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Abstract: The botulinum neurotoxins (BoNTs) exhibit zinc-dependent proteolytic activity 

against members of the core synaptic membrane fusion complex, preventing neurotransmitter 

release and resulting in neuromuscular paralysis. No pharmacologic therapies have been 

identified that clinically relieve botulinum poisoning. The black widow spider venom  

α-latrotoxin (LTX) has the potential to attenuate the severity or duration of BoNT-induced 

paralysis in neurons via the induction of synaptic degeneration and remodeling. The 

potential for LTX to antagonize botulinum poisoning was evaluated in embryonic stem 

cell-derived neurons (ESNs), using a novel screening assay designed around the kinetics of 

BoNT/A activation. Exposure of ESNs to 400 pM LTX for 6.5 or 13 min resulted in the 

nearly complete restoration of uncleaved SNAP-25 within 48 h, whereas treatment with 

60 mM K
+
 had no effect. Time-lapse imaging demonstrated that LTX treatment caused a 

profound increase in Ca
2+

 influx and evidence of excitotoxicity, though ESNs remained 

viable 48 h after LTX treatment. This is the first instance of a cell-based treatment that has 

shown the ability to eliminate BoNT activity. These data suggest that LTX treatment may 

provide the basis for a new class of therapeutic approach to BoNT intoxication and may 

contribute to an improved understanding of long-term mechanisms of BoNT intoxication 

and recovery. They further demonstrate that ESNs are a novel, responsive and biologically 

relevant model for LTX research and BoNT therapeutic drug discovery. 
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1. Introduction 

The Clostridium botulinum neurotoxins (BoNTs) are the most poisonous substances known, with 

human toxicities estimated to be as low as 1–2 ng/kg [1]. Following ingestion, inhalation or injection, 

BoNTs gain access to the presynaptic termini of neuromuscular junctions and specifically target the 

soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins VAMP-2, 

SNAP-25, or syntaxin-1 for proteolysis [2]. In the standard model of synaptic neurotransmission, the 

arrival of an action potential (AP) at the presynaptic compartment triggers Ca
2+

 influx through  

voltage-gated channels, which in turn induces the synaptic SNARE complex to mediate synaptic 

vesicle fusion and neurotransmitter release. Consequently, BoNT cleavage of these proteins leads to 

inhibition of synaptic exocytosis and resulting in skeletal muscle paralysis with emergent respiratory 

failure [1]. Although passive immunotherapy can reduce vascular toxin load, once the toxin is 

sequestered within the presynaptic terminus there are currently no therapeutic approaches that restore 

normal synaptic activity. Interference with toxin internalization or activation involves a short 

therapeutic window; delays the onset of paralysis but does not prevent intoxication; and does not 

appear to add significant clinical value to the current post-exposure prophylaxis offered by passive 

immunizations [3,4]. Thus, once evidence of intoxication is present, clinical options are largely limited 

to supportive care [5]. Depending on the BoNT serotype, paralysis can persist for months, requiring 

sustained intensive medical care [6]. Furthermore, once the toxin is cleared from poisoned nerve 

termini, the synapse must be regenerated and coordinated neuromuscular control re-established [7–9]. 

For these reasons, the BoNTs present potent health risks, and in recognition of their disruptive 

potential the neurotoxins have been designated as one of six CDC Category A bioterrorism agents.  

