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ABSTRACT

Soybean (Glycine max) is a legume crop with sub-
stantial economic value, providing a source of oil and
protein for humans and livestock. More than 50% of
edible oils consumed globally are derived from this
crop. Soybean plants are also important for soil fer-
tility, as they fix atmospheric nitrogen by symbiosis
with microorganisms. The latest soybean genome
annotation (version 2.0) lists 56 044 coding genes,
yet their functional contributions to crop traits re-
main mostly unknown. Co-functional networks have
proven useful for identifying genes that are involved
in a particular pathway or phenotype with vari-
ous network algorithms. Here, we present SoyNet
(available at www.inetbio.org/soynet), a database of
co-functional networks for G. max and a compan-
ion web server for network-based functional predic-
tions. SoyNet maps 1 940 284 co-functional links be-
tween 40 812 soybean genes (72.8% of the coding
genome), which were inferred from 21 distinct types
of genomics data including 734 microarrays and 290
RNA-seq samples from soybean. SoyNet provides a
new route to functional investigation of the soybean
genome, elucidating genes and pathways of agricul-
tural importance.

INTRODUCTION

Soybean (Glycine max) is a legume, and one of the most
commonly cultivated crops in the world. Soybean seeds are
an important source for human food, cooking oil, and an-
imal feed, because of their abundant protein and oil con-
tent. Soybean plants are also important for soil fertility,
as they fix atmospheric nitrogen through symbiosis with
microorganisms. The first soybean draft genome, G. max
var. Williams 82, was reported in 2010 (1), and the latest
version of the genome assembly, version 2.0 (Wm82.a2.v1)
lists 56 044 genes; yet their functional contribution to crop
traits remains mostly unknown. Dozens of soybean coding
genes are currently annotated for Gene Ontology biologi-
cal process (GOBP) terms with experimental evidence. The

number of research articles for G. max has increased every
year since 2009, which suggests that availability of the as-
sembled crop genomes indeed facilitates research progress
in crop science. Recently, genome-wide association studies
(GWAS), quantitative trait loci (QTL) analysis, and other
genomics studies have suggested many candidate chromo-
somal regions and loci associated with important soybean
agricultural traits such as seed content and stress responses
(2,3). However, these unbiased genotype-to-trait analyses
suffer from limited statistical power and difficulty in mech-
anistic interpretation.

Network-based approaches have proven useful to com-
plement such limitations by guilt-by-association and other
network algorithms in the study of various organisms
including model plant and crops (4). Here, we present
SoyNet (http://www.inetbio.org/soynet), a database of soy-
bean co-functional networks and a companion web tool for
network-based functional predictions. SoyNet maps 1 940
284 co-functional links between 40 812 soybean genes (cov-
ering 72.8% of the coding genome), which were inferred
from 21 distinct types of genomics data including 734 mi-
croarrays and 290 RNA-seq samples from soybean. SoyNet
freely provides edge information for not only the integrated
network, but also all individual component networks in-
ferred from each data type, including many microarray and
RNA-seq data sets. These will allow users to construct an
alternative version of the integrated network using different
data integration methods, and to conduct network analysis
for individual component networks.

To increase the usability of SoyNet, we implemented
three network-based methods of generating functional hy-
potheses: (i) find new members of a pathway, (ii) find
context-associated genes and (iii) find functional modules.
The SoyNet server can take user input of Arabidopsis genes
based on TAIR10 (5), as well as soybean genes based on
genome v1.1 and v2 annotations. Indeed, SoyNet is the
first network database to date that facilitates web-based hy-
pothesis generation for soybean genes. We demonstrated
the superiority of SoyNet in pathway predictions and crop
traits over other previously published networks of soybean
genes, PlaNet (6) and STRING v10 (7), using benchmark-
ing based on independent test data.
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NETWORK CONSTRUCTION

