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Objective. Semaphorin 3B (Sema3B) decreases the migratory and invasive capacities of fibroblast-like
synoviocytes (FLS) in rheumatoid arthritis (RA) and suppresses expression of matrix metalloproteinases. We undertook
this study to examine the role of Sema3B in a mouse model of arthritis and its expression in RA patients.

Methods. Clinical responses, histologic features, and FLS function were examined in wild-type (WT) and
Sema3B−/− mice in a K/BxN serum transfer model of arthritis. Protein and messenger RNA expression of Sema3B in
mouse joints and murine FLS, as well as in serum and synovial tissue from patients with arthralgia and patients with
RA, was determined using enzyme-linked immunosorbent assay, immunoblotting, quantitative polymerase chain reac-
tion, and RNA sequencing. FLS migration was determined using a wound closure assay.

Results. The clinical severity of serum-induced arthritis was significantly higher in Sema3B−/− mice compared to
WT mice. This was associated with increased expression of inflammatory mediators and increased migratory capacity
of murine FLS. Administration of recombinant mouse Sema3B reduced the clinical severity of serum-induced arthritis
and the expression of inflammatory mediators. Sema3B expression was significantly lower in the synovial tissue and
serum of patients with established RA compared to patients with arthralgia. Serum Sema3B levels were elevated in
patients with arthralgia that later progressed to RA, but not in those who did not develop RA; however, these levels
drastically decreased 1 and 2 years after RA development.

Conclusion. Sema3B expression plays a protective role in a mouse model of arthritis. In RA patients, expression
levels of Sema3B in the serum depend on the disease stage, suggesting different regulatory roles in disease onset
and progression.
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INTRODUCTION

Rheumatoid arthritis (RA) is an immune-mediated rheumatic
and musculoskeletal disease marked by persistent synovial
inflammation and progressive joint destruction, leading to disabil-
ity and loss of quality of life (1,2). Most RA patients respond to the
current therapies and reduction in disease progression is
achieved; however, in 20–25% of patients, low disease activity is
not reached. Moreover, current therapies have moderate-to-
severe side effects, including higher cardiovascular risk and
immunosuppression (3,4). Therefore, there is still an ultimate need
for therapeutic molecules that can be targeted to reduce inflam-
mation and joint destruction.

Semaphorin 3B (Sema3B) is a secreted protein belonging
to the semaphorin family involved in different biologic processes,
such as apoptosis, angiogenesis, cell migration, and invasion
(5–7). A recent study from our group implicated Sema3B in the
pathogenesis of RA (8). We have shown that Sema3B expres-
sion is reduced in the synovium of patients with early RA com-
pared to patients with undifferentiated arthritis. Sema3B
expression negatively correlated with clinical disease parame-
ters and the expression of inflammatory mediators. Recombi-
nant Sema3B reduces the migration and invasive capacity of
RA fibroblast-like synoviocytes (FLS) in vitro (8). Taken together,
these findings suggest that Sema3B might be a potential thera-
peutic target in RA. In the current study, we examined the func-
tional role of Sema3B in a mouse model of arthritis and
determined the local and systemic levels of Sema3B during the
progression of RA.

PATIENTS AND METHODS

Patients and collection of samples. Serum samples
and synovial biopsy specimens were obtained at the
St. Vincent’s University Hospital in Dublin, Ireland from patients
with established RA who had clinically active inflamed joints
(n = 10) and from patients with arthralgia (n = 8). Patients with
arthralgia were defined as subjects with symptoms of aches and
pains without clinical signs of synovitis or increased C-reactive
protein levels (mean C-reactive protein level <5 mg/liter) but who
were positive for circulating rheumatoid factor (RF+) and anti–
citrullinated protein antibodies (ACPAs). Synovial biopsy speci-
mens were obtained by needle arthroscopy from the knee joints,
as previously described (9). Additionally, serum samples were
obtained from the Leiden clinically suspect arthralgia (CSA) cohort
(10) (Leiden University Medical Center, Leiden, The Netherlands),
which is composed of 20 CSA patients with disease that pro-
gressed to RA, with paired samples at CSA onset and at the time
that clinical arthritis first developed, and serum samples from
20 CSA patients with disease that did not progress to clinical
arthritis or RA, in which paired samples were obtained at presen-
tation of CSA and after 2 years of follow-up.

All patients presented at the outpatient clinic with recent-
onset (<1 year) arthralgia of the small joints without clinical arthritis
and had disease that, according to the clinical expertise of the
rheumatologist, was suspected to progress to RA. Baseline visits
consisted of physical examination, blood sample collection, and
questionnaires. At the time of study inclusion, the autoantibody
status of each patient was not known, as, in accordance with
Dutch clinical practice guidelines, general practitioners are not
required to measure serum autoantibodies as part of the exami-
nation. Follow-up visits were scheduled at months 4, 12, and
24. When necessary, additional visits were planned—for exam-
ple, when a patient’s symptoms increased or when a patient
experienced joint swelling. Patients were followed up until the
development of clinical inflammatory arthritis, determined by the
rheumatologist at the time of the physical examination. During
follow-up (and before the primary outcome was reached) treat-
ment with disease-modifying antirheumatic drugs (including ste-
roids) was not allowed. The date of censoring was either the
date that the medical records were reviewed or an earlier date in
those cases in which the patient was lost to follow-up.

