyruvate-glutamate transaminase (EC 2.6.1.2; 
R00258) to synthesize alanine instead of serine-pyruvate transaminase (EC 2.6.1.51; R00585). The rMeCBMx-
GIMME-P25 and rMeCBMx-GIMME-P75 showed similar predictions but not identical. The carbon precur-
sors imported from the cytosol for utilization in the plastid were different. rMeCBMx-GIMME-P75 preferred 
beta-D-Fructose 1,6-bisphosphate ( β-D-FBP) in the plastid similar to the rMeCBM model, while rMeCBMx-
GIMME-P25 imported alpha-d-glucose-6-phosphate ( α-d-Glc-6P) for the respiration pathway and biosynthe-
sis of other biomass components. Hill and Smith45 reported that α-d-Glc-6P is imported as the substrate for 
starch synthesis in the plastids of developing pea embryos45. Additionally, the models were different in the use 
of the bypass reaction R01830 in non-oxidative PPP for the conversion of d-erythose-4-phosphate (d-E4P) and 
d-xylulose-5-phosphate (d-X5P) to d-glyceraldehyde-3-phosphate (d-G3P) and beta-d-fructose-6-phostphate 
( β-d-Fru-6P) by transketolase (EC 2.2.1.1). rMeCBMx-GIMME-P25 predicted R01830 in the plastid, whereas 
rMeCBMx-GIMME-P75 predicted it in the cytosol. The activity of PPP in the cytosol and plastid is complicated 
and varies in several plants. Cellular fractionation studies with leaves and roots of maize, pea, and spinach have 
provided evidence that the non-oxidative reactions are confined to the plastids46. Debnam and Emes47 found 
non-oxidative enzymes in cytosolic and the plastidic compartments in tobacco roots and leaves47. Moreover, 
rMeCBMx-GIMME-P75 predicted higher fluxes of non-cyclic TCA than rMeCBMx-GIMME-P25. The results 
demonstrated the GIMME integrative model could improve flux prediction of rMeCBM; however, the predic-
tion was strongly dependent on the set threshold. The flux variability analysis (FVA) showed the variation in 

Figure 3.   Simulation of the transcriptome-integrated CBM models (rMeCBMx) constructed using GIMME, 
E-Flux and HPCOF algorithms, (A) the number of non-zero (active) and zero (inactive) flux reactions from 
rMeCBM, rMeCBMx-GIMME-P25, rMeCBMx-GIMME-P75, rMeCBMx-EFlux, and rMeCBMx-HPCOF and 
(B) commonly predicted active reactions from all models, 236 of 468 total reactions denoted in the overlapped 
region of the Venn diagram and depicted in the schematic pathway as black solid arrows, postulated to be core 
metabolic reactions basically driving carbon assimilation in developing storage roots of cassava. Gray arrows 
denote trivial reactions obtained from some model predictions. The solid and dotted arrows represent genes 
associated with the reactions.
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fluxes predicted at different threshold settings by the GIMME models was mostly from substitutable reactions, 
defined according to Hay and Schwender14, indicating viable alternative solutions for the prediction (Supple-
mentary Fig. S2). The FVA also supported the essentiality of the recovered low gene expression reactions. These 
reactions are related to amino acid and fatty acid biosynthesis pathways, which are essential for storage root 
growth. Inference of active and inactive reactions based on a specified threshold, a key component of GIMME, 
introduces arbitrariness into the prediction.

E-Flux was introduced here as an integration method that is independent of arbitrary thresholds. It incor-
porates gene expression data to approximate maximal enzymatic activity for biochemical conversions, imple-
mented as an upper bound of viable flux prediction25. The rMeCBMx-EFlux model predicted 252 non-zero flux 
reactions and 216 zero-flux reactions (Fig. 3A, Supplementary Fig. S4). While E-Flux had an advantage over 
GIMME, particularly regarding its ability to capture reactions with low gene expression and the absence of 
arbitrary thresholds, predicted fluxes were similar to rMeCBM with subtle improvements. There were, however, 
differences in the carbon precursors imported from the cytosol for utilization in the plastid. rMeCBMx-EFlux 
transported α-d-Glc-6P into plastid for the respiration pathway and biosynthesis of other biomass components 
instead of β-d-FBP.