An overview of SoyNet construction is summarized in Fig-
ure 1. We considered soybean genes compiled from the lat-
est genome assembly for G. max, version 2.0 (Wm82.a2.v1),
which contains 56 044 protein-coding genes, distributed
by Phytozome v10.0 (8). Soybean genes from the previous
genome assembly version 1.1 were cross-mapped to those of
version 2.0 using synonym information provided by Phyto-
zome v10.0. To infer co-functional relationships by a super-
vised learning approach, we compiled gold-standard pos-
itive gene pairs, based on pathway databases such as the
Kyoto Encyclopedia of Genes and Genomes (KEGG) (9),
SoyCyc (10) and MapMan (11), resulting in 726 709 gene
pairs between 13 514 genes. A set of gold-standard neg-
atives was then generated by pairing two genes that are
annotated by pathway databases, albeit different pathway
terms, resulting in 90 580 632 gene pairs. Using these gold-
standard gene pairs, we inferred 21 networks that are based
on 21 distinct data types (Table 1). The individual com-
ponent networks are largely divided into three categories:
(i) networks inferred from co-expression of G. max genes
across samples from 17 microarray studies and 12 RNA-
seq studies (Supplementary Table S1), comprising 734 ar-
ray samples and 290 RNA-seq samples, available from Gene
Expression Omnibus (GEO) (12) and NCBI Sequence Read
Archive (SRA) (13). (ii) Networks inferred by genomic con-
text similarity based on either gene neighborhood across
bacterial genomes (14) or similarity of phylogenetic profiles
(15), using 396 eukaryotic genomes and 1748 prokaryotic
genomes. (iii) Networks inferred from evolutionarily con-
served functional associations (associalogs) (16) in seven
other species: Arabidopsis thaliana (17), Caenorhabditis ele-
gans (18), Drosophila melanogaster (19), Danio rerio, Homo
sapiens (20), Saccharomyces cerevisiae (21) and Oryza sativa
(22). We transferred co-expression links, protein-protein in-
teractions derived from the literature and high-throughput
analysis, and genetic interactions, based on orthology re-
lationships as measured by Inpranoid software version 4.1
(23). All individual networks were trained by log likelihood
score (LLS) scheme and integrated by weighted sum meth-
ods (24). Integration of the 21 individual networks resulted
in SoyNet, containing 1 940 284 links covering approxi-
mately 73% of the soybean coding genome. A more detailed
description of network construction is available in Supple-
mentary Online Methods.

NETWORK ASSESSMENT AND APPLICATION

Network assessment

To ensure that the co-functional links inferred by SoyNet
are not simply based on memorizing gold-standard gene
pairs or over-training, we needed to assess the network us-
ing test gene pairs that are independent from those used
for the network training. We compiled gene pairs from
GOBP annotations by the agriGO database (25) in May
2016, which was not used for training SoyNet. We no-
ticed that several agriGO terms have so many member
genes that potentially cause biased evaluation towards a
few pathway terms (26). To avoid this pathway bias dur-
ing network assessment, we excluded eight agriGO terms

with more than 500 member genes in generating test gene
pairs: ‘oxidation-reduction process’ (GO:0055114), ‘protein
phosphorylation’ (GO:0006468), ‘regulation of transcrip-
tion, DNA-templated’ (GO:0006355), ‘metabolic process’
(GO:0008152), ‘transmembrane transport’ (GO:0055085),
‘carbohydrate metabolic process’ (GO:0005975), ‘proteoly-
sis’ (GO:0006508), and ‘translation’ (GO:0006412). Pairing
two genes that are annotated by the same agiGO term re-
sulted in a set of 745 683 gene pairs, of which only 82 919
gene pairs overlapped with the set of gene pairs used for net-
work training (approximately 11% of 726 709 training gene
pairs), confirming fair independence of the test gene pairs
from those used for training SoyNet.

Two co-functional networks of soybean genes were previ-
ously published: PlaNet (6) and STRING v10 (7). Because
the agriGO-based test gene pair set is also independent from
the two other soybean gene networks, we compared SoyNet
with those networks based on the same test gene pair set.
The network assessment showed substantially higher per-
formance for SoyNet compared to the other networks in re-
trieval rate of the test gene pairs, particularly for the top
ranked gene pairs (Figure 2A).