The neurotoxin α-latrotoxin (LTX) is a highly potent secretagogue derived from the venom of the 

black widow spider (Latrodectus mactans tredecimguttatus) that induces fulminant neurotransmitter 

release at central and autonomic synapses [10–12]. In the most direct method of action, LTX inserts 

into the membrane following binding to the cell surface proteins neurexin or latrophilin and forms 

homotetramers with a central, non-selective cation-conducting pore [10,13–15]. The resultant influx  

of Ca
2+

 into the synaptic terminal induces sustained synaptic exocytosis, mimicking the activation of 

voltage-dependent Ca
2+

 channels during an AP. Surprisingly, this mechanism supports high levels of 

neurotransmitter release even in the absence of SNAP-25, synaptobrevin-2 or Munc13-1, which under 

normal circumstances nearly eliminates Ca
2+

-evoked
 
vesicle fusion [16–19]. LTX treatment caused a 

rapid, prolonged release of large amounts of neurotransmitter, followed by dose-dependent changes in 

nerve terminal morphology, presumably as a consequence of excitotoxicity [20–23]. In vivo, treatment of 

neuromuscular junctions with a crude homogenate from black widow spider glands results  

in structural and functional degeneration in hours, followed by regeneration of neuromuscular junctions 

and resumption of synaptic transmission at the original endplate within days [23,24]. Treatment of 

BoNT/A-intoxicated extensor digitalis longus (EDL) neuromuscular junctions with the same crude 

preparation shortened paralysis from weeks to days [25]. Similarly, recovery from BoNT intoxication 
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can also be expedited by nerve crush treatment [26,27]. Together, these findings suggest that the use of 

chemical or physiological treatments that induce synaptic regeneration of remodeling may accelerate the 

recovery of nerve terminals from BoNT paralysis.  

We have previously described a method to generate effectively pure cultures of glutamatergic 

neurons (ESNs) from suspension-cultured embryonic stem (ES) cells within 8 days, with typical yields 

of approximately 7 × 10
8
 glutamatergic neurons from 4 × 10

6
 mES cells [28]. ESNs express and 

correctly localize neuron-specific proteins, form synapses and release glutamate in a calcium-dependent 

manner under depolarizing conditions. The BoNT substrate SNARE proteins are expressed within 5 d 

of plating, and treatment with 0.81 pM BoNT/A holotoxin results in proteolysis of 50% of cellular 

SNAP-25 within 24 h. This sensitivity to BoNT/A is within two-fold of that observed in primary spinal 

cord neurons after 48 h of exposure, suggesting that botulinum is internalized, processed and behaves 

similarly in the two cell models [29]. In this effort, we developed ESNs as a therapeutic research 

platform, hypothesizing that LTX activity in the presynaptic compartment has potential as a research 

tool and a novel therapeutic approach for botulinum intoxication. We report that ESNs are responsive 

to the acute and long-term consequences of LTX treatment; in vivo reports of accelerated nerve 

terminal regeneration following administration of crude gland homogenates could be attributed 

specifically to LTX activity; and LTX treatment results in the recovery of full-length SNAP-25  

within 48 h. 

2. Materials and Methods 

2.1. Reagents 

Botulinum holotoxin type A (BoNT/A) (Metabiologics, Madison, WI, USA) was resuspended in 

phosphate buffered saline, pH 7.4 to 1 mg/mL, and stored at −20 °C. Latrotoxin (Sigma-Aldrich, St. 

Louis, MO, USA) was resuspended to 300 nM in H2O and stored at −20 °C. Fluo-4 (Invitrogen, 

Carlsbad, CA, USA) and Calcein/AM (Invitrogen) were prepared per the manufacturer‘s instructions. 

During time-lapse imaging neurons were maintained in basal electrophysiologic buffer (BEB; 10 mM 

glucose, 1 mM MgCl2, 10 mM HEPES, 2 mM CaCl2, 3 mM KCl, 136 NaCl and 0.1% BSA, pH 7.4,  

310 ± 10 mOsm). High potassium electrophysiologic buffer (KEB) was prepared similarly, except with 

60 mM KCl and 79 mM NaCl. 

2.2. Embryonic Stem Cell Culture and Neuronal Differentiation 

Murine embryonic stem cells were maintained and differentiated into ESNs as described [28]. ESNs 

were plated in PDL-coated 60 mm dishes at 125,000 cells/cm
2
 or PDL- and laminin-coated 18 mm 

coverslips at 100,000 cells/cm
2
 and maintained in Neurobasal-A medium (NBA) with B27 vitamins 

(Invitrogen, Carlsbad, CA, USA). 