In 8 CSA patients with disease that progressed to RA, serum
samples were also obtained 1 year after diagnosis, and in 4 of
these patients, serum samples were also obtained 2 years after
diagnosis. All subjects provided written informed consent, and
the protocol was approved by local institutional medical ethics
review boards prior to patient inclusion in this study. RA patients
fulfilled the American College of Rheumatology /European Alliance
of Associations for Rheumatology 2010 classification criteria for
RA (11,12). Clinical characteristics of the patients are detailed
in Supplementary Tables 1–3 (available on the Arthritis & Rheu-
matology website at http://onlinelibrary.wiley.com/doi/10.1002/
art.42065/abstract).*

Serum-transfer arthritis and clinical scoring. K/BxN
mouse serum was collected from 4–8-week-old arthritic K/BxN
mice (provided by C. Benoist and D. Mathis [Harvard Medical
School]). Arthritis was induced in wild-type (WT) and Sema3B−/−

mice (The Jackson Laboratory), transferring 100 μl of K/BxN serum
into 8–12-week-old mice by intraperitoneal (IP) injection on days
0 and 2. Alternatively, control phosphate buffered saline (PBS) vehi-
cle, recombinant mouse Sema3B–Fc chimera protein, or mouse
IgG2a isotype control (both 10 μg) (R&D Systems) were adminis-
tered IP on days 0, 2, and 4 in WT mice. Serum was collected on
days 0, 4, and 9, and mice were killed on day 9 after serum trans-
fer. Arthritis severity was assessed in each of the 4 limbs every
2 days by 2 blinded observers (AI and SG for evaluation of WT
and Sema3B−/− mice, and AR and CC for evaluation of recombi-
nant Sema3B–treated mice) using a semiquantitative clinical score

*[Correction added on 12 May 2022, after first online publication: In Supple-
mentary Table 1, the number (%) of patients with arthralgia receiving NSAIDs
was changed from “0 (25)” to “2 (25).”]
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(0 = no swelling, 1 = slight swelling and erythema of the ankle,
wrist, or digits, 2 = moderate swelling and erythema, 3 = severe
swelling and erythema, and 4 = maximal inflammation with joint
rigidity for a maximum possible score of 16 points per mouse).

Histologic analysis. The hind limbs frommice killed on day
9 were prepared for histology by dissecting the skin and muscle
and then sectioning the ankle joints. Specimens were fixed in for-
malin for 24 hours and were demineralized in Osteosoft (Merck
Millipore) for 30 days. Ankle joints were embedded in paraffin,
cut, and stained with hematoxylin and eosin to evaluate inflamma-
tion and bone erosion. Toluidine blue was used for analysis of car-
tilage damage.

Synovial inflammation was graded according to the following
index, where 0 = no inflammation, 1 = slight thickening of the
synovial cell layer and/or some inflammatory cells in the sublining,
2 = thickening of the synovial lining and moderate infiltration of the
sublining, 3 = thickening of the synovial lining and marked infiltra-
tion, and 4 = thickening of the synovial lining and severe infiltra-
tion. Cartilage damage was evaluated using a 0–4–point scale,
where 0 = normal cartilage, 1 = cartilage surface irregularities
and loss of metachromasia adjacent to superficial chondrocytes,
2 = fibrillation of cartilage with minor loss of surface cartilage,
3 = moderate cartilage abnormalities, including loss of superficial
cartilage and moderate multifocal chondrocyte loss, and
4 = marked cartilage destruction with extension of fissures close
to subchondral bone. Bone erosions were scored on a 0–4–point
scale, where 0 = normal bone, 1 = small resorption areas,
2 = more numerous resorption areas, 3 = obvious resorption,
and 4 = full-thickness resorption areas in the bone.

Mouse FLS culture and stimulation. Mouse FLS were
isolated from WT and Sema3B−/− mice. Synovial tissue was
minced and incubated with 1 mg/ml of collagenase in serum-free
Dulbecco’s modified Eagle’s medium (DMEM) (Invitrogen) at
37�C for 3 hours. After digestion, FLS were passed through a
nylon cell strainer (BD Falcon), washed, and cultured in 10% fetal
bovine serum (FBS) (BioWest) and 10,000 units/ml of penicillin/
streptomycin (ThermoFisher Scientific). After culture overnight,
nonadherent cells were removed, and adherent cells were cul-
tured in DMEM–10% FBS and used between passages 4 and 6.