In abiotic stress conditions, plants activate stress response
pathways, often by enhancing protein biosynthesis. Then,
differentially expressed proteins (DEPs) upon abiotic stress
tend to be functionally associated with one another. There-
fore, a significantly higher probability of functional associa-
tion among DEPs for a specific stress condition would sup-
port the quality of the network. For example, the observed
within-group edge count for stress-specific DEPs will be sig-
nificantly higher than the count for random protein groups
in a high quality co-functional network. For the analysis, we
compiled two sets of soybean DEPs for two different abiotic
stresses from a proteomics study: 48 proteins for drought re-
sponse and 94 proteins for submergence response (27). We
then tested the significance of the observed within-group
edge counts for each stress-specific DEP group using 1000
random protein groups. We found that within-group edge
count for both stress response proteomes are significantly
higher than random chance (P < 0.001 for both DEPs by
binomial distribution) (Figure 2B).

We also found that the two stress response pro-
teomes have only few common response proteins in
SoyNet, although they are highly interwoven to build
an abiotic stress response network (Figure 2C). Notably,
three response genes shared between drought and flood-
ing stresses––Glyma.03G223000, Glyma.15G190500, and
Glyma.19G220200––are located in the central region of the
abiotic stress response network, suggesting their roles as
common modulators in multiple stress responses. We found
that Arabidopsis orthologs of the three genes are known to
be involved in ethylene biosynthesis. Since ethylene is a core
plant hormone involved in various stress responses includ-
ing drought and submergence (28), the given network topol-
ogy of the common stress response genes further supports
the quality of SoyNet.

Network-based functional predictions by SoyNet

Integrative analysis of many co-functional links using var-
ious graph algorithms can effectively predict functions of
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Figure 1. Overview of SoyNet construction. Co-functional networks of soybean genes were inferred from various soybean-specific genomics data and
from evolutionarily conserved links in other species. The individual networks were then integrated into a single network, SoyNet, using Bayesian statistical
framework.

Table 1. SoyNet and component networks inferred from 21 distinct data types

Network Description Genes Links

SoyNet Integrated network 40 812 1 940 284
GM-CX By co-expression of Glycine max (soybean) genes 38 300 539 521
GM-GN By gene neighborhood of two bacterial orthologs of Glycine max (soybean) genes in prokaryotic

genomes
6072 211 084

GM-PG By phylogenetic profile of Glycine max (soybean) gene similarity across species 2665 30 695
AT-CC By co-citation of Arabidopsis thaliana orthologs in Pubmed articles 11 482 256 676
AT-CX By co-expression of Arabidopsis thaliana orthologs 10 494 125 109
AT-HT By high-throughput Arabidopsis thaliana orthologous PPI 4966 22 140
AT-LC By literature curated Arabidopsis thaliana orthologous PPI 4261 15 971
CE-CC By co-citation of Caenorhabditis elegans orthologs in Pubmed articles 900 30 166
CE-CX By co-expression of Caenorhabditis elegans orthologs 746 6694
DM-CX By co-expression of Drosophila melanogaster (Fly) orthologs 4244 63 988
DM-HT By high-throughput Drosophila melanogaster (Fly) orthologous PPI 6162 29 617
DM-LC By literature curated Drosophila melanogaster (Fly) orthologous PPI 1379 10 494
DR-CX By co-expression of Danio rerio (Zebrafish) orthologs 5934 281 220
HS-HT By high-throughput Homo sapiens (human) orthologous PPIs 4695 85 126
HS-LC By literature curated Homo sapiens (human) orthologous PPIs 7993 124 281
OS-CX By co-expression of Oryza sativa (rice) orthologs 12 682 253 016
SC-CC By co-citation of Saccharomyces cerevisiae (yeast) orthologs in Pubmed articles 7730 216 412
SC-CX By co-expression of Saccharomyces cerevisiae (yeast) orthologs 6985 580 194
SC-GT By genetic interactions of Saccharomyces cerevisiae (yeast) orthologs 5793 229 598
SC-HT By high-throughput Saccharomyces cerevisiae (yeast) orthologous PPIs 6754 445 574
SC-LC By literature curated Saccharomyces cerevisiae (yeast) orthologous PPIs 5760 103 626
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Figure 2. Assessment of SoyNet and other soybean functional networks. (A) Accuracies of gene pairs for the same agriGO pathways for the given genome
coverage of each network are indicated for every bin of 1000 links. The resultant plot indicates that SoyNet outperforms STRING v10 and PlaNet in
accuracy for most ranges of genome coverage. (B) Assuming genes connected in the network are functionally associated, SoyNet was assessed for functional
modularity of proteins that are differentially expressed during specific abiotic stresses: drought and flooding. For both stress response proteomes, SoyNet
shows significantly higher within-group edge counts than the distribution of those by 1000 random protein sets. (C) An abiotic stress response network of
soybean genes based on SoyNet. Gene networks that respond to two different abiotic stresses, drought and flooding, have only three common genes, yet
they are well-connected, suggesting that pathways for responding to different types of abiotic stresses are functionally interlaced.

