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Abstract
Specific memory might be stored in a subnetwork consisting of a small population of neu-

rons. To select neurons involved in memory formation, neural competition might be essen-

tial. In this paper, we show that excitable neurons are competitive and organize into two

assemblies in a recurrent network with spike timing-dependent synaptic plasticity (STDP)

and axonal conduction delays. Neural competition is established by the cooperation of

spontaneously induced neural oscillation, axonal conduction delays, and STDP. We also

suggest that the competition mechanism in this paper is one of the basic functions required

to organize memory-storing subnetworks into fine-scale cortical networks.

Introduction
In mice experiments [1, 2], a memory is recalled when neurons that are active during a learning
process are activated with optogenetic stimulation. A specific memory is considered to be
stored in a subnetwork consisting of a small population of neurons. For such memory forma-
tion, competition among neurons might be necessary to embed memory-storing subnetworks
into neural circuits [3–6]. Furthermore, synaptic plasticity is thought to play a critical role in
subnetwork organization [7, 8].

In the last decade, studies in the field of neuroscience have revealed that synaptic modifica-
tion depends on presynaptic and postsynaptic neuronal activities; this is called spike timing-
dependent synaptic plasticity (STDP) [9–12]. Experimental observations suggest that the precise
timing of presynaptic and postsynaptic neuronal action potentials is a crucial factor in informa-
tion processing and/or memory formation in the brain. Therefore, STDP is thought to be one of
the mechanisms to encode information into patterns of their synaptic weights [13, 14].

Based on experimental observations, several studies have proposed models of STDP window
functions [15–18]. For example, Song et al. [15] modeled synaptic learning that is independent
of the synaptic weight; this is called an additive model or a hard-bound model. In contrast,
Rossum et al. Rossum et al. [16] and Rubin et al. [17] proposed a model that linearly depends
on the synaptic weight; this is called a multiplicative model or a soft-bound model. The
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dependence on synaptic weights in STDP models is generalized [17, 18]. Temporal develop-
ment and equilibrium states of synaptic distribution have been well investigated through these
STDP models and are supported by the Fokker-Plank theorem [16–18]. Extended models were
also recently proposed [19, 20].

Several studies on memory formation have reported that STDP has the ability to establish
specific structures like neural clusters in recurrent neural networks [21–28]. This clustering
can be regarded as a form of neural competition. In a spontaneously organized network, neu-
rons in a cluster simultaneously emit spikes that force neurons in the next cluster to fire. There-
fore, the synchrony of each cluster is successively conducted to the next cluster and is evoked
cyclically in the network. The reason for the synchrony distributed in time is that individual
neuronal activities are under the theoretical limit of integration or the limit cycle. These condi-
tions are, however, unusual in the cortical and hippocampal neurons in the homeostatic pro-
cess [29, 30]. In addition, it has been presented that STDP enables recurrent neural networks to
organize a feed-forward topology in presence of background noise, that does not lead neurons
to the theoretical limit of integration or the limit cycle [23].

In this paper, we aimed to present that STDP leads excitable neurons in a sparse recurrent
network to competition that might be essential in memory formation. Detailed analyses of neu-
ral mechanisms showed that competition is accomplished by the cooperation of spontaneously
induced neural oscillations, axonal conduction delays, and STDP.

Materials and Methods

Neural network model
We employ Izhikevich’s simple neuron model as the basis of our neural network [31, 32]. This
model is not only computationally effective as the leaky integrate-and-fire model, but can also
realize firing patterns as rich as those in the Hodgkin-Huxley model [33]. Dynamics of the jth
(j = 1, 2, . . ., N) neuron is described by the following two-dimensional ordinary differential
equations:

_vj ¼ 0:04v2j þ 5vj þ 140� uj þ IjðtÞ; ð1Þ

_uj ¼ ajðbjvj � ujÞ; ð2Þ

where vj is the membrane potential and uj is the recovery variable of the jth neuron. The mem-
brane potential and the recovery variable of the neuron model is reset to cj mV and uj + dj
when vj reached 30mV. The variable Ij(t) represents inputs to the jth neuron at time t. The
inputs are the summation of external inputs (Iextj ðtÞ) and synaptic inputs (Isynj ðtÞ). For the sake
of simplicity, we model the synaptic inputs with the delta function δ(�),

Isynj ðtÞ ¼
XN
i¼1

Xnj;i
k¼1

wijdðt � ti;kÞ; ð3Þ

where wij is the synaptic weight from the ith neuron to the jth neuron, and ti, k is the arrival
time of the kth (k = 1, 2, . . ., nj, i where nj, i represents the number of spikes of the ith presynap-
tic terminal of the jth neuron) spike at the ith presynaptic terminal. Our neural network con-
sists of N (= 1,000) neurons including both excitatory and inhibitory neurons. The ratio of the
excitatory neurons to the inhibitory neurons is 4: 1 [34]. In this paper, we use regular-spiking
excitatory neurons and fast-spiking inhibitory neurons. The parameters for the excitatory neu-
rons are set as aj = 0.02, bj = 0.2, cj = − 65, and dj = 8 and those for the inhibitory neurons are
set as aj = 0.1, bj = 0.2, cj = − 65, and dj = 2 [31, 32]. These neurons are randomly connected.
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Because, in many experimental studies, the connection probability has been estimated between
0.1 and 0.3 [35–39], we choose 0.1 connection probability. In the neural network, no connec-
tions exist between any pairs of the inhibitory neurons. Furthermore, no neurons are self-con-
nected. Excitatory connections have conduction delays of 1 to 10 ms, with a uniform
distribution [40]. A time of 1 ms is required to transmit spikes on all inhibitory connections
[40]. It has been shown that dendritic delays tend to strengthen self-feedback, whereas axonal
delays weaken it [41, 42]. We assume that the conduction delays are only axonal.

