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Abstract: AD is a chronic neurodegenerative disease. Many different signaling pathways, such as
Wnt/β-catenin, Notch, ROS/JNK, and PI3K/Akt/mTOR are involved in Alzheimer’s disease and
crosstalk between themselves. A promising treatment involves the uses of flavonoids, and one of
the most promising is curcumin; however, because it has difficulty permeating the blood–brain
barrier (BBB), it must be encapsulated by a drug carrier. Some of the most frequently studied are
lipid nanocarriers, liposomes, micelles and PLGA. These carriers are further conjugated with brain-
targeting agents such as lactoferrin and transferrin. In this review paper, curcumin and its therapeutic
effects, which have been examined in vivo, are analyzed and then the delivery systems to the brain
are addressed. Overall, the analysis of the literature revealed great potential for curcumin in treating
AD and indicated the challenges that require further research.
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1. Introduction

Alzheimer’s disease (AD) is a chronic neurodegenerative disorder which is character-
ized by confusion, memory loss, and cognitive decline [1–4]. By 2050, it is expected to afflict
115 million people [5,6]. The onset is hard to diagnose because degenerative physiological
changes in the brain can begin around 30 years before the appearance of symptoms [7,8].

The hallmarks of AD are neurofibrillary tangles of tau proteins and Amyloid-β (Aβ)
“senile” plaques that build up in the brain [9,10]. Hyperphosphorylation of tau proteins
leads to unbound phosphor-tau which causes its aggregation [11]. The β-amyloids are
spontaneously aggregating peptide chains of 39–43 amino acids (4 kDa) that have a cross-
beta sheet quaterna structure [12,13]. Aβ species include soluble monomers, dimers,
oligomers, and insoluble fibrils/aggregates and plaques [14,15]. Aβ is derived from a
large protein called amyloid precursor protein (APP). The cleavage of Aβ from APP by
β-secretase enzyme instead of α secretase eventually leads to formation of Aβ40 and Aβ42
(β-amyloid 40 and β-amyloid 42) [16,17]. Soluble Aβ peptide is normally secreted from
nerve cells, and any excess is cleared. Initially, microglia cells remove Aβ aggregates;
however, the clearance eventually fails due to chronic inflammation [18,19]. Aβ self-
aggregates form oligomers and amyloid fibrils. Gradually, the β-amyloid subspecies
changes from a soluble protein to insoluble fibrils and senile plaques. Many studies have
shown that soluble dimeric and oligomeric Aβ species are more neurotoxic than insoluble
deposits [14,20]. Aggregates of Aβ also contribute to neuronal damage. A reversible
aggregation occurs due to physical hydrophobic stacking, and an irreversible aggregation
takes place due to covalent cross-linking [21–23]. In the brain, aggregates are found in the
hippocampus and subventricular zone (SVZ) and then progress into the neocortex [24,25].

The brain has a high susceptibility to oxidative damage because it accounts for so
much of the body’s consumption of oxygen, around 20% [3,26,27]. The oxidation of pro-
teins, lipids, and DNA by increased amounts of reactive oxygen species (ROS) damages
neurons and ultimately leads to neuronal death [28–31]. ROS increases lipid peroxidation,
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nitrite levels and decreases the activity of antioxidants like glutathione, catalase, superoxide
dismutase (SOD) and glutathione-S-transferase, which may lead to AD [30,32,33]. Neurons
are protected against oxidative stress by enzymatic antioxidants (catalase, SOD, glutathione
reductase and glutaredoxin) and non-enzymatic antioxidants (vitamin C, vitamin E, sele-
nium, zinc, polyphenol, carotenoids, and glutathione) [34,35].

Cholinesterase breaks down acetylcholine, so acetylcholine inhibitors may improve
symptoms of memory loss [5,36]. Currently, AD treatments include acetylcholine esterase
inhibitors (donepezil, tacrine, rivastigmine, and galantamine) and N-methyl-d-aspartate
(NMDA) receptor antagonist memantine. However, these drugs only provide symptomatic
relief [9,37]. Moreover, sulfonated anions, benzofuran derivatives, and polyphenol-based
compounds show promise [25,38]. One polyphenol is curcumin from Curcuma longa (the
turmeric plant).