Sema3B and cytokine measurement. Sema3B
(Biomatik) levels in the serum of patients with arthralgia and
patients with RA, Sema3B (Abbexa) levels in the serum of arthritic
mice, and interleukin-6 (IL-6) (eBioscience) and tumor necrosis
factor (TNF) (R&D Systems) levels in cell-free assay supernatants
of mouse FLS were measured using an enzyme-linked immuno-
sorbent assay, according to the manufacturer’s instructions.

Bulk messenger RNA (mRNA) sequencing protocol.
Sequencing was performed by the sequencing service provider

Single Cell Discoveries, using an adapted version of the CEL-
Seq protocol. Total RNA from mouse forepaws was extracted
using an RNeasy kit and an RNase-Free DNase set (Qiagen) and
was used for library preparation and sequencing. We processed
mRNA as described previously, following an adapted version of
the single-cell mRNA sequencing protocol of CEL-Seq (13,14).
In brief, samples were barcoded with CEL-Seq primers during
reverse transcription and were pooled after second-strand syn-
thesis. The resulting complementary DNA (cDNA) was amplified
with an overnight in vitro transcription reaction. From this ampli-
fied RNA, sequencing libraries were prepared with Illumina
TruSeq small RNA primers.

Paired-end sequencing was performed on the Illumina
NextSeq 500 platform. Read 1 was used to identify the Illumina
library index and CEL-Seq sample barcode. Read 2 was aligned
to the Mus musculus GRCm38 (mm10) mouse reference tran-
scriptome using BWA (15). Reads that mapped equally well to
multiple locations were discarded. Mapping and generation
of count tables was conducted using the MapAndGo script
(https://github.com/anna-alemany/transcriptomics/tree/master/
mapandgo). Samples were normalized using reads per million–
mapped reads normalization. The differential expression analy-
sis based on the negative binomial was performed using
R/Bioconductor package DESeq2 version 1.32. Negative bino-
mial generalized linear model fitting and a paired Wald’s test
was used to assess the differentially expressed genes (DEGs),
and P values were adjusted for multiple testing errors with a 5%
false discovery rate according to the Benjamini-Hochberg
method (16). DEGs were defined as those genes showing a
≥2 fold change in expression at an adjusted P value (Padj) less
than 0.05.

Real-time polymerase chain reaction (PCR) and
quantitative PCR (qPCR). RNA from mouse forepaws, mouse
FLS, and synovial tissue was isolated using an RNeasy Kit and
an RNase-Free DNase Set (Qiagen). Total RNA was reverse-
transcribed using iScript (Bio-Rad). Duplicate PCRs were
performed using SYBR Green (Applied Biosystems) with a
StepOnePlus Real-Time PCR detection system (Applied Biosys-
tems). We amplified cDNA using specific primers (all from IDT)
(see Supplementary Tables 4 and 5, http://onlinelibrary.wiley.
com/doi/10.1002/art.42065/abstract). Relative levels of gene
expression were normalized to the expression levels of 3 house-
keeping genes (B2M, RPL13, and RPL32 or Hprt, β-actin, and
B2m). Relative expression was calculated using the formula

2−ΔCt × 1,000.

Immunoblotting. FLS were lysed in Laemmli buffer and
forepaws were lysed in radioimmunoprecipitation assay buffer.
Protein content was quantified with a BCA Protein Assay kit
(Pierce). An equal amount of total protein was subjected to elec-
trophoresis on 4–12% NuPAGE Bis-Tris gels (Invitrogen), and
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proteins were transferred to PVDF membranes (Millipore). Mem-
branes were incubated overnight at 4�Cwith the following primary
antibodies: antibodies specific to TNF (BD PharMingen);
Sema3B, ERK, and β-actin antibodies (all from Abcam); neuropilin
1, plexin A2, and tubulin antibodies (all from R&D Systems); and
H3 and protein ERK antibodies (Santa Cruz Biotechnology).
Membranes were then washed and incubated in Tris buffered
saline–Tween containing a horseradish peroxidase–conjugated
secondary antibody. Protein was detected with Lumi-Light Plus
Western blotting substrate (Roche Diagnostics) using a Chemi-
Doc MP imaging system (Bio-Rad). Densitometry analysis was
performed with ImageJ software. Relative protein expression
was normalized to the values for H3, tubulin, or β-actin.

Migration assay. Cell migration was determined using a
wound closure motility assay. A linear scratch was made on

cultured mouse FLS plated at confluence using a 200-μl micro-
pipette tip and then washed with PBS to remove unattached
cells. Mouse FLS were placed in medium containing 1% or
10% FBS, and thereafter were either left unstimulated or stimu-
lated with recombinant mouse Sema3B (100 ng/ml) (R&D Sys-
tems). Light microscopy images were obtained immediately
(time point 0) and 24 hours after wounding. The mean number
of migrated cells was determined from 3 10× field-of-view
images and values were normalized to those in cultures with
unstimulated cells.

