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Background: Rheumatoid arthritis (RA) and osteoarthritis (OA) are two major types of joint
diseases. The present study aimed to identify hub genes involved in the pathogenesis and
further explore the potential treatment targets of RA and OA.
Methods: The gene expression profile of GSE12021 was downloaded from Gene Expres-
sion Omnibus (GEO). Total 31 samples (12 RA, 10 OA and 9 NC samples) were used. The
differentially expressed genes (DEGs) in RA versus NC, OA versus NC and RA versus OA
groups were screened using limma package. We also verified the DEGs in GSE55235 and
GSE100786. Functional annotation and protein–protein interaction (PPI) network construc-
tion of OA- and RA-specific DEGs were performed. Finally, the candidate small molecules
as potential drugs to treat RA and OA were predicted in CMap database.
Results: 165 up-regulated and 163 down-regulated DEGs between RA and NC samples, 73
up-regulated and 293 down-regulated DEGs between OA and NC samples, 92 up-regulated
and 98 down-regulated DEGs between RA and OA samples were identified. Immune re-
sponse and TNF signaling pathway were significantly enriched pathways for RA- and
OA-specific DEGs, respectively. The hub genes were mainly associated with ‘Primary im-
munodeficiency’ (RA vs. NC group), ‘Ribosome’ (OA vs. NC group), and ‘Chemokine signal-
ing pathway’ (RA vs. OA group). Arecoline and Cefamandole were the most promising small
molecule to reverse the RA and OA gene expression.
Conclusion: Our findings suggest new insights into the underlying pathogenesis of RA and
OA, which may improve the diagnosis and treatment of these intractable chronic diseases.

Introduction
Osteoarthritis (OA) is characterized by degradation of articular cartilage and subchondral bone result-
ing in the rigidity deformity and dysfunction of the joints [1]. Rheumatoid arthritis (RA) is a complex,
multi-systemic autoimmune disease that mainly has an effect on the flexible joints as well. Although the
symptoms of RA are similar to OA, the pathological components for the synovial in RA is quite differ-
ent with OA [2]. RA manifests as synovial cell hypertrophy and hyperplasia infiltrated with lymphocytes
and inflammatory cells, whereas OA has less infiltration of leukocytic [3,4]. As two major types of joint
diseases, RA and OA have high morbidity and disability rate especially among the elderly people [5]. In
addition, due to the lack of effective treatment, RA and OA are clinically incurable and therefore create
huge economic burden for both patients and society [6].

Most recently, many researches have conducted high-throughput methods to screen the genetic factors
involved in RA and OA [7–10]. Therefore, several key genes and novel diagnostic markers have been

© 2020 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
License 4.0 (CC BY).

1

https://orcid.org/0000-0002-7336-7140
mailto:chenxiaodong@xinhuamed.com.cn


Bioscience Reports (2020) 40 BSR20193823
https://doi.org/10.1042/BSR20193823

Figure 1. Identification of DEGs

(A) Flow chart of the present study: data collection, processing, analysis, and validation. (B) Venn diagram of DEGs in RA and OA.

Blue represented DEGs between RA and NC and yellow represented DEGs between OA and NC. Volcano plot of gene expression

profile data between RA and NC (C), OA and NC (D), RA and OA (E). Red dots: significantly up-regulated genes; Blue dots: signif-

icantly down-regulated genes; Black dots: nondifferentially expressed genes. P<0.05 and |log2 Foldchange |>1 were considered

as significant; DEG, differentially expressed gene; OA, osteoarthritis; RA, rheumatoid arthritis; NC, normal controls.

identified for these diseases. However, prediction of small molecules targeting the gene expression of RA and OA and
the underlying mechanisms of the two diseases remain far from being elucidated.

The present study aimed to identify hub genes involved in the pathogenesis of OA and RA and further explore
the potential drug targets. First, we screened and verified the differentially expressed genes (DEGs) associated with
RA and OA respectively from the downloaded gene expression profiles GSE12021, GSE55235 and GSE100786. Func-
tional annotation and protein–protein interaction (PPI) network construction of RA- and OA-specific DEGs were
performed to further explore the molecular mechanisms underlying RA and OA. Most importantly, the Connectivity
Map (CMap) database was used to explore candidate small molecule drugs potentially targeting RA and OA.