2.3. Immunoblotting 

ESN cultures were washed with 2 mL PBS, lysed by addition of 250 µL of denaturing cell lysis 

buffer (Sigma-Aldrich) and harvested by scraping. Lysates were vortexed briefly, stored at 4 °C for  

30 min and clarified by centrifugation for 5 min through a Qiashredder (Qiagen, Valencia, CA, USA) 
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at 16,000 xg. Total protein concentration was determined by bicinchoninic acid (BCA) analysis 

(Thermo Scientific, Rockford, IL, USA), and 15 μg of total protein was separated on a 12% Nupage 

gel (Invitrogen) with MOPS running buffer. Gels were transferred to PVDF and probed with a mouse 

anti-SNAP-25 antibody (Abcam, Cambridge, MA, USA) and a mouse anti-syntaxin-1a antibody 

(Abcam), both diluted 1:1000 in TBS Superblock with 0.05% Tween-20 (TBST, Invitrogen). Bands 

were visualized with goat anti-mouse Alexa-488 diluted 1:2500 in TBST and imaged with a Versadoc 

MP4000 (Biorad, Hercules, CA, USA). 

2.4. Time-Lapse Confocal Microscopy 

Images were collected on a Zeiss LSM-700 confocal microscope with constant-temperature 

environmental chamber. For Fluo-4 staining, ESNs on 18-mm coverslips were loaded with 1 μM  

Fluo-4 for 20 min and washed thoroughly. Coverslips were mounted in a Warner (Hamden, CT) 

closed-bath imaging chamber, maintained at 37 °C with a heated stage and perfused with phenol-free 

Hibernate (Brainbits, Springfield, IL). For calcein green staining, cells were incubated with 1 µM 

calcein green in NBA for 30 min, then washed thoroughly and mounted as above. In both cases, 

coverslips were imaged at 63× using the 488 laser and manufacturer recommended filter sets.  

3. Results and Discussion 

3.1. Results 

3.1.1. Optimization of the Screening Model 

Previously we reported that 0.81 pM BoNT/A treatment for 24 h results in cleavage of 50% of 

SNAP-25 in ESNs [28]. Reasoning that application of higher doses for a shorter period might 

accelerate toxin internalization, we exposed ESNs to 0.67–670 pM BoNT/A for 3 h or 6 h and 

evaluated SNAP-25 cleavage after 24 h (Figure 1A). In comparing the percent cleaved SNAP-25 at  

24 h following either 3 or 24 h intoxication, we found that roughly three-quarters of toxin 

internalization occurs within the first few hours. Since both 6.7 and 67 pM produced roughly 50% 

cleaved SNAP-25 after 3 h exposure, we longitudinally evaluated BoNT/A activity from 3–96 h 

(Figure 1B). At each concentration the rate of SNAP-25 cleavage per hour slowed dramatically after 

24 h, suggesting a balance between rates of SNAP-25 synthesis and cleavage (Figure 1C). Based on 

these data, we designed a screening assay in which ESNs were exposed to 6.7 pM BoNT/A for 3 h, 

then washed and incubated for 21 h to allow full toxin activation. Candidate therapeutics were applied 

at 24 h, and the recovery of full-length SNAP-25 was evaluated 48 h after therapeutic treatment 

(summarized in Figure 1D). The duration of incubation following treatment was selected based on 

reports that approximately 2% of cellular SNAP-25 is recycled per hour [30]. 
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Figure 1. Kinetics of SNAP-25 cleavage following internalization of BoNT/A under 

different conditions. (A) DIV 25-31 ESNs in 6 cm dishes were treated with 0.67–670 pM 