Statistical analysis. A statistical analysis was performed
using Windows GraphPad Prism version 8. Potential differences
between patient groups were analyzed using a nonparametric
2-tailed Mann-Whitney test or a Kruskal-Wallis test, as appropri-
ate. Potential differences between the mouse groups were

Figure 1. Semaphorin 3B (Sema3B) deficiency increases the severity of serum-induced arthritis. A, Daily global arthritis scores in wild-type
(WT) mice (n = 10) and Sema3B−/−mice (n = 10). Values are the mean � SEM.B, Inflammation (I) scores, cartilage damage (CD) scores, and bone
erosion (BE) scores in mice in each group. C, Representative images of histologic features in the mouse joints, visualized using hematoxylin and
eosin (H&E) and toluidine blue staining (n = 10). Synovial cell infiltration (asterisks), bone erosion (black arrow), and cartilage damage (white
arrows) are shown.D, Expression of Sema3BmRNA in the joints and fibroblast-like synoviocytes (FLS) of WTmice (n = 6–8) and Sema3B−/−mice
(n = 6–8). E and F, Representative immunoblot (E) and densitometric analysis (F) of Sema3B expression in FLS from WT mice (n = 4) and
Sema3B−/− mice (n = 4). In B, D, and F, symbols represent individual mice; bars show the mean � SEM. * = P < 0.05; ** = P < 0.01.
### = P < 0.001; #### = P < 0.0001, versus nonarthritic WT control mice.
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analyzed using a parametric Student’s 2-tailed paired t-test or
analysis of variance, as appropriate. P values less than 0.05 were
considered statistically significant.

RESULTS

Higher severity of arthritis in Sema3B−/−mice.We ini-

tially analyzed the role of Sema3B in K/BxN serum–induced arthri-

tis and found that the clinical severity of arthritis was significantly

higher in Sema3B−/− mice compared to the WT mice (Figure 1A).

These differences were not sex dependent (Supplementary

Figure 1A, http://onlinelibrary.wiley.com/doi/10.1002/art.42065/

abstract). Histologic analysis of the tibiotalar and forefoot joints

revealed significant increases in synovial inflammation, cartilage

damage, and bone erosion in the Sema3B−/− mice (Figures 1B

and C and Supplementary Figure 1B).
Next, we determined the expression of Sema3B in the total

joints and FLS of mice. As expected, expression of Sema3B
mRNA and protein was not detected in either the nonarthritic con-
trol group or the arthritic group of Sema3B−/− mice. Remarkably,
among WT mice, expression of Sema3B was significantly lower
in the arthritic group compared to the nonarthritic group (Figures
1D–F). Taken together, these data suggest that Sema3Bmay play
a protective role in the K/BxN serum–induced arthritis model.

Figure 2. Sema3B deficiency enhances the activation of inflammatory pathways. A, Expression of differentially expressed gene (DEG) mRNA in the
forepaws of WT or Sema3B−/− mice in a model of rheumatoid arthritis (RA) (n = 5 each) relative to that in nonarthritic control (Ct) mice (n = 4). Data are
presented as a heatmap showing the lowest (blue) and highest (orange) mRNA expression levels. B, Gene Ontology analysis of the biologic processes
associated with DEGs specific to arthritic WT mice, those specific to arthritic Sema3B−/− mice, or those shared between both groups. C, Expression
of mRNA for inflammatory mediators, analyzed by RNA-Seq in the forepaws of nonarthritic control mice (n = 4) and arthriticWTmice or Sema3B−/−mice
(n = 5). Symbols represent individual mice; bars show the mean � SEM. * = P < 0.05; ** = P < 0.01; *** = P < 0.001; **** = P < 0.0001. # = P < 0.05;
## = P < 0.01; ### = P < 0.001; #### = P < 0.0001, versus nonarthritic WT control mice. LDL = low-density lipoprotein (see Figure 1 for other defini-
tions). Color figure can be viewed in the online issue, which is available at http://onlinelibrary.wiley.com/doi/10.1002/art.42065/abstract.
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Enhanced activation of inflammatory pathways in
Sema3B−/− mice. To explore the mechanisms underlying
increased arthritis severity in Sema3B−/− mice, we performed an
RNA sequencing analysis in the joints of control mice and arthritic
mice. A principal components analysis of the whole transcriptome
showed a clearer distinction between the control and arthritic
groups rather than between WT mice and Sema3B−/− mice
(Supplementary Figure 2A, http://onlinelibrary.wiley.com/doi/
10.1002/art.42065/abstract). In fact, there were no significant dif-
ferences between WT and Sema3B−/− nonarthritic control mice,
and we only observed a trend toward down-regulated expression
of Sema3B mRNA in Sema3B−/− mice (fold change 0.06;
Padj = 0.078) (data not shown).

Next, we compared gene expression levels between WT and
Sema3B−/− arthritic mice and, similar to the control groups, we
did not observe major differences. In fact, only 2 genes (Sema3b
and Lrrn4cl) were found to have significantly lower expression in
Sema3B−/− mice compared to WT mice (Supplementary Table 6,
http://onlinelibrary.wiley.com/doi/10.1002/art.42065/abstract).