In a similar manner to E-Flux, HPCOF constrains a model directly to gene expression levels but predicts 
fluxes through robust global optimization28. The HPCOF model predicts a large number of non-zero fluxes of 
varied magnitudes because it optimizes metabolic fluxes based on gene expression instead of an attempt to elimi-
nate inactive reactions. The rMeCBMx-HPCOF model predicted 451 non-zero flux reactions and 17 zero-flux 
reactions (Fig. 3A and Supplementary Fig. S5). It was the only model that could capture the conversion of sugar 
phosphate to pyruvate through glycolysis and the pentose phosphate pathway in both the cytosol and plastid, 
with the full cycle of mitochondrial TCA. Among the methods, HPCOF captured the highest number of active 
metabolic reactions; however, its predictions might have been overestimated due to high post-transcriptional 
regulatory effects. Despite their uniqueness, the models did show some overlaps, particularly with respect to the 
main reactions related to the biosynthesis of starch, amino acids, fatty acids, and plastidic glycolysis (Fig. 3B).

Biological inference of the transcriptome‑constrained metabolic model of cassava stor-
age roots.  The four transcriptome-constrained metabolic models, rMeCBMx-GIMME-25, rMeCBMx-
GIMME-75, rMeCBMx-EFlux, and rMeCBMx-HPCOF, were assessed for their ability to better predict carbon 
assimilation in cassava storage roots. Metabolic flux prediction of each model was contrasted with gene expres-
sion data collected from various transcriptomic studies to represent metabolic processes in cassava storage roots. 
First, the predictions were compared with 472 commonly expressed genes linked to metabolism in developing 
storage roots of cassava (scenario 1) from eight datasets31,32. Next, the comparison was performed using six 
datasets32 containing 545 commonly expressed genes associated with metabolic processes in developing storage 
roots of high-yield cassava cultivars KU50 and Arg7 (scenario 2). Lastly, the predictions were compared with 
589 genes commonly expressed in developing storage roots of KU50 cultivar (scenario 3) across three datasets32 
(Supplementary Table S6). The difference in the number of expressed genes in each scenario may explain the 
specificity of traits. GO functional analysis showed a majority of enriched GO terms in the three groups of tran-
scriptome datasets (scenarios) were quite similar, particularly 175 enriched GO terms, and were mostly related 
to carbohydrate and nucleotide metabolism (Supplementary Table S7, Supplementary Fig. S6A–C), which play 
major roles in starch accumulation in developing cassava storage roots. Moreover, eight GO terms mainly associ-
ated with steroid metabolism were found in developing storage roots of the high-yield cultivar KU50. Steroids 
exert a wide range of biological activities, which are essential for plant growth, reproduction, and responses to 
various abiotic and biotic stress48. A total of 18 enriched GO terms that are related to homeostasis were found 
only in developing storage roots of the KU50 cultivar. In addition, the enriched GO terms of each scenario were 
explored at low (25th percentile) and high (75th percentile) thresholds. The functional modules were slightly 
different at both cutoffs (Supplementary Fig. S6B,C). Glutamine metabolism, steroid metabolism, and glycopep-
tides alpha-N-acetylgalactosaminidase activity were only found at the low-threshold in developing cassava stor-
age roots of the high-yield cultivar (Supplementary Fig. S6B). On the other hand, active UDP-glycosyltransferase 
activity and carbohydrate derivative biosynthetic process were mainly found in highly expressed genes (Sup-
plementary Fig. S6C).