Each neuron in the network receives an independent and uncorrelated Poisson spike train
with the fixed firing rate of f spk/s during our simulation through a non-plastic excitatory feed-
forward connection. The spike train is statistically identical for both excitatory and inhibitory
neurons. In the simulations, we test f = 1, 10, and 40 spk/s. The reason for the usage of the Poisson
spike train is based on the observation that in vivo neuronal behaviors in cortical areas are highly
irregular [29]. The amplitude of each spike in the spike sequence is set to 20 mV. In other words,
Iextj ðtÞ ¼ 20 in Eq (1), which corresponds to a suprathreshold input when a neuron is in the rest-

ing state. A spike train for a neuron is statistically equivalent to spike trains for the other neurons.
All excitatory synaptic weights are initially set to 6 mV, except for the simulation in the sec-

tion of Independence of initial distribution of plastic synapses on neural competition. whereas
all inhibitory synaptic weights are set to − 5 mV. Research has shown the significance of synap-
tic types [12], and therefore STDP is applied only to the excitatory synapses between excitatory
neurons in the network.

STDP is a type of Hebbian synaptic plasticity that has attracted considerable attention [9,
11, 12]. In this synaptic plasticity, if a postsynaptic action potential follows a presynaptic action
potential within tens of milliseconds, the synaptic weight between them is strengthened; this is
long-term potentiation (LTP). On the other hand, a synapse is depressed if a presynaptic action
potential follows a postsynaptic action potential, which is long-term depression (LTD). In this
paper, we adopt the additive STDP rule proposed by Song et al. [15]. Its window function is
expressed in terms of the exponential functions as follows:

Dwij ¼
le�jDtj=t if Dt > 0;

�ale�jDtj=t otherwise;
ð4Þ

(

where Δt = tj − ti is the relative spike timing between a presynaptic terminal and a postsynaptic
neuron. Hard bounds is assumed for plastic synapses. Therefore, the plastic synapses are con-
strained in the range of [0, wmax], where wmax is set to 10 (except for the simulation in the sec-
tion of Influence of neural network parameters on neural competition). The variable λ(= 0.1
mV) is the learning rate [40]. The variable α is the degree of asymmetry between LTD and
LTP. This parameter is typically set to 1.2, but is varied in the simulation in the section of Influ-
ence of neural network parameters on neural competition. We use the same time constant τ (=
20 ms) for both the LTP and the LTD [12]. Synaptic derivatives are changed at individual firing
events, and actual synaptic weights are updated once a second. In all numerical simulations,
spike interactions in the STDP rule are limited to nearest-neighbor pairs, except for the simula-
tion in the section of Influence of spike interactions in STDP on neural competition. [42].
Potentiation and depression, which are independent of firing events, are also included in the
synaptic modifications as in Izhikevich [40].

Strength correlations
To quantify network structures, the degree of individual nodes is usually measured. If connec-
tions in networks are directional, we can take into account two types of degrees: indegree and

Neural Competition in Recurrent Networks

PLOS ONE | DOI:10.1371/journal.pone.0146044 February 3, 2016 3 / 23



outdegree. The indegree and the outdegree of the jth node can be defined by the total numbers
of incoming (afferent) and outgoing (efferent) connections, respectively, and are expressed as

kinj ¼
XN
i¼1

H0ðwijÞ; ð5Þ

koutj ¼
XN
i¼1

H0ðwjiÞ; ð6Þ

whereH0(x) is the Heaviside step function in whichH0(x) = 1 if x> 0;H0(x) = 0 if x� 0.
A high indegree implies that a neuron is affected by many other neurons, whereas a high

outdegree implies that a neuron affects many other neurons through synaptic connections. If
indegrees and outdegrees of neurons are biased, the bias is visualized in a joint degree distribu-
tion matrix (JDDM). The imbalance of indegrees and/or outdegrees of neurons in a network
appears in distances from the main diagonal of the matrix. Degree distributions in real net-
works often have the scale-invariant or scale-free property [43].

In the case of neural networks, synaptic connections do not have only directions, but also
weights. The quantification of such weighted directional networks needs a natural extension of
the degrees defined in Eqs (5) and (6) [44]. These are called instrength and outstrength. The
instrength and the outstrength of the jth neuron are defined by the sum of the normalized syn-
aptic weights of afferent and efferent connections, respectively:

sinj ¼
XN
i¼1

wij=wmax; ð7Þ

soutj ¼
XN
i¼1

wji=wmax: ð8Þ

An instrength indicates how much a neuron is affected by other neurons, whereas an out-
strength indicates how much a neuron influences the other neurons. The imbalance between
instrengths and outstrengths of neurons in a network is visualized in a joint strength distribu-
tion matrix (JSDM).

In the following of this study, we quantify self-organized neural network structures through
STDP using the instrength and the outstrength defined by Eqs (7) and (8). Only excitatory con-
nections between excitatory neurons in our network are plastic; therefore, we focus on a sub-
network consisting of the excitatory neurons for the network structure quantification.