Methods
Data resources
Gene expression profile dataset GSE12021, GSE55235 and GSE100786 was downloaded from the GEO database
(http://www.ncbi.nlm.nih.gov/geo/) (Figure 1A). The dataset GSE12021, GSE55235 and GSE100786 were produced
by Affymetrix Human Genome U133A Array (Agilent Technologies, Santa Clara, CA). The dataset GSE12021 con-
tained data of synovial tissues from 31 samples, including 9 normal control (NC), 12 RA, and 10 OA samples. The
dataset GSE55235 is including data of synovial tissues from 10 RA and 10 OA samples. The dataset GSE100786 in-
cluded 6 human peripheral blood (PB) and 8 bone marrow (BM) monocytes samples from patients with RA and OA,
respectively.
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Data reprocessing
We downloaded the raw data files from GEO datasets. R language (version 3.4.3) (http://www.r-project.org/) and Bio-
conductor (http://bioconductor.org/) were used to perform data analysis. Data normalization was performed using
the Affy package in R software and every probe set was normalized.

Differential expressed genes identification
The normalized data were intersected with gene symbol and reference information. And then the data were analyzed
with the Limma package in the R in order to examine DEGs. Only the genes with P value ≤ 0.05 and |log2 fold change
(FC)| ≥ 1 were identified as DEGs. Differential expressed genes with statistical significance were identified through
volcano plot filtering. Hierarchical clustering was performed using Morpheus (https://software.broadinstitute.org/
morpheus/).

GO and pathway enrichment analysis of DEGs
GO and KEGG pathway enrichment analyses were performed to explore the biological characteristics and functional
annotation of candidate DEG using the online tool DAVID (https://david.ncifcrf.gov/). The genes in modules were
also analyzed in the same way. Additionally, the Networks Gene Oncology tool (BiNGO) plugin in Cytoscape was
used to perform and visualize the biological process analysis of the DEGs.

Protein–protein interaction network construction and hub gene
identification
PPI network was constructed by the Search Tool for the Retrieval of Interacting Genes database (STRING, https:
//string-db.org/). The Molecular Complex Detection (MCODE) in Cytoscape software was performed to screen the
functional modules in the PPI network. Moreover, hub genes were determined based on the interaction edges in the
network. Also, GO and KEGG enrichment analyses were performed in module genes as mentioned earlier.

Gene set enrichment analysis
Gene set enrichment analysis (GSEA) could detect changes in the gene set rather than the individual genes, so it can
uncover these subtle expression changes and is expected to yield more desirable results. In order to study the effect
of the DEGs on various biological functions, GSEA (v3.0, http://software.broadinstitute.org/gsea/downloads.jsp) was
used to analysis DEGs of biological functional annotation and pathways.

Identification of small molecules
We queried the Connectivity Map (CMap, http://www.broadinstitute.org/cmap/) to screen the candidate small
molecule drugs based on the gene signature of RA and OA. CMap is a collection of databases that stores thousands of
gene transcription-expression profiles from cultured mammalian cells exposed to active small molecule drugs. The
DEGs were divided into up-regulated and down-regulated groups. The enrichment scores ranging from −1 to +1
were calculated, which represented the similarity. A positive connectivity value (closer to +1) revealed that a small
molecule is able to induce the gene expression of RA and OA, whereas a negative connectivity value (closer to −1)
reveled that a small molecule is able to imitate the status of normal cells.

Results
Identification and verification of DEGs
The DEGs were investigated in RA, OA and NC in GSE12021.A total of 328 genes were identified to be differentially
expressed between RA and NC samples with the threshold of P<0.05 and a minimal 1-fold change of expression.
Among these DEGs, 165 were up-regulated and 163 down-regulated in RA compared with NC samples. The top
10 up- and down-regulated genes for RA and NC are listed in Table 1. Similarly, 366 DEGs were identified to be
differentially expressed between OA and NC samples, including 73 up-regulated and 293 down-regulated genes. In
addition, a total of 190 DEGs between RA and OA were identified, including 92 up-regulated and 98 down-regulated
genes. The top 10 DEGs for OA versus NC and RA versus OA samples are listed in Tables 2 and 3, respectively. The
Venn diagrams showed the 109 overlap DEGs between DEGs of RA versus NC and DEGs of OA versus NC, consisting
of 12 up-regulated genes and 97 down-regulated genes (Figure 1B).