The consistency of the predicted fluxes with the expression of enzymatic genes responsible for the reactions 
was determined based on moderately-to-highly expressed genes. Primarily, the predicted fluxes were employed 
to denote active reactions involved in carbon assimilation in developing storage roots. The predicted active reac-
tions that carry non-zero fluxes were assessed by the expression of related enzymatic genes from transcriptomic 
studies. The performance of the models in terms of representing carbon assimilation in cassava storage roots was 
evaluated through multiple indexes of confusion matrix, including accuracy (ACC), sensitivity (SEN), specificity 
(SPC), negative predictive value (NPV), and positive predictive value (PPV). The rMeCBMx-HPCOF model 
outperformed the other models and accurately predicted flux through active reactions (~ 80%) in developing 
storage roots with high sensitivity (~ 85%). Unlike others, rMeCBMx-HPCOF was able to capture particular 
functions in developing storage roots of the KU50 cultivar, such as the conversion of beta-d-Glucose ( β-d-Glc) 
to beta-d-Glucose 6-phosphate ( β-d-Glc-6P) (denoted as R01600), synthesis of d-Ribose 5-phosphate (d-Rib-
5-P) using 6-Phospho-d-gluconate (d-6PGL) as a substrate in the oxidative pentose phosphate pathway in the 
cytosol, and conversion of sugar phosphate to pyruvate in the cytosol. rMeCBMx-HPCOF showed high positive 
predictions (active reactions) with few negative predictions (inactive reactions). The predictive performance of 
the models was comparable at high gene expression (> 75th percentile, Fig. 4). Nonetheless, rMeCBMx-HPCOF 
showed superior predictive performance overall. Furthermore, we quantitatively examined the consistency of 
predicted flux values and the levels of gene expression based on the sum of squared differences (SSD). Our 
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results showed that rMeCBMx-HPCOF had the lowest SSD, indicating high prediction confidence (Fig. 5). 
Accordingly, rMeCBMx-HPCOF was employed for further investigation of metabolic phenotypes in developing 
cassava storage roots. 

Plausibility of rMeCBMx‑HPCOF.  To show that rMeCBMx-HPCOF better simulates physiological 
growth of developing storage roots of cassava and provides a more insightful prediction of metabolic flux than 
the previous FBA model (rMeCBM), rMeCBMx-HPCOF was validated similarly to the original model, employ-
ing the KU50 and CMC-9 cultivars, and its sensitivity to the SGAM was determined. rMeCBMx-HPCOF perfectly 
simulated the specific growth rate of the KU50 cultivar, 0.0090 day−1, with SGAM equal to 19.7 mmolATP gDW−1 
(Supplementary Table S4). The optimal SGAM was higher than for the previous model, but was still in the 5–42 
mmolATP gDW−1 range reported for other metabolic models of plants, including Arabidopsis11, rice49, maize15, 
barley50, and rapeseed51. The optimal SGAM was seemingly overestimated than would be expected in reality when 
compared to measured ATP levels in potato tubers (0.36–0.55 μmol/gDW)52. To acquire better ATP predic-
tions, the model needs to take into account full costs of ATP usage, e.g. for cell maintenance and metabolite 
transportation19. This issue is worth revisiting when essential data such as energy-linked transporters for nutri-
ent uptake and intercellular transportation become available for cassava.

The simulation was also comparable to the measured growth rate of CMC-953, and the predictive performance, 
to the basic rMeCBM model (Supplementary Fig. S8). Moreover, the sensitivity of rMeCBMx-HPCOF to SGAM, 
a key variable indicating the use of ATP for storage root growth, was investigated against the predicted growth 
rate of cassava storage roots at up to 20% deviation from the optimal growth rate. Results showed rMeCBMx-
HPCOF was slightly more robust than rMeCBM at 15.75–23.64 mmolATP gDW−1

storage roots and 7.84–12.74 
mmolATP gDW−1

storage roots, respectively (Supplementary Fig. S9).
According to this analysis, we assured that rMeCBMx-HPCOF was able to simulate the physiological growth 

of cassava storage roots similarly to rMeCBM but provided more precise flux predictions that corresponded to 
enzymatic gene expression in developing storage roots. Three main areas of carbon metabolism were, in particu-
lar, improved by rMeCBMx-HPCOF, namely (I) carbon substrates supply via the pentose phosphate pathway, (II) 
TCA cycle and glycolysis in the respiration pathway, and (III) carbon precursors for alanine biosynthesis (Fig. 6).