BoNT/A in B27-NBA medium for 3 h (white columns) or 24 h (gray columns). For the 3 h 

treatment, cells were washed twice to remove toxin at 3 h and incubated for an  

additional 21 h. All treatments were harvested at 24 h and the percent of cleaved SNAP25 

was determined by densitometry of western blots; (B) Summary of SNAP-25 cleavage in 

embryonic stem cell-derived neurons (ESNs) between 24 to 96 h after a 3 h exposure to 6.7 

or 67 pM BoNT/A; (C) Evaluation of the rate of SNAP-25 cleavage, measured as  

percent-cleaved SNAP-25 per hour, averaged across each time point. For all experiments,  

n = 5 or more replicates; (D) Drug discovery treatment paradigm designed around kinetics 

of BoNT/A internalization and SNAP-25 cleavage in ESNs. 

 

3.1.2. LTX Treatment of BoNT/A-Treated ESNs Restores Full-Length SNAP-25 Protein within 48 h.  

To evaluate whether LTX treatment altered light chain (LC)/A activity in ESNs,  

BoNT/A-intoxicated ESNs were exposed to 400 pM LTX for 6.5 or 13 min, and SNAP-25 integrity 

was evaluated after 48 h. As a control, ESNs were also treated with 60 mM K
+
 (KEB) for 1.5 min, 

which evokes Ca
2+

-dependent glutamate release [28]. LTX treatment resulted in rescue of 92 ± 4.6% 

and 98 ± 1.7% (6.5 and 13 min, respectively) of full-length SNAP-25 within 48 h, whereas KEB 

treatment showed no difference from untreated neurons (Figure 2). The restoration of uncleaved 

SNAP-25 indicates that some aspect of LTX treatment results in the inactivation or clearance of LC/A 

from synaptic termini. Furthermore, these data suggest that latrotoxin may be the active moiety in 

experiments demonstrating that the administration of crude homogenate from black widow spider 

venom glands to BoNT/A-paralyzed neuromuscular junctions dramatically accelerates recovery [25]. 
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Figure 2. LTX but not K
+
 rescues SNAP-25 expression within 48 h in  

BoNT/A-intoxicated ESNs. BoNT/A-intoxicated ESNs were treated with 60 mM K
+
 or 400 

pM LTX for designated times, and SNAP-25 cleavage was evaluated after 48 h by 

densitometry of western blots. Syntaxin is shown as a loading control. 

 

3.1.3. LTX Treatment Results in Prolonged Ca
2+

 Internalization 

LTX treatment incurs fulminant neurotransmitter release from primary neurons, partly in response 

to profound levels of Ca
2+

 internalization [31]. Since LTX treatment resulted in recovery of full-length 

SNAP-25 in ESNs, whereas KEB did not, we used the fluorescent intracellular calcium sensor Fluo-4 

to compare the amplitude and duration of Ca
2+

 internalization evoked by these two treatments.  

Time-lapse confocal microscopy analysis of DIV 21 ESNs treated with KEB demonstrated an 

immediate rise in Fluo-4 fluorescence (Figure 3A). Fluorescence intensity increased within 15 s of 

KEB treatment, remained high for about 90 s and subsided prior to washout at 2.5 min (Figure 3B). 

Conversely, while ESNs treated with 400 pM LTX also showed a strong rise in Fluo-4 fluorescence, 

there were several key differences in the kinetics of the Ca
2+

 response. First, there was a 1.5 min delay 

between LTX addition and the onset of Fluo-4 fluorescence, suggesting that spider toxin requires time 

to bind synaptic receptors and form pores within the membrane at this concentration (Figure 3B). Unlike 

the self-limiting response from KEB treatment, LTX induced a steady increase in Fluo-4 signal 

throughout the experiment, even following rinses to remove residual toxin, demonstrating that LTX 

results in loss of cellular ionic homeostasis and that the KEB response was not limited by reduced levels 

of extracellular Ca
2+

. No apparent differences in onset, amplitude or duration were noted within the  

20 min experimental window between the 6.5- and 13 min LTX treatment, nor did a 24 h intoxication 

with 67 pM BoNT/A prior to LTX or KEB treatment affect Ca
2+

 internalization (not shown). 
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Figure 3. Kinetics of acute Ca
2+

 influx mediated by treatment with LTX or K
+
.  