We therefore compared the DEGs in WT or Sema3B−/−

arthritic mice relative to WT control mice. The results revealed
197 DEGs in arthritic WT mice and 566 DEGs in arthritic
Sema3B−/− mice that showed significant differences in expres-
sion compared to nonarthritic controls (Supplementary Tables 7
and 8, http://onlinelibrary.wiley.com/doi/10.1002/art.42065/
abstract). A heatmap of the DEGs clearly distinguished the nonar-
thritic control mice and arthritic mice. Importantly, the Sema3B−/−

arthritic mice clustered together, while the WT arthritic mice
grouped in 2 different clusters, with 1 more similar to the
Sema3B−/− arthritic mice and the other more similar to the nonar-
thritic mice (Figure 2A). Subsequently, we performed a venn dia-
gram analysis (17) and we found that of all DEGs (606),
40 (6.6%) were specific to WT mice, 409 (67.5%) were specific
to Sema3B−/− mice, and 157 (25.9%) were differentially exp-
ressed in both groups (Supplementary Figure 2B and Supple-
mentary Table 9, http://onlinelibrary.wiley.com/doi/10.1002/art.
42065/abstract). A Gene Ontology analysis of biologic pro-
cesses did not show any relevant pathways in those DEGs

Figure 3. Sema3B deficiency enhances the activation of inflammatory pathways. A, Expression of mRNA for inflammatory mediators analyzed by
quantitative PCR (qPCR) of the forepaws in nonarthritic control mice (n = 8) and arthritic WTmice or Sema3B−/−mice (n = 10).B, Densitometric analysis
and representative immunoblot of tumor necrosis factor (TNF) in the joints of arthritic WTmice (n = 10) and arthritic Sema3B−/−mice (n = 10).C, Expres-
sion of Sema3B mRNA receptors analyzed by qPCR of the forepaws of nonarthritic control mice (n = 8) and arthritic WT mice or Sema3B−/− mice
(n = 10 each). D and E, Densitometric analysis and representative immunoblot of neuropilin 1 (NRP-1) and plexin A2 expression (D) and ERK activation
(E) in the joints of arthritic WT mice (n = 6) and arthritic Sema3B−/− mice (n = 6). Symbols represent individual mice; bars show the mean � SEM.
* = P < 0.05; ** = P < 0.01; *** = P < 0.001; **** = P < 0.0001. # = P < 0.05; ## = P < 0.01; ### = P < 0.001; #### = P < 0.0001, versus nonarthritic
WT control mice. Tub = tubulin (see Figure 1 for other definitions). Color figure can be viewed in the online issue, which is available at http://onlinelibrary.
wiley.com/doi/10.1002/art.42065/abstract.
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specific to the WT arthritic group. As expected, the DEGs shared
between both groups are related to processes involved in the
pathogenesis of arthritis in this murine model, such as inflamma-
tory responses, neutrophil activation and migration, and
cytokine-mediated signaling pathways. In addition, the biologic
processes specific to the Sema3B−/− mice were also related to
cytokine and inflammatory responses (Figure 2B and Supple-
mentary Table 10, http://onlinelibrary.wiley.com/doi/10.1002/
art.42065/abstract).

We analyzed several DEGs common to WT and Sema3B−/−

arthritic mice (Cxcl2, Cxcl5, Il1b, Ccl2, Mmp3, and Ptx3) and
some specific to arthritic Sema3B−/− mice (Il6, Ptgs2, and
Cd68), and we found elevated expression in the arthritic
Sema3B−/− mice compared to arthritic WT mice, although only
the difference in Ptx3 expression was significant (Figure 2C). In

order to confirm these data, we analyzed this subset of genes
using single qPCR, as well as Tnf, due to the key role it plays in
RA pathogenesis (2,18). We found up-regulation of Cxcl5, Ccl2,
Tnf, Il1, Il6, Mmp3, Ptgs2, Cd68, and Ptx3 in arthritic WT mice
and arthritic Sema3B−/− mice compared to the nonarthritic con-
trol mice and significantly enhanced expression in arthritic
Sema3B−/− mice compared to arthritic WT mice (Figure 3A).
Finally, we also validated the increased expression of TNF at the
protein level (Figure 3B).