Carbon substrates supply via pentose phosphate pathway.  The pentose phosphate pathway (PPP), a maintenance 
pathway, is crucial for the biosynthesis of amino acids and nucleotides and is a major source of NADPH, which 
is required against oxidative stress and for the synthesis of fatty acids. The PPP is composed of oxidative and 
non-oxidative phases located in both cytosol and plastid. The PPP is not a simple linear pathway since several 
carbon atoms are recycled back into glycolysis. Predicting the metabolic activity in PPP by a computational 
approach is challenging54. The prediction of oxidative PPP by FBA differed with the 13C-MFA (metabolic flux 
analysis) experiment, in a study of fluxes in central metabolism in heterotrophic Arabidopsis cells under stress 
conditions18. The rMeCBMx-HPCOF model predicted the oxidative PPP (OPPP) pathway, the conversion of β
-d-Glc-6P into d-Ru5P through the sequential actions of glucose-6-phosphate dehydrogenase (G6PDH) and 
6-phosphogluconate dehydrogenase (6PGDH), with lactonase catalyzing the hydrolysis of its d-6PGL product, 
in both the cytosol and plastid, unlike rMeCBM, which only captured the oxidative PPP in the plastid. The 
results were corroborated by Krook et al.55, who reported the existence of oxidative pentose phosphate pathway-
mediated sugar converting cycles in both the cytosol and plastid, based on the redistribution of labeled hexoses 
in carrot cells grown in batch culture on [13C]-labeled glucose or fructose55. In higher plants, the OPPP provides 
high amounts of NADPH required for reductive biosynthesis and protection against oxidative damage in the 
cytosol and plastids, providing key intermediates, C-5 sugar phosphates (e.g., d-Rib-5-P and d-E4P) for the shi-
kimate pathway to synthesize amino acids, which is an essential process during storage root formation56,57. The 
cytosolic G6PDH gene is crucial for the supply of NADPH required for plant defense responses to pathogenic 
infection in tobacco58, salt stress in Arabidopsis roots59, and drought stress in soybean roots57. Deletion of the 
G6PDH gene results in the overproduction of reaction oxygen species (ROS), reductions in root elongation and 
germination rate of plants under stress, and a decrease in plant productivity57,59. Overexpression of the G6PDH 
gene induced drought tolerance in transgenic tobacco58 and increased the length of roots during early develop-
ment in rice60. Regulation of the G6PDH enzyme in the chloroplast of photosynthetic tissues is governed by the 
ferredoxin/thioredoxin system under darkness, while high sugar levels in cytosol of non-photosynthetic tissue 
enhance the transcription of the G6PDH gene61. The activated G6PDH predicted in developing storage roots of 
cassava may reflect the metabolism of high sugar levels to support starch biosynthesis and accumulation in the 
root parenchyma61.

TCA cycle and glycolysis.  The TCA and glycolysis pathways are related to ATP production in cells. The main 
function of glycolysis is to oxidize hexoses to provide ATP, pyruvate, and precursors for anabolism. Glycoly-
sis is a crucial process in plant because it is the predominant pathway that “fuels” plant respiration and also 
provides sugar phosphates and carbon substrates for the biosynthesis of numerous compounds such as amino 
acids, starch, and cellulose62. This process occurs in both cytosol and plastids of plant cells62,63. The rMeCBM 
model could not capture the glycolysis process in the cytosol as pyruvate was generated only in the plastid and 
then exported into the cytosol, whereas rMeCBMx-HPCOF could. This result is relevant to the transcriptome 
analysis of cassava storage roots from Yang et al.64, who proposed enolase, l-lactate dehydrogenase and aldehyde 
dehydrogenase for glycolysis/gluconeogenesis as rate-limiting enzymes that are essential for starch biosynthe-
sis in storage roots. Voll et al.65 reported that antisense inhibition of enolase, which catalyze the conversion of 
2-phosphoglycerate (2-PG) and phosphoenolpyruvate (PEP), strongly limits the levels of PEP and amino acids 
in transgenic tobacco leaves because PEP is a precursor for aromatic amino acids in the shikimate biosynthesis 
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Figure 4.   The qualitative analysis of model performance based on three algorithms at varied thresholds of 
expressed genes from transcriptome data (see more details in Supplementary Fig. S7).
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pathway65. PEP can be converted by cytosolic pyruvate kinase to pyruvate, which is an important substrate for 
the TCA cycle. Lack of enzymes in the cytosol might affect the synthesis of buildings blocks for amino acids and 
other biomolecules of storage roots. Additionally, the HPCOF simulation results showed the complete metabolic 
process in the mitochondrial TCA cycle that might have resulted from the presence of glycolysis in the cytosol. 
Jenner et al.66 reported that downregulation of the NAD+ dependent malic enzyme (NADME) in the TCA cycle 
did not affect the TCA cycle activity but significantly increased starch yield in potato tubers66, meaning that the 
regulation of AGPase might depend on the exchange of compounds from central carbon metabolism67.