(A) Increased Ca
2+

 influx (Fluo-4; green) peaked rapidly in response to 60 mM K
+
 and 

returned to basal levels within 120 s (upper panels); 6.5 min treatment with 400 pM of 

LTX resulted in rapid increase of Ca
2+ 

with sustained intensity for over 570 s (lower 

panels); (B) Quantitative summary of Ca
2+

 response following addition (down arrows) of 

60 mM K
+
 (closed diamonds; dashed arrows) or 400 pM LTX (open diamonds; solid 

arrows) from a single field of view. Whereas the K
+
-induced Ca

2+
 response returned to 

basal levels prior to washout (up arrows), the LTX-induced Ca
2+

 response continued to 

increase through 570 s. Scale bar = 10 µm. 

 

3.1.4. LTX-Treated ESNs Exhibit Evidence of Excitotoxicity That Partially Resolves between 24–48 h 

Differential interference contrast images captured 15 h after treatment indicate that cultures treated 

with LTX for 6.5 min have large numbers of distributed varicosities and disrupted processes, whereas 

cultures treated with KEB for 13 min do not (Figure 4A). LTX treatment of ESNs decreased the total 

protein yield following cell lysis by 44 ± 16% and 52 ± 19% (6.5 and 13 min, respectively) compared 

to controls at 48 h after treatment (p < 0.01, n = 6; Figure 4B).  We used calcein green staining to 

compare morphological changes in ESNs during the emergent and long-term response to LTX versus 

KEB. These observations are in agreement with results from LTX-treated spinal cord motoneurons and 

cerebellar granule neurons [31]. The development of axodendritic varicosities from existing processes 

was apparent within 30 min of LTX addition (Figure 5). Although neurons remained viable 24 h and 

48 h after treatment, there was an overall decrease in viability and persistent evidence of varicosities. 

By 48 h some of these varicosities were resolved, suggesting that neuronal regeneration was underway. 
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Figure 4. Comparison of neuronal morphology changes and total protein yield after 

treatment with K
+
 or LTX. (A) DIV 22 ESNs were treated with either 60 mM K

+
 (top) or  

400 pM LTX in BEB (bottom), then perfused for 30 s with BEB. Differential interference 

contrast images were taken of the same field at the indicated time points. Scale bar = 10 µm; 

(B) Total protein yield (see methods) from cultures (n = 3) treated with 400 pM LTX for  

6.5 or 13 min was decreased by approximately 50% relative to untreated cultures.  

 

Figure 5. Examination of varicosity formation in calcein-labeled ESNs over time.  

(A). Top panels, low magnification image; bottom panels, high magnification of boxed 

area in upper panel. Arrows identify representative varicosities that appeared within 24 h 

and showed a substantive decrease in area by 48 h after treatment; (B) Varicosities appear 

as soon as 22 min after addition of LTX. All images were of the same field of view for all 

time points. Scale bar for all images = 10 µm. 
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Figure 5. Cont. 

 

3.2. Discussion 

3.2.1. Considerations in Developing a Screening Methodology 

Although we previously demonstrated that neurons derived from embryonic stem cells have the 

potential of acting as a biologically relevant platform for botulinum research, we did not develop 

screening protocols to maximize the likelihood of rapidly identifying therapeutically useful  

candidates [28]. In this work we started by developing a cell-based assay using the kinetics of BoNT/A 

internalization and activation in ESNs to standardize the evaluation of therapeutic candidates. 

Although it is a widespread practice to use toxin concentrations that are several orders of magnitude 

above the EC50 followed immediately by therapeutic administrations to expedite therapeutic screening 

assays, for several reasons this approach significantly increases the risk of failing to identify a valid 

therapeutic [32–35]. First, internalization of BoNT at high concentrations may result in broad cellular 

distribution as opposed to synaptic localization, altering the ability to evaluate therapeutic efficacy. 