The volcano plot of DEGs in each group was presented in Figure 1C–E. In addition, Using the Morpheus website,
we developed a clustering heatmap of the DEGs (Figure 2A,B).
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Table 1 The top 10 up- and down-regulated DEGs in RA and NC

Gene symbol Fold-change P-value

Top 10 up-regulated DEGs

CXCL13 5.69921057 5.3239E-06

IGLC1 5.110816858 5.27729E-05

IGKV1-37 4.71661737 0.000103429

abParts 4.611513168 0.000251751

TNFRSF17 4.411048402 0.000180257

IGKV1OR2-108 4.206674027 0.000571657

CKAP2 4.197780218 0.000255427

GABBR1 4.107017141 2.79201E-06

PLA2G2D 3.900658676 0.000255118

IGKC 3.843207241 0.000189749

Top 10 down-regulated DEGs

PCDHGA10 -4.684897922 1.96541E-06

NUMA1 -4.321247617 5.00011E-07

FKBP5 -3.694425306 2.39069E-05

ZBTB7C -2.906578201 1.0086E-06

FBXW4P1 -2.692711395 5.55577E-08

SLC7A8 -2.613524388 1.88695E-06

COL6A1 -2.323616458 0.000212787

IL1RL2 -2.228749958 2.11044E-05

MIR612 -2.208297663 3.59695E-05

EGR1 -2.158797475 5.55606E-05

Table 2 The top 10 up- and down-regulated DEGs in OA and NC

Gene symbol Fold-change P-value

Top 10 up-regulated DEGs

WIF1 3.311257345 0.002684048

SGCA 3.220848562 0.000699491

XIST 2.817303614 0.00213517

EPYC 2.506689631 6.51468E-05

C14orf105 2.458483277 0.00127672

WNT5B 2.361369339 0.001148016

NELL1 2.327586827 0.002937759

SCRG1 2.280146442 0.000171392

ZIC1 2.2690671 1.09591E-05

KCNK15 2.255434148 0.000113278

Top 10 down-regulated DEGs

NUMA1 -4.485038149 1.4164E-06

PCDHGA10 -4.414593677 1.05336E-05

FKBP5 -3.368367204 2.33866E-05

MGC12488 -3.231687517 2.48311E-06

DDX3Y -3.178836155 0.002532979

GUSBP3 -2.97556038 0.001170622

LINC00597 -2.965971219 0.000101076

KIAA0754 -2.965670459 0.00075988

MZT2B -2.712432618 1.98934E-05

RUNX1-IT1 -2.707483939 0.000119435

We verified the top 10 up- and down-regulated genes in GSE55235. As shown in Supplementary Table S1, except for
SGCG, all the other genes are differentially expressed between synovial tissue from RA and OA. The Venn diagrams
also showed the 24 overlap DEGs between synovial tissue and peripheral blood from RA and OA, the 10 overlap
DEGs between synovial tissue and bone marrow from RA and OA in GSE12021 and GSE100786 (Supplementary
Figure S1).
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Table 3 The top 10 up- and down-regulated DEGs in RA and OA