Next, we investigated the possible molecular mechanisms
involved in the elevated severity of arthritis in this murine model.
First, we analyzed expression of the Sema3B receptors, the
plexin A family members, and the coreceptors neuropilin
1 (NRP-1) and NRP-2 (5–7,19). We found that expression of
Nrp1 and Plexina2 was significantly lower in the joints of arthritic

Figure 4. Sema3B deficiency enhances activation of inflammatory pathways and the migratory capacity of FLS. A and B, Expression of mRNA for
inflammatory mediators (A) and tumor necrosis factor (TNF) and interleukin-6 (IL-6) protein secretion (B) in FLS (at passage 4) from nonarthritic control
mice (n = 6) and arthritic WT mice or Sema3B−/− mice (n = 7). C, Migration of FLS (at passage 4) from arthritic WT mice and arthritic Sema3B−/− mice
after culture in 1% or 10% fetal bovine serum (FBS) for 24 hours. D, Migration of mouse FLS (at passage 6) from arthritic Sema3B−/− mice stimulated
with recombinant mouse Sema3B (rmSema3B) (100 ng/ml) after culture in 1% or 10% FBS for 24 hours. E, Densitometric analysis and representative
immunoblot of ERK activation in FLS (at passage 4) from arthriticWTmice (n = 4) and arthritic Sema3B−/−mice (n = 4). InA–C and E, symbols represent
individual mice; bars show the mean � SEM. * = P < 0.05; ** = P < 0.01; *** = P < 0.001; **** = P < 0.0001. # = P < 0.05; ## = P < 0.01;
### = P < 0.001; #### = P < 0.0001, versus nonarthritic WT control mice. See Figure 1 for other definitions. Color figure can be viewed in the online
issue, which is available at http://onlinelibrary.wiley.com/doi/10.1002/art.42065/abstract.
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Sema3B−/− mice compared to the joints of WT and Sema3B−/−

nonarthritic mice. In addition, expression of Nrp1 was also dimin-
ished compared to levels in arthritic WT mice (Figure 3C). At the
protein level, we observed slightly reduced expression of NRP-1
and plexin A2 in arthritic Sema3B−/− mice compared to arthritic
WT mice, although this difference was not statistically significant
(Figure 3D).

As Sema3B reduces ERK activation in FLS (8), we also eval-
uated the activation of this protein kinase in mouse FLS. In addi-
tion, 1 of the pathways found in the RNA-Seq data specific to
arthritic Sema3B−/− mice was the positive regulation of the MAPK
cascade (Figure 2B). Consistent with this finding, our results
showed significantly increased ERK activation in arthritic
Sema3B−/− mice compared to arthritic WT mice (Figure 3E).

Enhanced inflammatory and migratory phenotype
of FLS in Sema3B−/− mice. In arthritic mouse FLS, we further
analyzed expression of the gene targets in the joint tissue, since
Sema3B is mainly expressed by FLS in the synovium (8). Our
qPCR analysis showed increased Tnf, Il1, Ptx3, Cxcl2, and Cxcl5
expression in FLS from arthritic Sema3B−/− mice compared to
FLS from arthritic WT mice, but there were no differences in terms
of the expression of Ccl2, Il6, Mmp3, or Ptgs2 (Figure 4A). At the

protein level, secretion of TNF and IL-6 was also increased in
FLS from arthritic Sema3B−/− mice (Figure 4B).

Since Sema3B impairs the migratory capacity of RA FLS (8),
we analyzed the migratory capacity of mouse FLS. We observed
a trend toward increased spontaneous migration and signifi-
cantly higher FBS-induced migration in FLS from Sema3B−/−

mice compared to FLS from arthritic WT mice. Notably, the
higher degree of migration of FLS from Sema3B−/− mice was
reverted after stimulation with recombinant mouse Sema3B
(Figures 4C and D).

Lastly, we determined ERK activation and, similar to the
observations in the total joints of mice, ERK activation was signif-
icantly increased in the FLS from arthritic Sema3B−/− mice com-
pared to WT mice (Figure 4E).

Protective role of Sema3B in a murine model of
arthritis. To confirm that Sema3B plays a protective role in this
model of arthritis, we determined the effect of treatment with a
recombinant mouse Sema3B fusion protein in arthritic WT mice.
Arthritis severity was significantly lower in recombinant mouse
Sema3B–treated mice compared to mice in both control groups
(PBS and isotype control IgG) (Figure 5A). Consistent with this,
histologic analysis at day 9 showed a drastic reduction in synovial

Figure 5. Sema3B reduces the severity of serum-induced arthritis.A, Daily global arthritis scores in arthriticWTmice treated on days 0, 2, and 4 with
control phosphate buffered saline (PBS) (n = 4), isotype control IgG (10 μg) (n = 6), or recombinant mouse Sema3B (rmSema3B) (10 μg) (n = 6). Values
are the mean� SEM. B, Inflammation scores, cartilage damage scores, and bone erosion scores in mice in each group.C, Representative images of
histologic features in the mouse joints visualized with H&E and toluidine blue staining. Synovial cell infiltration (asterisks), bone erosion (black arrows),
and cartilage damage (white arrows) are shown.D, Longitudinal serum Sema3B levels in the mouse groups analyzed inA. E, Expression of mRNA for
inflammatory mediators in the forepaws of mice analyzed in A. In B and E, symbols represent individual mice; bars show the mean � SEM.
* = P < 0.05; ** = P < 0.01; *** = P < 0.001. # = P < 0.05; ## = P < 0.01, versus Sema3B-treated mice on day 4. See Figure 1 for other definitions.
Color figure can be viewed in the online issue, which is available at http://onlinelibrary.wiley.com/doi/10.1002/art.42065/abstract.
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inflammation, cartilage damage, and bone erosion in recombinant
mouse Sema3B–treated mice compared to those in both control
groups (Figures 5B and C).