There is a tremendous amount of work on the beneficial effects of curcumin against
AD [39–41]. The relevant literature was compiled using Web of Science, PubMed, Scopus,
and Google Scholar without any year limitation. The keywords used were as follows:
Alzheimer’s disease, brain, drug delivery, curcumin, turmeric, in vivo and animal studies.
In the first part of this review paper, the in vivo studies carried out with curcumin and its ac-
tion mechanisms are presented. In the second section, carriers used for curcumin and brain
targeting agents are covered. Finally, current limitations and future work are discussed.

2. Curcumin

Curcumin (5-hydroxy-1,7-bis(4-hydroxy-3-methoxyphenyl)-1,4,6-heptatrien-3-one)
is a plant derived antioxidant with 2 phenol groups [39–41] and has been found to be
therapeutic for a variety of diseases: neurological, respiratory, cardiovascular, urinary,
reproductive, digestive, musculoskeletal, skin, gum, endocrine, and autoimmune (e.g.,
rheumatic arthritis) [42,43]. It was also found effective for autoimmune disease, such
as rheumatic arthritis [44–46]. Curcumin’s neurological benefits are applicable to AD,
Parkinson’s disease, brain tumors, multiple sclerosis, traumatic brain injuries, ischemia,
and depression, which makes it one of the most promising natural therapeutic agents
against AD [43,47]. It is one of the most promising natural therapeutic agents against
AD [48,49]. In India, the lower prevalence of AD compared to other countries (4.4 times
lower than United States) has been attributed to a higher consumption of curcumin [50,51].
The literature suggests that it works via multiple mechanisms against AD [52–54]. The
literature suggests that it inhibits β-amyloid, phospho-tau, and acetylcholineeasterase
creation; modulates microglia; and chelates metal [4,55]. It also has antioxidant activity
several times higher than that of vitamin E [51,55].

Curcumin scavenges ROS [30,32,56,57] and increases the levels of SOD, Na+-K+ AT-
Pase, catalase, glutathione, and mitochondrial complex enzyme. It also decreases lipid per-
oxidation, usually by reducing malondialdehyde (MDA), nitrite, and acetylcholinesterase
levels [28,58]. It also protects mitochondria against peroxynitrite in nigrostriata. This way,
it is thought to protect the brain against AD [59,60].

The use of curcumin, however, faces obstacles. First, it has exceptionally low water
solubility (11 ng/mL in aqueous buffer pH 5.0), which means that it is eliminated from the
body quickly and has a low oral bioavailability. It is soluble in dichloromethane [61,62],
ethyl acetate [63,64], ethanol [65], acetone [66,67], chloroform [68], dimethyl sulfoxide [69],
and methanol [70]. Due to its low water solubility, it is eliminated from the body at a
fast rate, and therefore, its oral bioavailability is quite low. Additionally, it is chemically
unstable [71–73]. Many strategies have been tried to improve the efficiency of curcumin for
AD, and these will be presented in this paper [39,74]. Figure 1 shows the in vivo techniques
used to analyze the effectiveness of different strategies.
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Figure 1. In vivo characterization techniques applied to study the effects of curcumin on AD (drawn
in Biorender). i. Curcumin content: MS [6], HPLC [58,59,75], and fluorescence imaging [21,41]
techniques. ii. β-amyloid content: thioflavin T (Tht) staining [61,76–79] silver staining [39,80], cresyl
violet [81], alkaline phosphates [82,83], congo red [78,79], and ELISA assay [2,18,84]. iii. Animal be-
havior tests: Morris water maze [32,39,85], Y-maze [5,86,87], and novel object recognition tests [5,66].
iv. Neuroinflammatory markers: immunohistochemistry [87–90], Western blotting [91], qRT-PCR
analysis [91,92] and ELISA assay [86,92]. v. Glutathione [3,93], lipid peroxidation [56,87], caspase
activity [94,95], ROS activity [96], Ache activity [97–99] assays were used. vi. Gene expressions and
signaling pathways: qRT-PCR [84,100] and Western blotting [39,84,101].