Carbon precursors for alanine biosynthesis.  The rMeCBM model predicted that l-alanine (l-Ala) was synthe-
sized using l-serine (l-Ser) as a substrate, but it was not consistent with the gene expression as the related genes 
of serine-pyruvate transaminase (EC 2.6.1.51) showed very low expression levels (~ 0.12 FPKM). On the other 
hand, rMeCBMx-HPCOF predicted l-Ala biosynthesis using l-glutamate (l-Glu) as a precursor (R00258). Sev-
eral pathways of l-Ala synthesis have been proposed, the most likely being the formation of l-Ala from l-Glu 
and pyruvate by transamination through glutamate-pyruvate aminotransferase (GPT; EC 2.6.1.2)68. The predic-
tion was relevant to Good et al.69, who reported that alanine is a major product of anaerobic metabolism in bar-
ley root by pyruvate-glutamate transaminase69. GPT, also known as alanine aminotransferase, has been widely 
studied using genetic engineering to enhance nitrogen use efficiency (NUE) in crop plants70,71. l-Alanine acts as 
an intercellular nitrogen and carbon shuttle and plays a key role in carbon and nitrogen metabolism in plants72,73. 
Overexpression of GPT successfully increased yield in canola, rice72, wheat74, and sugarcane75.

Moreover, we ensured flux prediction by using multi-omics data to support active flux reactions either by 
gene expression, protein expression, or availability of the substrate/product metabolites in developing storage 
roots of cassava. In total, 473 expressed genes from seven transcriptome datasets, 192 expressed proteins from 
five proteome datasets, and 53 available metabolites from 20 metabolome datasets were used to infer active 
reactions (Supplementary Fig. S10). From 330 gene-associated reactions in rMeCBMx, predicted flux reactions 
verified from the transcriptome, proteome, and metabolome data totaled 311, 217, and 217, respectively. In sum, 
143 predicted flux reactions were verified from the integrated multi-omics (Fig. 7A). Among them, rMeCBMx-
HPCOF could predict 136 reactions, while the other models captured 53–57 reactions, as shown by the dark 
blue bar in Fig. 7B (see Supplementary Fig. S11 for details of other models).

Our findings indicate that omics constraints are needed to enforce a particular metabolic behavior in carbon 
metabolism of developing cassava storage roots, and the HPCOF algorithm is the best method in this case to 
integrate transcriptome data. However, it is of importance to note that rMeCBMx-HPCOF requires further 
improvements in terms of its ability to predict inactive reactions. Moreover, gene information for transport 
reactions is still lacking, and gene–protein-reaction associations of cassava storage roots need to be improved.

Conclusions
Transcriptome-integrated constraint-based metabolic models of cassava storage roots (rMeCBMx) were devel-
oped by incorporating gene expression data of cassava storage roots into the genome-scale metabolic model 
of cassava storage roots (rMeCBM) to reduce infeasible metabolic fluxes. Among three different conceptual 

Figure 5.   The sum of squared difference (SSD) between ranked predicted fluxes from each algorithm and 
ranked gene expression levels in specific conditions of cassava storage roots. The lower SSD indicates the higher 
consistency between flux prediction and gene expression levels.
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algorithms, GIMME, E-Flux, and HPCOF, rMeCBMx-HPCOF showed the highest accuracy to predict carbon 
fluxes in the metabolism of storage roots and was, in particular, highly consistent with the transcriptome of 
high-yield cultivars. It improved flux prediction through (1) carbon substrates supply via pentose phosphate 
pathway, (2) TCA cycle and glycolysis, and (3) carbon precursors for alanine biosynthesis. The flux prediction 
also was evaluated by proteome and metabolome data of developing cassava storage roots. However, this study 
only takes advantage of expression data; the inclusion of high-quality physiology and other omics data might 
increase its predictive power.

Figure 6.   The comparison of ranked gene expression levels (top cell) with ranked fluxes from rMeCBM (left 
bottom cell) and rMeCBMx-HPCOF (right bottom cell) as shown in the heatmap; the color represents relative 
levels of gene expression and fluxes with a score of 0–1. The improvement of rMeCBMx-HPCOF prediction is 
linked to (I) carbon substrates supply via pentose phosphate pathway, (II) TCA cycle and glycolysis, (III) carbon 
precursors for alanine biosynthesis.
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