To evaluate connectivity among neurons in our neural network, we introduce measures that
we call instrength- and outstrength-correlation coefficient. The correlations are an extension of
the degree correlation [45]. The degree correlation coefficient is usually computed from the
total degree of the jth neuron: kj ¼ kinj þ koutj . To calculate the degree correlation coefficient,

remaining degrees are used. The remaining degree is the number that is one less than the total
degree. However, in our calculation, instrengths and outstrengths are directly used. We define
the instrength- and the outstrength-correlation coefficient as follows:

ra ¼ M�1
P

i;jH0ðwijÞðsai � ZtÞðsaj � ZhÞ
sa
ts

a
h

; ð9Þ

whereM =
P
i;j

H0(wij), Zat ¼ M�1
X
i;j

H0ðwijÞsi, Zah ¼ M�1
X
i;j

H0ðwijÞsj,
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sa
t ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M�1

X
i;j

H0ðwijÞðsai � Zat Þ2
s

, and sa
h ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M�1

X
i;j

H0ðwijÞðsaj � ZahÞ2
s

(See also the section

of Connectivity of winner and loser neurons). The subscripts t and h denote the tail and the
head of a connection and the superscript a indicates in or out.

Identification of winner or loser neurons
To identify the composition of a winner and a loser group, winner and loser neurons are
defined based on their instrength. This is because, as seen in Fig 1, the instrengths tended to
spread more widely than the outstrengths. As such, the threshold of the winner and the loser
neurons is able to be easily determined. It should be noted that even if we have used the out-
strength as a standard, our results will have been consistent in principle. The method to iden-
tify the winner groups and the loser groups is as follows. First, neurons are organized in
descending order of their instrengths, and a neuron that satisfies the condition of sin < sout is
identified. This neuron is set as the threshold and neurons before it are treated as winner neu-
rons, and the remaining neurons are treated as loser neurons.

Definition of phase
To characterize activities of neural networks or populations of presynaptic terminals, we also
obtain phases from oscillatory firing rates. These firing rates are low-pass filtered to define the

Fig 1. Neuronal competition in the neural network induced by STDP. (A)–(C) Histograms of plastic synaptic weights. (D)–(F) Joint strength distribution
matrices (JSDMs) of excitatory neurons. The mean firing rates of the external inputs are (A), (D) 1 spk/s, (B), (E) 10 spk/s, and (C), (F) 40 spk/s. In the
JSDMs, the colors represent the frequency of the excitatory neurons. In (E), the schematics of the winner and the loser neurons are illustrated. The winner
neurons obtain many strong incoming connections but their many outgoing connections are weak. The loser neurons have properties opposite to those in
winner neurons. All the results in this figure are generated from the networks at t = 3,600 s.

doi:10.1371/journal.pone.0146044.g001
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phases, and the cut-off frequency of the filter is determined to be 35 Hz based on the result of
our spectral analysis in the section of Neural competition is organized in neural oscillation.
After filtering, we define the phases [46] as

�ðtÞ ¼ 2p
t � tk

tkþ1 � tk
� p; ð10Þ

where tk and tk + 1 correspond to any pairs of neighboring negative peaks of the oscillatory fir-
ing rate. The subtraction of π is to arrange the positive peak between tk and tk + 1 at ϕ(t) = 0.
We obtain the phases from the firing rates of the entire network or the presynaptic terminals.

Estimation of firing rates
The mean firing rate of N neurons is estimated by the following equation:

FðtÞ ¼ 1

N

XN
j¼1

fjðtÞ; ð11Þ

where fj(t) is the firing rate of the jth neuron at time t. The firing rate of each neuron is given by

fjðtÞ ¼
1

T

Z T

0

rjðt þ tÞdt; ð12Þ

where T ( = 10 ms) is the width of a temporal window, and ρj(t) is the spike train of the jth neu-
ron:

rjðtÞ ¼
Xnj
k¼1

dðt � tj;kÞ; ð13Þ

where nj is the number of spikes of the jth neuron and tj, k denotes the time of the kth spike of
the jth neuron. If the neuron emits a spike ρj(t) = 1 and otherwise ρj(t) = 0. In the case of pre-
synaptic terminals, we only consider the conduction delays. That is, we use the timings of the
presynaptic-terminal firings instead of the timings of the somatic firings and then conduct the
same estimation.

Kendall’s correlation coefficient
Kendall’s correlation coefficient τK is a non-parametric value to quantify correlation of a paired
data set. Let us define a pair of data as xi and yi (i = 1, 2, . . .,m). We describe their ranks as Xi

and Yi and consider pairs of rank data (Xi, Yi). The data pairs are sorted in ascending order of
Xi. For each Yi (i = 1, 2, . . .,m − 1), the number Pi satisfying Yi> Yj (j = i + 1, i + 2, . . .,m) is
counted. Analogously, the number of Yi < Yj is described as Qi. Note that Pi + Qi =m − i is
always satisfied. Using the values Pi and Qi (i = 1, 2, . . .,m − 1), Kendall’s correlation coefficient
is computed as

tK ¼ 2

mðm� 1Þ
Xm�1

i¼1

Pi �
Xm�1

i¼1

Qi

 !
; ð14Þ

where − 1� τK � 1.

Watson’s U2-test
Watson’s U2-test is a non-parametric test for phase data. This test identifies significant differ-
ences of the mean value and/or the variance of phase distributions. Here we describe ϕx(i)
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(i = 1, 2, . . .m1) and ϕy(j) (j = 1, 2, . . .,m2) as two samples where both are sorted in ascending
order. Therefore, the indices of i and j represent the ranks of phase data in ϕx(i) and ϕy(j),
respectively. The total amount of data isM =m1 +m2. Next two variables Xk and Yk (k = 1, 2,
. . .,M) are prepared. For all the data of ϕx(i) and ϕy(j), the following process is repeated:

1. Set i = j = k = 1.

2. Compare ϕx(i) with ϕy(j).

3. If ϕx(i)< ϕy(j), Xk = i/m1 and Yk = 0, otherwise Xk = 0 and Yk = j/m2.

4. When ϕx(i)< ϕy(j), i is incremented, otherwise j is incremented.

5. k is incremented.