Second, only a fraction of internalized toxin is capable of cleaving the majority of SNAP-25 within 6 h 

(see Figure 1). Thus, evaluating therapeutic candidates before all the internalized toxin is activated will 

artificially increase the ratio between therapeutic molecules and toxin, thereby increasing the apparent 

therapeutic activity. Finally, a therapeutic candidate applied too early may disrupt toxin processing 

rather than interfere with fully functional toxin. This latter point is particularly relevant in  

high-throughput screening approaches for post-exposure therapeutics in which libraries are selected 

without a mechanistic bias.  

In consideration of these concerns, we designed an assay around three principles intended to 

mitigate risks and ensure a high level of sensitivity for therapeutic efficacy. First, an incubation step 

was included between the removal of holotoxin and prior to therapeutic administration to allow 

internalized light chain to become fully activated. This step was designed to be sufficiently long to 

establish a steady state between cleavage of existing SNAP-25 and synthesis of new SNAP-25. 

Second, a dose was selected that would result in approximately 50% cleavage of SNAP-25 within the 

given time frame, yet be as low as possible to encourage toxin internalization and trafficking by 

synaptic endocytosis rather than non-specific endocytosis. Third, treatment efficacy timescales were 

selected around presumptive mechanisms of action. Thus, using dose response curves at multiple time 

points and exposure durations, we identified a 3 h exposure to 6.7 pM, with therapeutic application  

at 24 h and SNAP-25 evaluation at 72 h as the preferred model. 
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3.2.2. LTX Rescue of Full-Length SNAP-25 Expression 

The finding that LTX treatment of BoNT/A-intoxicated ESNs rescued full-length SNAP-25 

expression is the first instance of a successful therapeutic application in derived neurons. This finding 

resulted from the inactivation of LC/A by an unknown mechanism, allowing newly synthesized 

SNAP-25 to accumulate without being proteolytically cleaved by LC/A. It should be noted that we 

have not yet evaluated the functional rescue of synaptic signaling or the regeneration of normal 

synaptic morphologies with appropriate localization of synaptic proteins. The significant decrease in 

total protein recovered argues that some degree of neurotoxicity has occurred, and this is corroborated 

by morphological changes. It may be that most of the existing synapses have been disrupted in such a 

fashion to inactivate LC/A, or that the LC/A-intoxicated synapses are more sensitive to  

LTX-treatment. The data does suggest that LTX treatment results in calcium ‗overload‘ and the 

abnormal flux of other ions through non-selective, cationic pores in the synaptic membrane, any of 

which may prove injurious to neurons [31,36]. The profound and sustained increase in cytosolic Ca
2+

 

observed in ESNs followed by acute evidence of axodendritic varicosities is characteristic of 

excitotoxicity and presents a possible mechanism for clearance or inactivation of LC/A from synaptic 

termini via synaptic degeneration. Whether such degeneration results in the physical loss of LC/A from 

the synaptic compartment or in accelerated degradation of synapse-localized proteins via cellular 

proteosomal clearance mechanisms is unknown, but clearly of interest. Another possibility is that the 

significant increase in intracellular Ca
2+

 more directly inhibits the BoNT/A light chain cannot be 

discounted based on these data; e.g., through induction of autocatalysis [37].  

3.2.3. Is Neuronal Degeneration and/or Excitotoxicity Responsible for the Loss of BoNT Persistence? 

Recovery from botulinum requires the re-innervation of the inactive muscle fiber, whether by 

regeneration of the original endplate or by establishment of a new endplate via axonal sprouting.  