Gene symbol Fold-change P-value

Top 10 up-regulated DEGs

HLA-DRB4 4.278036531 0.001561206

CXCL13 4.099735551 0.000509

PLA2G2D 3.941814384 0.000126896

CXCL9 3.432779798 3.16681E-07

GABBR1 3.15069778 2.72711E-06

ADAMDEC1 2.74998943 0.000109678

IL21R 2.715425603 5.72951E-05

PTPRCAP 2.648165742 0.001238936

CXCL10 2.384645081 2.90951E-05

SLAMF8 2.331058764 4.87428E-08

Top 10 down-regulated DEGs

SGCA -4.891082348 4.9407E-10

WIF1 -3.811093118 2.81802E-05

SCRG1 -3.248282523 1.13458E-07

RERGL -2.956050594 0.001766259

STMN2 -2.931670338 3.23234E-05

ZIC1 -2.919357158 1.41272E-06

TOX3 -2.874222918 6.40796E-05

NELL1 -2.856181172 5.3584E-05

C7 -2.816039336 6.68233E-05

SGCG -2.804064924 0.000109325

Enrichment analysis of DEGs
To gain insights into the biological roles of the DEGs, we performed GO categories enrichment analysis. GO term
enrichment analysis results varied according to GO classification and expression change of DEGs. With the criterion
of P<0.05, ‘immune response’ (RA vs. NC group), ‘signal transduction’, ‘fat cell differentiation’ (OA vs. NC group),
and ‘signal transduction’, ‘immune response’ (RA vs. OA group) exhibited highly significant enrichment within the
GO biological process category. For the cellular component category, DEGs were significantly enriched in ‘plasma
membrane’, ‘external side of plasma membrane’ (RA vs. NC group), ‘cytoplasm’, ‘photoreceptor disc membrane’ (OA
vs. NC group), and ‘plasma membrane’, ‘extracellular region’ (RA vs. OA group). In addition, the molecular function
category contained DEGs significantly enriched in ‘antigen binding’ (RA vs. NC group), ‘protein binding’, ‘poly(A)
binding’ (OA vs. NC group), and ‘calcium ion binding’, ‘heparin binding’ (RA vs. OA group) (Figures 3 and 4; Sup-
plementary Figures S2–4). The top enriched KEGG pathways included ‘cytokine–cytokine receptor interaction’ (RA
vs. NC group), ‘TNF signaling pathway’ (OA vs. NC group), and ‘cytokine–cytokine receptor interaction’ (RA vs. OA
group) (Figure 5, Supplementary Tables S2–4).

Additionally, we used the DEGs to perform GSEA analysis (Figure 6). TCRA pathway, FEEDER pathway (RA vs.
OA group), EGFR SMRTE pathway, TCAPOPTOSIS pathway (RA vs. NC group), CACAM pathway, RNA pathway
(OA vs. NC group) were significantly enriched (Figure 6).

PPI network analysis of DEGs
To further explore the relationships between DEGs at the protein level, the PPI networks were constructed based on
the interactions of DEGs. In total, 154 nodes and 318 interactions (RA vs. NC group), 136 nodes and 118 interactions
(OA vs. NC group), and 177 nodes and 275 interactions (RA vs. OA group) were screened to establish the PPI network.
In this network, the top 10 key genes with highest degree scores are shown in Table 4.

Module analysis
The top significant modules were selected respectively, and functional annotation of the genes from the modules
was analyzed (Figure 7). KEGG enrichment analysis showed that the genes were mainly associated with ‘primary
immunodeficiency’ (RA vs. NC group), ‘ribosome’ (OA vs. NC group), and ‘chemokine signaling pathway’ (RA vs.
OA group) (Figure 7).
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Figure 2. Clustering heatmap of the genes exhibiting significantly differential expression

(A) RA versus NC group, (B) OA versus NC group and (C) RA versus OA group. Statistically significant DEGs were defined as

|log2Foldchange| > 1 and P-value < 0.05. DEG, differentially expressed gene; OA, osteoarthritis; RA, rheumatoid arthritis; NC,

normal controls.

Table 4 The top 15 hub genes with highest degree scores

RA versus NC Degree OA versus NC Degree RA versus OA Degree

CD19 28 JUN 15 PTPRC 27

LCK 22 CTNNB1 15 ITGAX 24

CD2 22 DICER1 8 CTLA4 23

CD27 22 SIL1 7 CCL5 21

CXCL10 19 TLR7 7 CXCL10 20

CCL5 19 DHX9 7 STAT1 20

CD79A 18 RPL27A 7 CXCR3 18

CD79B 18 SOCS3 6 APOE 17

CXCL9 17 RPL35A 6 CXCL9 16

IL2RG 17 INSR 6 IL7R 15
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Figure 3. Gene ontology (GO) enrichment of the DEGs

The DEGs in RA versus NC group sorted by descending order of the number of genes (A) and −Log10(P-value) (B). The DEGs in

OA versus NC group sorted by descending order of the number of genes (C) and −Log10(P-value) (D). The DEGs in RA versus OA

group sorted by descending order of the number of genes (E) and −Log10(P-value) (F); NC, normal controls; OA, osteoarthritis;

RA, rheumatoid arthritis.