6. Repeat 2–5 until k =M.

Afterwards, dk = Xk − Yk is calculated for all k. Using dk, Watson’s U2-value is computed as

U2 ¼ m1m2

M
1

M

XM
k¼1

d2
k �

1

M

XM
k¼1

dk

 !2 !
: ð15Þ

In the table of significant values, the significance of the mean value and/or the variance in
two-phase distributions is evaluated.

Results

Equilibrium states of distributions of plastic synapses
First, we show synaptic distributions to check the temporal behavior of the synapses (Fig 1A–
1C). In agreement with the previous numerical and theoretical studies with the Fokker-Plank
theory [15, 17, 18, 47], it is observed in our simulations that plastic synapses in the network
bimodally distribute after the long-time simulations (t = 3,600 s). Due to the ability of the
STDP to prevent a firing rate in networks from drastically increasing, many plastic synapses go
to the lower bound if the firing rate in the networks is high [15, 17, 18]. Also after t = 3,600 s,
individual synapses continually change due to firing events. Nevertheless, the influence of
these changes are small and trivial, and the form of the synaptic distributions is almost invari-
ant (S1 Fig). Then, we regard the networks after 3,600 s as being enough stable to quantify the
network organization using synaptic weights. The stability of the organized network is further
discussed in the following section.

STDP induces neural competition: emergence of winner and loser
neurons
The joint strength distribution matrix (JSDM) represents the imbalance between the
instrengths (sin) and the outstrengths (sout) observed in our neural network (Fig 1D–1F). The
JSDM exhibits a two-dimensional Gaussian distribution before the STDP learning (results are
not shown) because excitatory synapses between excitatory neurons are randomly connected
and the weights of the synapses are homogeneous. After the STDP learning, the outstrengths
are widely distributed, while the instrength distribution is narrow when the firing rates of the
external inputs are 1 spk/s (Fig 1D).

For external inputs of 10 spk/s, the bias of the instrengths is magnified (Fig 1E). Moreover,
the neurons in the neural network compete and two peaks emerge, indicating the existence of
two assemblies. The neurons in one assembly have high instrength but low outstrength, while
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the neurons in the other assembly exhibit an opposite trend. The instrengths of the neurons in
these two assemblies display clear differences. The outstrengths are also widely distributed but
are narrower than those with 1 spk/s external input (Fig 1D and 1E).

In the case of external inputs with a higher firing rate of 40 spk/s, almost all excitatory neu-
rons have similar instrengths and outstrengths, however, a few neurons achieve high instrength
(Fig 1F). In comparison to the outstrengths, the instrengths form a relatively wide distribution
in the space of sin–sout.

In all the cases, synaptic competition is observed, but the ratio of synapses reaching the
upper-bound and the lower-bound depends on the mean firing rate of the external inputs (Fig
1A–1C). Additionally, the degree of neuronal competition changes depending on the mean fir-
ing rates (Fig 1D–1F). According to these results, the neuronal competition is related to the
ratio of depressed synapses to potentiated synapses.

Stability of neural competition through STDP
To evaluate the stability of the neural competition, we count the number of neurons that move
between the winner and the loser assembly from t to t + 1 s (Fig 2). In both cases, i.e. movement
from the winner to the loser, or from the loser to the winner assemblies, a maximum of three
neurons moved, corresponding to 0.38% of the total excitatory neurons. This change is negligi-
ble on a whole network. We, therefore, regard the neural competition as stable.

Connectivity of winner and loser neurons
To analyze how the competitive neurons are connected in the network, we characterize the
neural network with instrength- and outstrength-correlation coefficient, rin and rout. These
coefficients quantify the similarity of neurons at the ends of connections in networks (See also
Fig 3A). When two neurons at the ends of connections in a network tend to have similar
instrengths or outstrengths, the coefficients are positive. When instrengths or outstrengths are
dissimilar, these coefficients are negative.

The time courses of rin and rout are shown in Fig 3B and 3C. At t = 0 s, both rin and rout are
zero in all cases because the neurons in the neural network are randomly connected through
synapses under the initial condition. Evidently, rin and rout only significantly decrease from the

Fig 2. Stability of the neural competition in the STDP network. The red line indicates the number of
neurons that move from the winner assembly to the loser assembly. The winner and the loser group are
identified at each second. The blue line is the same as the red one, but progresses from loser to winner
status.

doi:10.1371/journal.pone.0146044.g002
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Fig 3. Connectivity of winner and loser neurons. (A) Schematic diagram of assortativity and disassortativity that are evaluated using the instrength- and
the outstrength-correlation coefficient. Positive (negative) values of the coefficients represent assortativity (disassortativity) of networks, and zero
corresponds to random networks. (B), (C) The time traces of the instrength- and the outstrength-correlation coefficient during STDP with external input firing
rates of 1 spk/s (gray line), 10 spk/s (red line), and 40 spk/s (blue line). The coefficients are computed at every second.

doi:10.1371/journal.pone.0146044.g003
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initial condition at 10 spk/s. They then converge at approximately − 0.1 and − 0.12 (P< 0.001,
t-test), respectively. In the other cases, rin and rout do not reach this level of dissimilarity. Such
significant differences of the coefficient values for 10 spk/s case come from the clear competi-
tion between the winner and the loser assembly (Fig 1E). We should note that it is impossible
for the coefficients to be negative at the significant level if the neurons do not compete and if
the neurons in the individual assemblies have the reverse trend of the instrengths and the out-
strengths as Fig 1E. Taking into account the results in Fig 1, the neurons are competitive and
the dissimilar neurons tend to locate at the ends of individual connections. In other words,
connections between the winner and the loser assembly are more strengthened and internal
connections in the individual assemblies are easily pruned off.