individual genes (29). To maximize the utility of the co-
functional links from SoyNet for the functional study of
soybean genes and pathways involved in various crop traits,
we implemented three complementary network-based algo-
rithms for generating functional hypotheses: (i) find new
members of a pathway, (ii) find context-associated genes
and (iii) find functional modules (Figure 3A).

Find new members of a pathway. Since two genes con-
nected in co-functional networks have a high probability
of being involved in the same pathways, new members of
a pathway can be prioritized by closeness to the known
pathway genes in the network. The same approach can pre-
dict new genes for a phenotype, because the majority of
phenotypes are regulated by their associated pathways. In
this network-based method, a functional search through the
network is guided by the known genes for a target path-
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PlaNet. True positive rate (TPR) was measured for the top 100, 1000 and 10 000 retrieved genes for each of 338 agriGO pathways that have at least four
member genes. Similar analyses were also conducted for random gene sets with the same number of member genes for each pathway. (C) Networks of 44
genes that respond to phosphorus deficiency and their intermediate nodes. A network obtained from a z-score threshold of 43 contains four intermediate
nodes, whereas that by lower z-score threshold, 41, contains 13 more intermediate nodes. Clicking each gene or edge of the network shows additional
information. For example, an intermediate node Glyma.04G195100 is annotated for lignin metabolic process.
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way or phenotype, called guide genes, which are usually
provided by databases and the literature. A SoyNet net-
work search can take guide genes based on not only soybean
genes (both version 1.1 and 2) but also Arabidopsis genes by
TAIR 10 (5) annotation, which are automatically converted
into the soybean orthologs, using Inparanoid (23) software.
The effectiveness of network-based functional prediction
depends on the interconnectivity of pathway genes (30).
Thus, once a user submits guide genes, the SoyNet server
first measures the retrieval rate of the submitted guide genes
by SoyNet connections among themselves, where a guide
gene connected to the largest number of other guide genes
is retrieved first. Overall performance of the network for re-
trieval of all guide genes is assessed by receiver operating
characteristic (ROC) analysis, which can be summarized as
an area under the ROC curve (AUC) score. For example,
the AUC for 107 soybean genes for ‘fatty acid biosynthe-
sis’ by agriGO (GO:0006633) is 0.743, which indicates that
known genes for fatty acid biosynthesis are well connected
to each other by SoyNet analysis, and other highly ranked
genes are also likely to be involved in fatty acid biosynthe-
sis. The SoyNet server then visualizes a network of guide
genes and an extended network including their neighbors
in SoyNet using Cytoscape Web (31). Lastly, novel candi-
date genes are prioritized based on sum of edge weights (log
likelihood scores) to the guide genes are listed, along with
additional information such as paralogs (32), functional an-
notations by agriGO (25), UniprotGOA (33) and GOBP of
Arabidopsis orthologs (34).

We systematically assessed the prediction capability of
SoyNet, PlaNet (6) and STRING v10 (7) for 338 agriGO
pathways with at least four member genes. Because only
top candidates are likely to be considered for the follow-up
functional analysis, true positive rate (TPR) of top candi-
dates is more significant. We therefore measured TPR for
top 100, 1000 and 10 000 candidates by the method of
‘Find new members of a pathway’. We observed substan-
tially higher TPR for the top 100 candidates from SoyNet
than from other networks (Figure 3B). Notably, the TPR
difference between SoyNet and other networks reduces as
we consider a larger number of top candidates, indicating
large improvement from previous soybean networks in pre-
diction capability for more significant candidates.