Findings from a longitudinal analysis demonstrated that
serum Sema3B levels were significantly lower during the course
of arthritis in the PBS and IgG groups. In the Sema3B-treated
group, the levels of this protein on day 4 were similar to those
observed on day 0 (before the induction of arthritis and adminis-
tration of the recombinant mouse Sema3B), but were reduced
on day 9, likely due to the final dose of recombinant mouse
Sema3B administered on day 4. Importantly, also on day 4, levels
of Sema3B were significantly higher in the Sema3B mouse group
compared to the control groups (Figure 5D). Finally, analysis of
the inflammatory mediators in the mouse joints demonstrated
that recombinant mouse Sema3B administration resulted in sig-
nificantly down-regulated expression of Tnf, Il1, Ccl2, Cxcl5,
Ptgs2, Ptx3,Cd68, andMmp3 compared to the expression levels
of these genes in the control groups (Figure 5E).

Disease stage dependence of Sema3B expression in
human RA.Our previous findings (8) and results from the murine
experiments suggest that Sema3B expression might be reduced
in patients with established RA, but to date its expression in
patients with arthralgia preceding the development of clinical
arthritis and RA is unexplored. First, we examined the local and

systemic expression of Sema3B in patients with arthralgia
and those with RA. We found significantly lower Sema3B mRNA
and protein expression in the synovial tissue and serum of
patients with established RA compared to those with arthralgia
(Figures 6A and B).

To better understand the expression levels at different dis-
ease stages, we measured Sema3B levels in 20 patients with
CSA who had disease that progressed to RA (median time
between presentation with CSA and the development of clinical
arthritis 4 months [interquartile range 0.3–5]) and 20 patients with
disease that did not progress to RA (samples collected at presen-
tation with CSA and after 2 years). In patients with disease that
progressed to RA, serum Sema3B levels were significantly ele-
vated both at the time of presentation with CSA and at the time
that clinical arthritis first developed, compared to the levels in the
patients who had disease that did not progress to RA (Figure 6C).

These differences were independent of ACPA autoantibody
status, as Sema3B levels were increased in the progressor
patients in both the ACPA-negative and ACPA-positive groups.
Interestingly, at the baseline visit and to a lower extent after 1 year
of follow-up, levels of Sema3B were significantly higher in ACPA-
positive patients compared to ACPA-negative patients, both
in those with disease that progressed to RA and in those whose
disease remained as arthralgia (Supplementary Figure 3 http://
onlinelibrary.wiley.com/doi/10.1002/art.42065/abstract). Similar

Figure 6. Semaphorin 3B (Sema3B) expression is reduced during the progression of rheumatoid arthritis (RA). A and B, Expression of Sema3B
mRNA in synovial tissue (A) and Sema3B protein in serum (B) from patients with arthralgia (n = 8) and those with established RA (n = 10).
C, Sema3B levels in a longitudinal cohort of patients with clinically suspect arthralgia (CSA) (n = 40) who had disease that progressed to RA
(n = 20) or those whose disease remained as arthralgia after 2 years of follow-up (n = 20). D, Sema3B levels in a longitudinal cohort of patients with
CSA at presentation of arthralgia (n = 8), at presentation of RA (n = 8), and 1 year (n = 8) and 2 years (n = 4) after RA diagnosis. Symbols represent
individual patients; bars show the mean � SEM. * = P < 0.05; ** = P < 0.01; *** = P < 0.001. # = P < 0.05, ### = P < 0.001, versus presentation.
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to the previous set of patients with established RA, in 8 of the CSA
patients with disease that progressed to RA, Sema3B levels were
drastically reduced after 1 year of follow-up, and in 4 patients,
levels remained lower after 2 years of follow-up (Figure 4D). Taken
together, these data show that expression of Sema3B is disease
stage–dependent and is associated with ACPA status.

DISCUSSION

In this study we found that Sema3B plays a protective role in
a K/BxN mouse model of arthritis. The higher arthritis severity
observed in Sema3B−/− mice was associated with 2 main effects.
First, mRNA and protein analysis in Sema3B−/− mice showed
higher expression of cytokines, chemokines, and matrix metallo-
proteinases, which are elevated in RA patients and play a key role
in pathogenesis of the disease (18,20,21). Enrichment analysis of
DEGs in both WT arthritic mice and Sema3B−/− arthritic mice
showed induction of biologic pathways involved in the pathogen-
esis of arthritis in this model, as well as in RA patients. Specific
pathways in Sema3B−/− mice were also related to these pro-
cesses, indicating that Sema3B deficiency enhances the expres-
sion of inflammatory mediators, rather than regulating other
biologic processes. We found that FLS are responsible for the
enhanced expression of inflammatory mediators, although some
mediators were up-regulated in total joints but not in FLS (Il6,
Ccl2, Mmp3, Ptgs2), suggesting the involvement of other cell
types. Neutrophils and macrophages are crucial in a K/BxN
mouse model of arthritis, as they represent the main immune cells
infiltrating the affected joints and release cytokines and chemo-
kines, among other inflammatory mediators (22–24).