In addition to the dismilarity, we also analyze the small-world property of the neural net-
work [48]. At the beginning of the simulation (t = 0 s of Fig 2 in [48]), the network has as a
large clustering coefficient and a characteristic path length as regular networks. The effect of
the STDP leads to a much smaller characteristic path length relatively to the regular networks,
although the large clustering coefficient is maintained (t = 600 s of Fig 2 in [48]). This indicates
that the small-world network emerges in the connectivity among the winner and the loser neu-
rons. In this study, neural competition is primary interest and the analyses therefore focus on
cases of 10 spk/s-external input.

Independence of the numbers of excitatory and inhibitory presynaptic
neurons on neural competition
We have shown that neurons in the network are competitive when 10 spk/s-external inputs are
given to each neuron. Since presynaptic and postsynaptic activities determine synaptic modifi-
cations, the factors determining postsynaptic activity might be the key to neural competition.
When considering how to construct our network (See Materials and Methods), one of the dif-
ferences of individual neurons is the number of presynaptic neurons because we have adopted
statistically equivalent external inputs. Therefore, for individual neurons receiving 10 spk/s
external inputs, we plot the number of excitatory presynaptic neurons against their instrengths
after learning (t = 3,600 s) as shown in Fig 4A. They clearly do not have a linear correlation so
their correlation is quantified by the Kendall correlation coefficient τK—a non-parametric
index (See details in Materials and Methods). However, even this coefficient cannot identify a
correlation (τK = 0.18).

In the same way, the number of inhibitory presynaptic connections is plotted against the
instrengths after STDP (t = 3,600 s) in Fig 4B. Since inhibitory synaptic weights are negative,
they have a negative correlation, but the coefficient is small and negative (τK = − 0.3). There-
fore, we conclude that the number of excitatory and inhibitory synapses on individual neurons
has a minimal effect on whether neurons obtain many or few strong synapses.

Independence of initial distribution of plastic synapses on neural
competition
For further analysis of the independence of the initial network architecture, we also change a
given distribution of excitatory synaptic weights in the initial condition and observed the
JSDMs after STDP (t = 3,600 s) for the 10 spk/s external input samples in S1 File. The variety
of the initial synaptic distribution does not affect the JSDM after learning, and STDP induces
neuronal competition. The three JSDMs are in perfect agreement with Fig 1B, which indicates
that the structures are robust for certain synaptic weights under the initial condition. There-
fore, synaptic weights before learning has little influence on neuronal competition.

Neural Competition in Recurrent Networks
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Fig 4. Influence of the initial conditions on the neuronal competition. Scattergram (A) shows the number
of excitatory presynaptic neurons versus the instrength after learning at t = 3,600 s (τK = 0.18), and (B) shows
the number of inhibitory presynaptic neurons versus the instrength after learning at t = 3,600 s (τK = − 0.3).

doi:10.1371/journal.pone.0146044.g004

Neural Competition in Recurrent Networks

PLOS ONE | DOI:10.1371/journal.pone.0146044 February 3, 2016 11 / 23



Relation between axonal conduction delay and synaptic modifications
Another conceivable difference in the statistics of presynaptic connections for individual neu-
rons is the distribution of axonal conduction delays. As such, we analyze the ratio of each con-
duction delay to the total number of presynaptic connections for each neuron. Fig 5A shows
the mean values of this ratio in the winner and the loser assembly. The smaller the conduction
delays are, the higher their ratio is in the winner neurons. In contrast, the ratio of larger con-
duction delays is higher in the loser neurons. From this result, the high ratio of shorter-delay
connections seems to be advantageous for neurons to become winners.

We also analyze the relation between the conduction delays and the mean synaptic weights
after learning (t = 3,600 s) of both winner and loser neurons (Fig 5B). For both winner and
loser neurons, the smallest delay has the largest mean weight, and the mean weight decreases
as the conduction delay increases. This result indicates that smaller conduction delays lead to
stronger synapses. However, during the first 5 ms of the conduction delays, the mean synaptic
weights of the winner neurons are twice as strong as those of the loser neurons. This explains
why winner neurons can get a high instrength but loser neurons cannot.

Neural competition is organized in neural oscillation
We have shown that winner neurons have a higher ratio of presynaptic connections with
smaller conduction delays that are capable of more potentiation. However, it is still unclear
why the small delay connections of the winner neurons are more strengthened than those of
the loser neurons. To unveil origins of strong potentiation of the small delay synaptic connec-
tions of the winner neurons, we observe the network activity in the STDP network because it
has a strong effect on synaptic modifications.

To show changes of the network activity during the learning process, we pick up the activity
for 0–0.5 s, 3–3.5 s, and 5–5.5 s (Fig 6A–6C). The neural network exhibits oscillatory behaviors
with frequency variations over time. At the beginning of the learning process, the network
exhibits slow oscillation (Fig 6A), which speed up over time (Fig 6B and 6C). Additionally, the
mean excitatory synaptic weight gradually decreases due to STDP and normalizes at around 2
(Fig 6D).