In vivo, it appears that the endplate disassembles and the presynaptic compartment regresses in 

response to BoNT intoxication [38]. Shortly afterward, new axonal sprouts develop and attempt to  

re-innervate the target muscle fiber. The original endplate is eventually regenerated once the light 

chain has been cleared from the presynaptic terminal and appears to regain control as the primary 

efferent to the muscle fiber. The coordination of these events demonstrates the importance of synaptic 

remodeling in recovery of normal synaptic function after intoxication. It may be possible that by 

disrupting the integrity of the original synaptic terminal, BoNT light chains no longer remain 

associated with intoxicated synapses, thereby enabling the immediate re-innervation of endplates by 

re-activated nerve terminals. Similarly, in vivo studies have demonstrated dramatically accelerated 

recovery from paralysis following BoNT intoxication following nerve crush injury [26,27]. If this 

general approach proves to be efficacious in facilitating recovery from intoxication in vivo, then 

induced regeneration of paralyzed synapses could offer a novel, serotype-independent therapy for 

intoxication by persistent BoNTs. 

The formation of varicosities in response to LTX treatment is suggestive of the morphological 

changes described following application of excitotoxic stimuli to cultured neurons. For example, 

glutamate treatment leads to varicosity formation in glutamatergic dendrites, whereas veratridine 
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inactivation of voltage-gated sodium channels causes varicosity formation in both axons and dendrites. 

Under conditions of a sublethal excitotoxic stimulus, these varicosities have proven to be reversible via 

volume recovery pathways, although it is not known if axons and dendrites utilize similar mechanisms 

to resolve neuronal swelling [39–41]. While the nature of the potential relationship between 

excitotoxicity resolution and loss of BoNT persistence is still unclear, these results indicate that ESNs 

provide a stable cell-based platform to further interrogate the effect of LTX-induced synaptic 

regeneration on BoNT-persistence in cultured neurons.  

3.2.4. ESNs Provide a Responsive, Genetically Tractable Model for LTX Research 

There are several aspects of LTX activity that are not well understood [10]. For example, in 

addition to the formation of cation-selective pores permeable for Ca
2+

, LTX mutants incapable of 

forming pores can still induce membrane depolarization through inhibition of voltage-gated potassium 

channels and activation of L-type Ca
2+

 channels [42,43]. Whereas synaptic exocytosis induced by this 

mode of LTX action is dependent on the presence of the classical SNARE machinery, there is evidence 

that substantial levels of neurotransmitter release induced by pore-mediated Ca
2+

 internalization can 

still occur despite the absence of SNAP-25, VAMP-2 or Munc-13 [16]. Whether this involves a novel 

complex that can effect exocytosis at high Ca
2+

 concentrations or has a more mundane explanation 

such as enhanced reversal of membrane-associated amino acid transporters in response to changes in 

cytoplasmic ion concentrations or ATP-depletion is not known [44,45]. However, here we have 

demonstrated that ESNs offer an LTX-sensitive, neuron-based platform that has the potential to 

replace the use of primary neurons and neurogenic cells in studying the molecular, cellular and 

functional consequences of intoxication by LTX. As we have previously described for BoNTs, the 

additional capabilities of genetic tractability, neuronal subtype homogeneity and lot-to-lot consistency 

mean that the ESN model may also be a transformative tool for LTX research [46]. 

4. Conclusions 

The finding that LTX treatment of BoNT/A-intoxicated ESNs rescued full-length SNAP-25 

expression is the first demonstration of a successful therapeutic application in derived neurons. 

Although LTX treatment may not be a viable clinical therapy due to its broad activity, these data 

demonstrate that the general approach of induced synaptic degeneration may accelerate neuronal 

recovery from BoNT intoxication. Furthermore, they also suggest that LTX may be the active moiety 

in demonstrations that injection of paralyzed EDL muscles with crude homogenates from black widow 

spider venom glands facilitates recovery of muscle tension [25]. Finally, this work demonstrates that 

ESNs are a valid research tool for study of the mode of action of multiple neurotoxins, and thus may 

provide a transformation research platform for neurotoxin research and drug discovery. 
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