Increased synovial inflammation and higher expression of the
macrophage marker CD68 in the joints of Sema3B−/− mice sug-
gest that both neutrophils and macrophages are involved in the
greater arthritis severity and in the production of inflammatory
mediators found in these mice. Second, FLS from Sema3B−/−

mice demonstrated an increased migratory capacity, consistent
with the invasive and aggressive phenotype of RA FLS (8,25,26).
In addition, the enhanced bone erosion observed in Sema3B−/−

mice suggests that Sema3B also may be involved in bone ero-
sion, which is consistent with findings from other studies that have
shown that Sema3B promotes osteoblastic proliferation and dif-
ferentiation (27,28).

In this study we also found lower expression of plexin A2 and
the coreceptor NRP-1 in the joints of WT arthritic mice, and this
reduction was more evident in the Sema3B−/− arthritic mice.
These data, taken together with the low Sema3B levels, suggest
that decreased plexin A2 and NRP-1 expression may be impli-
cated in this arthritis model. In fact, plexin A2 and NRP-1 are cru-
cial for appropriate Sema3B signaling in different cell types
(8,29,30). In addition, Sema3A and Sema3F, which play protec-
tive roles in RA pathogenesis, also bind to plexin A2 and NRP-1.
Therefore, Sema3B deficiency might also enhance arthritis

severity through the impairment of the Sema3A and Sema3F pro-
tective pathways. (8,31,32).

Regarding the molecular pathways involved in enhanced
arthritis severity, we found higher ERK activation both in the joints
and in the FLS from Sema3B−/− arthritic mice, indicating that the
protective role of Sema3B in RA pathogenesis may be due, at
least in part, to inhibition of this molecular pathway. This notion
is supported by previous findings of low ERK activation in
Sema3B-stimulated RA FLS (8) and elevated ERK activation
in synovial tissue from patients with RA, as well as from patients
with early arthritis who develop erosive RA (33–35).

Notably, expression of Sema3B was reduced in arthritic WT
mice during the course of arthritis, similar to the decreased
Sema3B levels observed during RA progression. Of special inter-
est, administration of Sema3B resulted in diminished arthritis
severity, decreased expression of inflammatory mediators, and
reduced migration of FLS, highlighting the important modulatory
role of Sema3B in the K/BxN mouse model of arthritis.

We also found that local and systemic levels of Sema3Bwere
lower in patients with established RA compared to patients with
arthralgia; however, Sema3B levels were increased in patients
with CSA who had disease that progressed to RA. These data
suggest that expression of Sema3B is disease stage dependent
and the elevated expression in patients with pre-RA may be a
consequence of a counterregulatory mechanism, similar to the
high levels of antiinflammatory mediators (IL-4, IL-5, IL-10, IL-13)
observed in patients with RA (35–37). Due to the protective role
of Sema3B, this counterregulation in the early stages of the dis-
ease may reduce the pathogenic processes that ultimately lead
to joint destruction. However, further studies are needed to eluci-
date this mechanism. Eight of the CSA patients with disease that
progressed to RA presented with remarkably low serum Sema3B
levels 1 and 2 years after the date of diagnosis.

These data, along with our previous findings showing that
Sema3B levels are lower in the synovium of patients with early
RA compared to patients with undifferentiated arthritis (8), which
is considered an early phase of RA (38), confirm that expression
of Sema3B is down-regulated during the progression of the dis-
ease. The pathogenic mechanisms observed in very early RA
might be responsible for this reduction. In fact, IL-1 and TNF levels
are elevated in the synovial fluid of patients with early RA (37), and
the expression levels of IL1B and TNF negatively correlate with
SEMA3B expression in the synovium of patients with early RA. In
addition, both IL-1 and TNF down-regulate Sema3B expression
in RA FLS (8). Nevertheless, we cannot rule out the possibility that
ACPAs are involved in Sema3B expression, as serum Sema3B
levels are increased in ACPA-positive RA patients and several
studies have shown that anticitrullinated antibodies induce the
expression of inflammatory mediators (38–40).

Taken together, our data from the K/BxN mouse model and
human patients suggest that administration of Sema3B may be
a new therapeutic approach for RA. Multiple studies have shown
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that early treatment can prevent RA progression (41–43). Since
Sema3B levels are low during the first year of the disease, early
administration of Sema3B could prevent or decelerate the pro-
gression of joint damage and therefore preclude irreversible dis-
ability. Further studies are needed to analyze the therapeutic
effect of Sema3B administration.
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