2.1. Therapeutic Effects of Curcumin
2.1.1. Neurogenesis

Neurogenesis occurs during adulthood when neural stem cells differentiate, espe-
cially in the hippocampus [66]. Curcumin has strong neuroprotective effects [74,102].
It regulates neurogenesis in the hippocampus and protects dopaminergic neurons by
activating nuclear factor erythroid 2-related factor (Nrf2), the master regulator of the
antioxidant response [24,26,34,103] It also upregulates β-tubulin, neuroD1, doublecortin
(DCX), neurogenin, neuroligin, and neuregulin and downregulates the signal transducer
and activator of transcription 3 (Stat3) [104]. These processes lead to improved memory
retention [84,89,105–107] as was achieved with the application of 50 mg/kg of curcumin
for 3 months or 200 mg/kg of curcumin for 45 days to transgenic mice [106,108]. Yin
et al. [109] demonstrated that curcumin improved cognitive function via the promotion of
axonal regeneration.

The Bcl-2 family of proteins is known to play a role in neuronal cell death [16]. Cur-
cumin reduced Bax, caspase-3, cytochrome complex and Poly [ADP-ribose] polymerase 1
(PARP-1), and apoptotic proteins but upregulated the anti-apoptotic protein Bcl-2 [87].
Interestingly, Begum et al. [91] showed that although low brain concentrations of curcumin
(500 nM) stimulated neurogenesis, high brain concentrations (10 µM) inhibited neuroge-
nesis and neuroplasticity. Therefore, the choice of concentration of curcumin should be
carefully chosen.

Li et al. [110] carried out PCR studies on the The Notch signaling pathway, which
is vital for the development of the nervous system, and observed that curcumin used it
to promote neural stem cell differentiation in APP/PS1 mice. The other major neuronal
communication channel for the formation of neuronal circuits is the Wnt signaling path-
way, which is also altered during AD. The pathway promotes cognition and synaptic
plasticity [111], and the Wnt/β-catenin is involved in the development of cortical and
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hippocampal neuroepithelium [24]. Deficiency of Wnt leads to activation of GSK-3β,
which may play a role in neuronal death. In a study, the interaction of curcumin with
Wnt inhibitor factor (Wif-1), GSK-3β and Dickkopf (Dkk-1) led to the activation of the
Wnt/β-catenin pathway which plays a role in synapses stability [16,24]. A treatment with
50 mg/kg of curcumin also ameliorated synaptic transmission via the CaMKII-dependent
pathway [66].

2.1.2. Inhibition of Neuroinflammation

Curcumin has a high-affinity for binding to senile plaques [112], and many studies
showed that it inhibited Aβ plaque aggregation [9,24,60,113,114]. while decreasing amyloid
levels and plaque pathology [51]. Curcumin accomplishes this by breaking down the β-
sheet structure of Aβ and the tau aggregates [9]. A high dose of (50 mg/kg/day) of
curcumin was found to be effective, but no effect was observed with the application
of 10 mg/kg/day [66]. In another study, involving 50 mg/kg/day of curcumin-loaded
solid lipid nanocapsules (Cur-LNCs), cognition improved by 90%, acetylcholinesterase
inhibition was 52%, and neurological scoring improved by 79% [58]. On the other hand,
Cheng et al. [26] showed that even at a low concentration (0.1–1 µM), curcumin can inhibit
Aβ fibril formation [26].

Neuroinflammation is detrimental to neurons, and prolonged neuroinflammation
is a leading characteristic of AD [87]. Normally, microglial cells and astrocytes protect
neurons against cytotoxicity [115], and researchers have observed an increase in activated
microglia and astrocytes in Aβ-infused rats [51,66,104]. This activation could trigger the
(M1 phenotype) processes, which release pro-inflammatory cytokines such as IL-6 and
TNF-α [116].