Identification of related active small molecules
DEGs were first divided into up-regulated and down-regulated groups and then enriched with significantly changed
genes obtained from treatment of small molecules from the CMap database. Table 5 showed the predicted small
molecules that could inhibit RA/OA-associated gene expression. Cefamandole and Arecoline were identified in OA
and RA tissue analysis.
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Figure 4. The biological process of the DEGs analyzed by BiNGO

(A) RA versus NC group, (B) OA versus NC group and (C) RA versus OA group. The color depth of nodes represents the corrected

P-value. The size of nodes represents the number of genes involved; DEG, differentially expressed gene; NC, normal controls; OA,

osteoarthritis; RA, rheumatoid arthritis.

Table 5 List of the 10 most significant small molecule drugs that can reverse the tumoral status of RA and OA

Arthritic tissue CMap name enrichment p value

RA versus NC Cefamandole -0.939 0

Arachidonyltrifluoromethane -0.869 0.03438

Quipazine -0.85 0.00095

Isometheptene -0.847 0.00101

Nadolol -0.825 0.00177

3-Acetamidocoumarin -0.824 0.00185

Prestwick-1082 -0.815 0.0125

Aciclovir -0.809 0.00014

Canadine -0.809 0.00259

Gentamicin -0.783 0.00444

OA versus NC Arecoline -0.889 0.00034

Sulmazole -0.885 0.00298

Prestwick-983 -0.875 0.00393

Ciclopirox -0.853 0.00084

Prestwick-691 -0.835 0.00891

Prestwick-692 -0.829 0.00163

SR-95639A -0.823 0.00189

Lasalocid -0.81 0.00257

Clemastine -0.804 0.01498

Meclocycline -0.793 0.00372
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Figure 5. KEGG pathways enriched by the DEGs and interrelation analysis between pathways molecular functions

(A,B) RA versus NC group, (C,D) OA versus NC group and (E,F) RA versus OA group; DEG, differentially expressed gene; KEGG,

Kyoto Encyclopedia of Genes and Genomes; NC, normal controls; OA, osteoarthritis; RA, rheumatoid arthritis.

Discussion
OA and RA are two most common joint diseases with similar characteristics in synovitis. However, the underlying
pathogenesis of RA and OA remain unclear. Clarifying the molecular mechanism differences between the above two
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Figure 6. Gene set enrichment analysis (GSEA)

(A,B) RA versus NC group, (C,D) OA versus NC group and (E,F) RA versus OA group.
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Figure 7. Top modules from the protein-protein interaction network

RA versus NC group: (A) module, (B) the KEGG enriched pathways of module, OA versus NC group: (C) module, (D) the KEGG

enriched pathways of module, RA versus OA group: (E) module, (F) the KEGG enriched pathways of module; KEGG, Kyoto Ency-

clopedia of Genes and Genomes; NC, normal controls; OA, osteoarthritis; RA, rheumatoid arthritis.

diseases will help to define special targets for therapeutic intervention. In the present study, bioinformatics analysis
was performed to analyze the underlying molecular mechanisms differences between the above two diseases.

We extracted the data from GSE12021, which including 9 NC, 12 RA, and 10 OA samples. We identified 165
up-regulated and 163 down-regulated DEGs between RA and NC samples, 73 up-regulated and 293 down-regulated
DEGs between OA and NC samples, 92 up-regulated and 98 down-regulated DEGs between RA and OA samples
using bioinformatics analysis. We also reanalyzed the expression of the DEGs in GSE55235 and verified the DEGs
in human PB and 8 BM monocytes samples from dataset GSE100786. The GO and KEGG functional annotation
and pathway enrichment analyses suggested that the identified DEGs were mainly involved in ‘immune response’,
‘cytokine–cytokine receptor interaction’ (RA vs. NC group), ‘signal transduction’, ‘fat cell differentiation’ and ‘TNF
signaling pathway’ (OA vs. NC group), and ‘signal transduction’, ‘immune response’, and ‘cytokine–cytokine receptor
interaction’ (RA vs. OA group).