To gain further understanding, we conduct a spectrum analysis on these oscillations (Fig
6E). We notice that the time course of the power spectrum of the excitatory population looks
very similar to that of the inhibitory population. This is explained as follows: By receiving the
external inputs, excitatory and inhibitory neurons begin to fire and increase their firing rates.
Triggered by the increase of the firing rate of the excitatory neurons, the inhibitory neurons are
strongly activated. Indeed, the local maxima between the oscillations of excitatory and inhibi-
tory neurons exhibit a small gap (Black arrows in Fig 6C bottom panel). Excessive firing of
inhibitory neurons inactivates excitatory neurons by large amounts of negative feedback. This
inhibition also leads to the silencing of the inhibitory neurons because of diminished excitatory
inputs. The excitatory and the inhibitory neurons, however, are excited by the external inputs
and begin to fire again. This cycle is repeated in the neural network, and therefore, this cycle
results in the stable oscillation. This looks like the phenomenon known as the pyramidal-inter-
neuronal gamma [49–52].

For comparison, we also observe the network behavior for the 1 spk/s-external input (Fig 7),
where neural competition did not emerge (See also Fig 1D). Analogously to the 10 spk/s case,
the network exhibits the slow oscillation at the early stages of learning (Fig 7A and 7B). As
learning progress, the oscillation vanishes and the neuronal firing rate diminishes (Fig 7C). As
seen in Fig 7E, no apparent peaks exist in the power spectra. Even though the settings are dif-
ferent than in the simulation using 10 spk/s-external input, the mean synaptic weight declines
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Fig 5. Statistics of conduction delays of synaptic connections to the winner and the loser neurons
and their relation with the plastic synaptic weights. (A) The conduction delay distribution in excitatory
presynaptic connections of a neuron. The value in each bin is averaged over all the winner neurons or all the
loser neurons. (B) The average synaptic weight of each conduction delay. Red and blue bars represent
winner and loser neurons, respectively. The data are generated from the network at t = 3,600 s.

doi:10.1371/journal.pone.0146044.g005
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and normalizes at same point as in the case of 10 spk/s-external input (Fig 7D). A case compar-
ison suggest that the neural oscillation supports enhancing synaptic potentiation more on the
winner neurons than on the loser neurons.

Mechanisms of neural competition
To understand the competition mechanisms, we observed presynaptic and postsynaptic activi-
ties of a winner and a loser neuron randomly selected from individual populations (Fig 8A).

Fig 6. Neuronal activity and the mean synaptic weight in the network for 10 spk/s-external input. Rastergrams and the average firing rates of all
excitatory (light blue) and all inhibitory (dark red) neurons at (A) t = 0 to 0.5 s, (B) 3 to 3.5 s, and (C) 5 to 5.5 s. The lower panel of (C) is the enlargement of the
selected area 5–5.2 s of the upper panel. Two black arrows represent the peaks of the firing rates of excitatory and inhibitory neurons. The average firing
rates are estimated by Eq (11). (D) Time course of the mean synaptic weight of the plastic synapses. (E) Power spectra of the firing rates of excitatory (upper)
and inhibitory (lower) neurons. The colors indicate the normalized power intensity.

doi:10.1371/journal.pone.0146044.g006
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The mean firing rates of the presynaptic terminals of the sampled winner and loser neurons
oscillate in a similar manner as the firing rates of the excitatory neurons. However, the oscilla-
tion of the presynaptic terminals is slightly delayed from the oscillation of the excitatory neu-
rons because of the axonal conduction delays (Fig 8A asterisks).

To quantify the delays, we evaluated gaps in the phases of the presynaptic oscillations from
the excitatory oscillation as illustrated in Fig 8B. The mean probabilities of the phase gaps are
plotted in Fig 8C. For both types of neurons, the positive gaps are collected, indicating that the
presynaptic oscillations are delayed by the excitatory oscillation. The probability of phases gaps
[0, π/4] in the winner neurons (red bars) is always higher than in the losers (blue bars). In con-
trast, the probabilities of the loser neurons exceeded those of the winner neurons in the larger
phase range. This result is in good agreement with the previous result (Fig 5A) because the win-
ner neurons have a higher ratio of smaller conduction delays. The distributions of the phase
lags of the winners and the losers are significantly different (P< 0.001, Watson’s U2-test). For
the details of Watson’s U2-test, see Materials and Methods.

Fig 7. Same as Fig 6 but when the external input rate is 1 spk/s.

doi:10.1371/journal.pone.0146044.g007
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To understand the potentiation and the depression processes in the neural oscillation, it is
also necessary to observe the behaviors of the winner and the loser neurons. An example of the
time trace of the membrane potentials of the sampled winner and the sampled loser neuron is
depicted in Fig 8A (Lower panel). These neurons are the postsynaptic neurons of the synapses
shown in Fig 8A (Upper panel). The winner neuron tends to fire just after the local maxima of
its presynaptic firing rate (Black arrows for the red line in Fig 8A), while the loser neuron
seems to emit spikes before the peaks of its presynaptic firing rate (Black arrows for the blue
line in Fig 8A) as depicted in Fig 8D. Here, we characterized spikes of the winner and the loser
neurons by using the phases of the presynaptic oscillations. The probability distributions of the