In the studies, either transgenic mice were used, or many different agents were applied
to induce AD to the rodents. With the administration of Aβ, Hoppe et al. [66] observed
triggering of pro-inflammatory processes from increase in glial fibrillary acidic protein
(GFAP). A dose of 50 mg/kg/day curcumin or 2.5 mg/kg/day curcumin-loaded lipid-
core nanocapsules was followed for 10 days and reduced GFAP immunocontent [51,66].
The same doses of curcumin also diminished the secretion of proinflammatory IL1b cy-
tokines, IL-6 and TNF [66,104]. Hoppe et al. [66] found that brain-derived neurotrophic
factor (BDNF) supported neuronal survival. Aβ(1-42) injection led to reduction of BDNF
while curcumin and curcumin-loaded lipid-core nanocapsules (Cur-LNC) increased BDNF
survival. Figure 2 shows these results.

Figure 2. BDNF immunocontent after application of Aβ(1-42) and curcumin. * Significantly different
from all other study groups (p < 0.05) Significantly different from all other study groups (p < 0.05) [66].
Reproduced from [37] with the permission from Elsevier.
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2.1.3. Signaling Pathways

Curcumin inhibits multiple dysregulated cell-signaling pathways [48], most of which
engage in crosstalk [53,54]. Tau phosphorylation is normally regulated by insulin and
insulin-like growth factor (IGF-1), and any impairment may lead to hyperphosphorylation
of tau. In the study of Işık et al. [117], Wistar rats were treated with streptozotocin and then
given 300 mg/kg of curcumin. The results showed that streptozotocin led to a decrease in
IGF-1 levels that were upregulated after treatment with curcumin.

PI3K/Akt/GSK-3β signaling pathway is also directly affected by Aβ exposure [16].
The PI3K/Akt pathway promotes neuroprotection against AD, and Akt phosphorylation
can be activated by curcumin [66]. AKT protein kinases phosphorylate and inactivate GSK-
3β, which is a serine/threonine protein kinase associated with the progression of AD [118].
Therefore, the administration of curcumin led to deactivation of GSK-3β which in turn
reduced Aβ production and build-up of plaques [24,66]. Acetylcholine affects learning,
memory, and other cognitive functions. The reduced levels of acetylcholine may cause
AD [119]. A link was observed between the activation of GSK-3β and impaired cholinergic
function. With the deactivation of (phosphorylation) GSK-3β after the application of
curcumin, the cholinergic activities were increased [120].

Nuclear factor kappa B (NF-κB) also increases in the brains of AD patients [121].
Khan et al. [87] administered lipopolysaccharide(LPS) to an animal model to induce neu-
roinflammation and observed increase of expression of GFAP, p-NF-κB, Iba-1, TNF-α and
IL-1β. With the administration of curcumin, these cytokines were downregulated via the
JNK/NF-κB/Akt pathway [87,122]. Similarly, Wang et al. [123] showed that curcumin in-
hibited JNK-3 phosphorylation. Karlstetter et al. [104] inhibited LPS-induced cyclooxygenase-
2 (COX-2) by administration of curcumin. This occurs by hindering NF-κB, activator protein 1
(AP1), and STATs [124]. Curcumin also hindered matrix metalloproteinase-9, nitric oxide
synthase (iNOS), IL-8 and anti-apoptotic proteins that are also regulated by NF-κB [125].

NF-κB inhibition was also observed in the study of Giacomeli et al. [85]. After treating
albino mice with 50 mg/kg curcumin for 15 days, the downregulation of NF-κB signaling
led to GSK-3β-mediated inhibition of Beta-secretase 1 (BACE1), which ultimately reduced
Aβ plaques [126]. Zheng et al. [127] showed that the strong inhibition of BACE1 expression
reduced Aβ production after the administration of 150 mg/kg of curcumin for 60 days.