Find context-associated genes. Plant transcriptome pro-
filing for a particular biological context, such as abiotic
stress, can reveal signature genes that are differentially ex-
pressed in that context. Network topology analysis with
those signature genes can identify regulators for the cellular
response. We hypothesize that if network neighbors of a cer-
tain hub gene are enriched among differentially expressed
genes (DEGs) in a particular context, the hub gene is likely
associated with the context. The identified hub gene could
be associated with the context-specific response by regu-
lating the DEGs directly or indirectly. We therefore imple-
mented the ‘Find context associated genes’ method to iden-
tify candidate genes that regulate responses to the query bi-
ological context, which can be represented as DEGs. For
this network-based method, only 15 444 hub genes with
>50 direct neighbors in SoyNet are considered, and the sig-
nificance of overlap between the neighbors of the hub and

DEGs for the query context is measured by Fisher’s exact
test. For example, we submitted 94 DEGs observed after
6 h of incubating plant roots in iron deficient conditions
(35). The SoyNet server returned a list of candidate hub
genes that are associated with the root iron deficiency re-
sponse along with additional information such as paralogs
(32), transcription factor membership (36), functional an-
notations by agriGO (25), UniprotGOA (33) and GOBP of
Arabidopsis orthologs (34). We found that 17 of the top 50
candidates were annotated by GOBP terms related to iron
transport or iron homeostasis, and only one candidate gene
(first rank) was a DEG itself, which indicates high comple-
mentarity between DEGs and the network-based predic-
tions. To provide a closer look at the network-based candi-
dates, the SoyNet server also visualizes the network of the
DEGs and the candidate gene when the user clicks the can-
didate gene name in the table.

Find functional modules. Functionally coherent soybean
genes are represented as a connected subnetwork or a mod-
ule in SoyNet. However, the genetic part lists for pathways
are often incomplete, and the missing member genes make
the module fragmented into several disconnected graphs.
Alternatively, the user may want to find a pathway by func-
tional connections among signature genes such as DEGs
derived from a relevant context, yet not all member genes of
the pathway are DEGs in that context, resulting in discon-
nected graphs. Sometimes, including intermediate nodes be-
tween the disconnected graphs facilitates a more complete
subnetwork for the pathway. Furthermore, these intermedi-
ate genes could be new candidates for the pathway. There-
fore, we implemented a systematic way to choose interme-
diate nodes for the subnetwork based on a z-score thresh-
old from the binomial proportion test as introduced previ-
ously (37), where a lower z-score permits more intermedi-
ate nodes. With real time network visualization for a user-
selected z-score threshold, one may find optimal network
modules by trials of various z-scores. However, due to the
considerable time required for calculating coordinates of all
network nodes, the SoyNet server allows up to only 50 in-
termediate nodes. For example, we submitted 44 genes that
respond to phosphorus deficiency (38). When the z-score
threshold was 43, we had four intermediate nodes (Figure
3C upper panel). By lowering the z-score down to 41, 13
more intermediate nodes were visible and the size of the
largest connected graph increased (Figure 3C lower panel).
Network viewer allows users to see additional information
for a selected node of edge. We found that new intermediate
nodes, Glyma.04G195100 and Glyma.06G170900 were an-
notated for lignin metabolic process, a cell wall biosynthesis
process, which justifies the relevance of these intermediate
genes to the module for phosphorus deficiency response.

CONCLUSIONS

In this study, we developed SoyNet, a database of co-
functional networks of G. max genes, constructed by ana-
lyzing 21 distinct types of genomics big data and Bayesian
integrations. The database contains not only evolutionar-
ily conserved co-functional links transferred from other
species but also many of those inferred from soybean-
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specific genomics data such as transcriptome profiles based
on microarray and RNA-seq. The extensive network in-
ference from heterogeneous data enabled us to obtain the
most comprehensive view of the soybean pathway sys-
tems to date. Moreover, we confirmed the superiority of
our novel database over other soybean functional network
databases in network quality and pathway predictions. To
facilitate network-based functional hypothesis generation
in soybean, we implemented three complementary network-
based algorithms in the database web server. To the best
of our knowledge, SoyNet is the first genome-scale co-
functional network database with companion web-based
functional prediction tools. Users can test each network-
based prediction method with available example input data
in the web server. We believe that the substantially enhanced
genome coverage, accuracy, and usability of SoyNet will fa-
cilitate systems biology approaches to study complex soy-
bean traits. We also expect that similar genome-scale co-
functional networks can be constructed for many other eco-
nomic crops with the aid of the recent explosion of genomics
data based on next-generation sequencing technology.
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