Fig 8. Mechanisms of emergence of winner and loser neurons in the neural network. (A) The lower panel is the time courses of the membrane potential
of (red) a winner and (blue) a loser neuron. The upper panel is the average firing rates of (black) all excitatory neurons, (red) presynaptic terminals of the
winner neuron, and (blue) presynaptic terminals of the loser neuron. These average firing rages are estimated by Eq (11). For the black line, timings of
somatic firings are used. The red and the blue line are estimated with firing timings of presynaptic terminals, at which delay lengths are added to somatic firing
timings of presynaptic neurons of the winner and the loser neuron. The winner and the loser neuron are randomly picked up from the identified groups at
t = 3,600 s. (B) Schematic of a phase difference of the presynaptic oscillations from the global oscillation. The black, red and blue lines represent the mean
firing rate of all excitatory neurons, the presynaptic terminals of the winner neuron, and the presynaptic terminals of the loser neuron, respectively. (C) Phase
distributions of the local maxima in presynaptic terminal firing rate for the winner (red) and the loser (blue) neurons. The local maxima for the presynaptic firing
rates are characterized by estimated phases relative to phases of a global firing rate of the excitatory neurons with Eq (10). The data for 45 s (from 5 s to 50 s)
is used for the estimation. Results are however not different when using data after t = 50 s. Watson’s U2-test is used to test for significant differences in the
distribution pattern between the winner and the loser neurons. This is the non-parametric test for phase data used to indicate any significant differences in the
mean value or the variance (P < 0.001). (D) Schematic of the phase difference between the mean firing rate of presynaptic terminals and a postsynaptic firing
in a winner neuron (left) and a loser neuron (right). The dashed and the solid lines represent the mean firing rate of presynaptic terminals and the postsynaptic
potential, respectively. (E) Same as (C), but the local maxima of the presynaptic firing rates are replaced by the spikes of the winner (red) and the loser (blue)
neuron firing rates (P < 0.001).

doi:10.1371/journal.pone.0146044.g008
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phases are shown in Fig 8E. In both distributions, the largest peaks locate around π/2. In the
range of [− π, 0], the probabilities of the loser neurons always exceed those of the winner neu-
rons. The positions of the winners and the losers are reversed in [0, π/2]. This fact indicates
that synapses on winner neurons are more potentiated and less depressed than those on loser
neurons. The mean synaptic potentiation (or depression) between on winner neurons and on
loser neurons is, on average, significantly different because there is significant difference in
their probability distributions of phases (P< 0.001, Watson’s U2-test). Strong synapses are
then, developed more on winner neurons than loser neurons.

Influence of neural network parameters on neural competition
In the previous sections, we have showed that the cooperation of spontaneously induced oscil-
latory behaviors, axonal conduction delays, and learning interacted with each other and
resulted in the neuronal competition. The behaviors of neurons and synapses must however be
influenced by certain parameters in the network, which in turn affect neural competition. As
such, we investigated the influence of various parameters on the neural competition.

The first two parameters are α determining the balance between LTD and LTP, and the
inhibitory synaptic weight because they have strong impacts on the synaptic distributions [15,
16, 47, 49–52]. To evaluate organized neural network structures in these two parameter spaces,
we used the instrength- and the outstrength-correlation coefficient. As shown in the results in
Fig 3, when neural competition occurs, these coefficients become negative.

As expected, these parameters drastically changed the network connectivity (Fig 9).
The network only established neural competition at 10 and 40 spk/s. In addition, the com-

petition is observed for α� 1.2. The parameter is in the suitable range of the experimentally
observed STDP window function [12, 53]. The influence of the inhibition level on the competi-
tion is not observed in our result.

The next parameter is the upper bound of plastic synapses. Any other parameters are the
same as Fig 1B. In spite of the greater or the smaller maximum synaptic weight, neural compe-
tition does not emerge (rin = 0.002 and rout = 0.006 in Fig 10A, rin = 0.13 and rout = 0.05 in Fig
10B, rin = 0.3 and rout = 0.2 in Fig 10C). It can be considered that spike effects dramatically
affects neural competition [54, 55].

Influence of spike interactions in STDP on neural competition
In addition to certain parameters, STDP learning similarly influences neural competition in
the network. In this section, we analyzed the influence of the spike interactions of STDP on
neural competition. S2 File shows the JSDMs, when we simulated the neural network with the
all-to-all interactions of STDP. All parameters of the network are the same as Fig 1. The neural
competition is quantitatively and qualitatively identical to those in the case of the nearest-
neighbor interactions. These results are expected because the all-to-all spike interactions only
increase the frequency of the synaptic potentiation and depression and do not affect the com-
petition mechanisms shown in the previous sections. Hence, the spike interactions in STDP are
not a key factor for neural competition.

Discussion
In this paper, we showed that excitable neurons in a recurrent network spontaneously com-
peted and organized into two assemblies: winners and losers. Our analyses revealed that spon-
taneously induced neural oscillation, axonal conduction delays, and learning cooperated to
establish neural competition.
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In our numerical simulations, on average, STDP decreased synaptic weights in the network.
At the same time, a certain level of neural activation spontaneously induced neural oscillation
due to the existence of inhibitory neurons in the network. Around the local maxima of the
oscillation, instantaneous firing rates of neurons in the network were high. If a postsynaptic
neuron received inputs through many small delay connections, the inputs from the other neu-
rons immediately arrived at the neuron. The spikes arrived before the next local oscillation
maximum. Then, the presynaptic inputs could effectively induce firings of the postsynaptic
neuron. This leads to potentiation of many synapses. Neurons that had high ratio of small axo-
nal conduction delays were able to be winners. In contrast, the spike arrival at presynaptic ter-
minals is delayed in neurons with many large delay connections. Therefore, many synapses
failed to be potentiated. In addition, the LTD window is dominant in STDP, which already
depressed the synapses in the network. For these reasons, the neurons with many large delay
connections became the losers.