Moreover, recent studies showed that mTOR inhibitors show potential for the treat-
ment of neurological disease [128]. The activation of mTOR may increase Aβ production
by upregulating β- and γ-secretase cleavage, and Cai et al. [129] indicated that mTOR
regulates other relevant signaling pathways, including GSK-3β and IGF-1. Therefore, it
was suggested that the mTOR pathway may be responsible for AD. Su et al. [53] showed
that 5.24 µg/mL of the curcumin analogue (TML-6) inhibited the phospho-mTOR path-
way and decreased Aβ production. Similarly, Wang et al. [130] reduced Aβ levels by
downregulating the PI3K/Akt/mTOR signaling pathway.

Teter et al. [18] carried out PCR studies after the oral administration of a low dose
of curcumin (160 ppm) and observed an increase of expression of innate immune genes
TREM2, TyroBP and Arg1, while a decrease was observed in CD11b, iNOS, COX-2, C1q,
and the sialic acid-binding “siglec” receptor CD33. However, a high dose of curcumin
(300 ppm) did not alter TREM2 levels. This showed that a lower dose of curcumin was
found to be more effective for upregulating TREM2.

For late onset AD, APOE4 allele is a major risk factor. Female APOE3- and APOE4-
targeted gene replacement mice were fed western diet for 11 months, and then, curcumin
was added to their diet for 3 months. For the APOE3 mice, curcumin promoted the
expression of transcription factors GABPa, PPARc, and TFAM and PGC1, the master
regulator of mitochondrial biogenesis and function. However, APOE4 mice did not express
these transcription factors [108].
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2.1.4. Metal Chelation

Metal ions are required to regulate numerous biological activities, but when APP
function is disrupted, metal concentration in the brain rises. Studies indicate that metal
ion imbalance leads to neurodegeneration and cell apoptosis [16], but curcumin is a potent
chelator of redox-active metal ions [131]. For example, aluminum causes Aβ oligomeriza-
tion, and aluminum-aggregated Aβ binds to the surface of neurons [132]. Under exposure
with aluminum, a high concentration of aluminum is found, especially in the hippocam-
pus [133]. In the mouse brain, aluminum decreased acetyl cholinesterase activity and in
rabbits it caused learning deficits in the Morris water maze task. With the application of
curcumin, aluminum concentration in the hippocampus was significantly decreased [32].
In another study, aluminum treatment for four weeks induced significant increases in
the expressions of BACE1 and APP as well as inflammatory cytokines associated with
a reduction in presenilin 1 and 2. With the treatment of 200 mg/kg of curcumin, COX
expression decreased in only 24 h [101]. A number of other studies showed that the corpus
striatum, cortex, and hippocampus are vulnerable to arsenic toxicity in connection with
behavioral and neurochemical abnormalities. Curcumin also reduced the toxic effects of
arsenic [134,135], acrylonitrile [136], lead [137], cadmium [138], 1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine [139], iron [140], acrylamide [141], and ion irradiation [34].

2.1.5. Co-Delivery of Curcumin with Other Agents

In many studies, curcumin is administrated with other drugs or antioxidants. In
the study of Akinyemi et al. [5] albino Wistar rats underwent induced memory loss by
the application of 1 mg/kg scopolamine, and 50 mg/kg curcumin taken orally together
with 2.5 mg/kg donezepil (a cholinesterase drug) for 7 days. Curcumin and donezepil
had a synergistic effect on memory after novel object recognition and Y-maze tests. The
results suggested that this improvement was attributed to the inhibition of cholinesterase
which led to improvement of cholinergic neural transmission. The deamination of the
neuromodulator adenosine by the ADA enzyme is also associated with memory loss, but
the authors also found that a combination of curcumin and donezepil hindered ADA
activity. Finally, nitric oxide (NO) was also increased by the combination of curcumin and
donezepil, which may have led to enhanced memory function [5]. Figure 3 shows change
of NO levels during the study.