RA is an autoimmune disease featured with pain, swelling, and destruction of synovial joints, leading to functional
disability [11]. Inflammatory and immune response result in excessive secretion of inflammatory cytokines, growth
factors, and matrix metalloproteinases (MMPs), resulting in synovitis and joints degradation [12]. Chemokines and
chemokine receptors participate in cellular migration, survival, angiogenesis and leukocyte recruitment of RA and
other autoimmune diseases [13]. Based on this present study, CD19, CD2, CD27, CD79A, CD79B, CXCL10, and
CXCL9 were immune-related RA-specific DEGs, which might play important roles in the pathogenesis of RA. Al-
though the pathogenesis of RA is not fully understood, leukocyte migration, which is regulated part by cytokines
and cytokine receptors contribute to the perpetuation of synovium inflammation in RA. Cytokine–cytokine re-
ceptor interaction was a significantly enriched pathway for RA-specific DEGs that emphasized the importance of
Cytokine-cytokine receptor interaction and its related RA-specific DEGs in the pathogenesis of RA.

Tumor necrosis factor α (TNF-α) is a potent proinflammatory cytokine that plays a crucial role in inflammatory
and immune responses as well as in the pathogenesis of OA. In addition, TNF-α can enhance cartilage degradation

© 2020 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
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and induce bone resorption in OA [14–16]. Based on this present study, TLR7 and SOCS3 were two TNF-related
OA-specific DEGs which might play roles in the pathogenesis of OA. The activation of the TLR7/8 signaling path-
way led to the activation of NF-κB which was required for the induction of TNF-α [17]. SOCS3, as a suppressor of
cytokine signaling, has been implicated in transcriptional activation of signal transduction and activators of tran-
scription (STAT) signaling pathway [18–20]. SOCS3 is up-regulated in response to various cytokines such as TNF-α,
IL-6 and growth hormone [21].

The secretion of CXCL9/10 by immune cells is dependent on IFN-γ [22]. The high level of CXCL9/10 in peripheral
liquids is a biomarker of immune response, especially involving Th1-cells. Moreover, the CXCL10 concentrations in
RA synovial fluid are much higher than those in OA [23]. Many previous studies revealed the significant role of
CXCL9 and CXCL10 in the inflammatory process in RA. In this present study, CXCL9 and CXCL10 were found to
be up-regulated in RA compared with both OA and normal controls which provided evidence for the previous study
and suggested that they might be potential biomarkers for discrimination of RA and OA.

More importantly, based on the DEGs and data from the CMap database, we acquired a series of small molecules.
We were surprised to find that among these small molecules, Cefamandole and Arecoline were demonstrated signif-
icant similarity in RA and OA tissues (P<0.05) and additional analysis was required to determine their suitability as
broad spectrum anti-arthritis drugs.

Arecoline (methyl-1, 2, 5, 6-tetrahydro-1-methyl-nicotinate) is an alkaloid isolated from Areca catechu, and it
is considered as the major effective constituent of A. catechu [24, 25]. Recently research investigated the potential
pharmacological and toxic effects of arecoline [26, 27]. The main toxic effects of arecoline are oral submucous fibrosis
(OSF), oral squamous cell carcinoma (OSCC) and genotoxicity [28–30]. Cefamandole has been recommended in
empiric therapy for patients with community-acquired pneumonia and as a prophylactic agent for patients receiving
various surgical procedures [31].

In summary, we provide bioinformatic evidence demonstrating that CXCL9 and CXCL10 might be potential
biomarkers for discrimination of RA and OA. Additionally, Cefamandole and Arecoline were demonstrated as the
potential anti-arthritis drugs in RA and OA tissues (P<0.05). As the pathogenic mechanisms of RA and OA are still
not clear, our discoveries may have a broad impact in RA and OA biology and therapy. Nevertheless, large sample
size and further mechanism experiments are still needed to confirm our conclusion.
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