Because a specific memory is thought to be stored in a subnetwork consisting of a small
population of neural circuits [1, 2], the neural competition shown in this paper is an important

Fig 9. Influence of the balance between LTD and LTP and inhibition level on the organized networks. The firing rates of the external inputs are (A) 1
spk/s, (B) 10 spk/s, and (C) 40 spk/s. Colors correspond to the values of the instrength- (upper) and the outstrength- (lower) correlation coefficient. We plotted
the instrength- and the outstrength-correlation coefficients of the neural network at t = 3,600 s for all the parameters.

doi:10.1371/journal.pone.0146044.g009
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property for memory formation [3–6]. The competition mechanism in this paper is applicable
to real neural circuits because all key factors of competition are observable in neural circuits.
Because the length of a axonal conduction delay is proportional to the distance between a pair
of neurons, our result indicates that synaptic connections of closer neurons were strengthened
by neural oscillations. In other words, the neurons organized locally dense but globally sparse
neural circuits. This might be related to the distance-dependent high-order correlations of neu-
ronal activities [7, 8]. It is implied that highly nonrandom local connectivity is organized by the
distance-dependent high-order correlations [36, 37].

In our analyses, the neural competition is accomplished when certain parameters of numeri-
cal simulations were set within physiologically reasonable limits. For example, the firing rate of
external inputs, the slight dominance of the depression in the STDP window, and the upper
bound of plastic synapses. The parameters tested in this paper might be unique in different
areas of the brain [9, 56]. As shown in this paper, it is suggested that local circuits organize very
differently in different brain areas.

Iglesias et al. conducted similar simulations and analyses using the leaky-integrate and fire
units and the additive STDP, in which spike interaction is the nearest neighbor, without axonal
conduction delays [23]. They extended their simulations and analyses by introducing neuron
death with larger size of neural networks [57, 58]. In their simulations of Ref. [23], they
assumed the application of inputs to a fraction of the population, that shaped a bar column,
that dynamically moved, in 2D lattice. In Fig 4 of Ref. [23], Eqs (5) and (6) were used in their
analyses. In the result, the neurons exhibited clear competition in the excitatory neural popula-
tion. The indgrees in two neural groups were much different but their outdegrees were the
same level. However, our analyses with the degrees show a reverse trend. The main difference
of our simulation settings from Ref. [23] is the way of the application of inputs and the exis-
tence of conduction delays. In our result, we do not observe large difference of indegrees
between the two groups (S2 Fig). Rather, there is the gap of outdegrees between them. This dif-
ference might come from the effect of the way of the external stimulation and the axonal con-
duction delays, especially the latter one is important for the neural competition shown in the
current study because of the competition mechanisms (See also the section of Mechanisms of
neural competition). Then, it is considered that the competition in the STDP neural networks

Fig 10. Influence of the upper bound of synaptic weights on the organized networks. The upper bound of synaptic weights is (A)wmax = 7, (B)wmax =
15, and (C)wmax = 20. The other parameters are the same as those in Fig 1B. The instrength- and outstrength-correlation coefficients are (A) 0.002 and
−0.006, (B) 0.13 and 0.05, and (C) 0.3 and 0.2, respectively. All the results are obtained from the networks at t = 3,600 s.

doi:10.1371/journal.pone.0146044.g010
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in the current study originates in the different mechanisms from ones of Ref. [23]. So, it is sug-
gested that there are some possible mechanisms of the neural competition. Accordingly, the
neural competition in STDP recurrent networks should be further analyzed.

Supporting Information
S1 File. Influence of initial synaptic distributions on the organization of networks. Initial
excitatory synaptic weights have a uniform distribution in the range of (Figure A) [5, 7],
(Figure B) [4, 8], and (Figure C) [3, 9]. The panels show JSDMs. The instrength- and out-
strength-correlation coefficients for each case are (Figure A) − 0.09 and − 0.11, (Figure B)
− 0.09 and − 0.11, and (Figure C) − 0.09 and − 0.11, respectively. The external input rate is
fixed to 10 spk/s. All the results are obtained from the neural networks at t = 3,600 s.
(EPS)

S2 File. Influence of spike interactions of STDP on the organized networks. All spike pairs
contribute to synaptic modifications (all-to-all interaction) [15–18]. The panels show the
JSDMs after the STDP learning (t = 3,600 s) with (Figure A) 1 spk/s, (Figure B) 10 spk/s, and
(Figure C) 40 spk/s external inputs. The instrength and outstrength correlation coefficients are
(Figure A) − 0.01 and 0.008, (Figure B) − 0.09 and − 0.1, and (Figure C) − 0.03 and − 0.03,
respectively.
(EPS)

S1 Fig. The stability of the synaptic weight distributions for 1 spk/s (gray), 10 spk/s (red)
and 40 spk/s (blue) external input rate. Left panels are enlargements of right panels for 1–50
s. All the parameters of the network and STDP implementation are the same as in Fig 1. The
stability is quantified with the Jensen-Shannon divergence between the synaptic distributions
at t and t + 1 s.
(EPS)

S2 Fig. Neurons are not apparently competitive from a viewpoint of their indegrees. Joint
degree distribution matrices (JDDMs) of 10 spk/s. For JDDMs, Eqs (5) and (6) were used
instead of Eqs (7) and (8).
(EPS)
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