Figure 3. Effect of combination of 50 mg/kg curcumin and 2.5 mg/kg donezepil (Nnzp) after
application of scopolamine (SCO) on NO levels. (* p < 0.05 vs control; # p < 0.05, ## p < 0.01,
### p < 0.001 vs SCO) [5]. Reproduced from [5] with the permission from Springer.
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Figure 3 shows that scopolamine significantly reduced NO levels and that the com-
bined application of donezepil and curcumin increased NO levels even higher than for the
control group [5].

In the study of Sharman et al. [12], 83 mg/kg of curcumin was combined with
(−)epigallocatechin-3-gallate (EGCG), docosahexaenoic acid (DHA) and α-lipoic acid
(ALA) and fed to 6-month-old Tg2576 transgenic mice for 12 months. Interestingly, the
study indicated that the combination of curcumin with other antioxidants did not enhance
its effect, meaning that a synergy was not present. In another study, curcumin and fer-
ulic acid was orally administered to PPswe/PS1dE9 transgenic mice. Both soluble and
insoluble Aβ plaques decreased with co-administration of the antioxidants. Moreover, the
pro-inflammatory marker IL-1β decreased further [142].

2.2. Targeting the Brain
2.2.1. Effect of Concentration and Particle Size

Schiborr et al. [143] indicated that when they administered 50 mg/kg of curcumin,
they did not find any trace in the rodent brain, but because curcumin has low toxicity,
the dosage can be increased [108]. Accordingly, Zhang et al. [118], applied 100 mg/kg of
curcumin and observed that it was delivered more effectively than 50 mg/kg.

Bi et al. [144] studied the effect of different particle sizes of curcumin in suspensions
and found out that the concentration of curcumin was initially the highest for the smallest
size. On the other hand, a 70 nm curcumin suspension (CUR-NS) had the highest concen-
tration in the brain for the longest duration. Figure 4 shows the different concentration of
curcumin in the brain over time.

Figure 4. Concentration of different sizes of 2 mg/kg curcumin suspension (CUR-NS) in the brain
over time [144] (pink: curcumin solution, red: 20 nm Curcumin-NS, blue: 70 nm CUR-NS and green:
200 nm: CUR-NS). Reproduced from [92] with the permission from Elsevier.

2.2.2. Drug Delivery Devices

Only small molecules with low molecular weight and high lipid solubility can pass
through the blood–brain barrier; therefore, liposomes, polymeric nanoparticles (polyethy-
lene glycol and poly(lactide-co-glycolide), cyclodextrins, solid dispersions and conjugates)
are used to increase the permeability of curcumin [39,40]. Figure 5 shows the carriers used
for delivering curcumin to the brain.
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Figure 5. Carriers used for the delivery of curcumin for Alzheimer’s treatment for in vivo
studies [6,39,60,75,145–148].

Table 1 shows the in vivo studies with curcumin with targeting agents for AD. Accord-
ing to Table 1, different curcumin loadings were applied for different durations. Moreover,
the rodents and drug administration methods were varied. Nanocarriers with a size of
less than 10 nm underwent renal filtration. Nanoparticles with a diameter of 50–200 nm
remained in the capillaries. Lipid-based particles larger than 150 nm can be removed
by phagocytes [149,150] The table shows the wide range of nanoparticle size: co-crystal
micelle crystals had the smallest particle size, which might be too small for drug delivery
to the brain. In this case, PLGA and other lipid nanoparticles may be more suitable. After
tissue extraction, in vivo bioavailability and distribution of curcumin were extensively
examined with analytic methods such as MS and HPLC [58,59].

The studies showed that curcumin was mainly distributed in the liver, spleen, and
lung. In the brain, it was chiefly found in the hippocampus. Nanoparticulation increased
the retention time in the cerebral cortex by 96% and in the hippocampus by 83% [59]. When
curcumin was combined with nanostructured lipid carriers, its organ distribution increased
tremendously as the intestinal epithelium and gastrointestinal tract acted as a barrier to
curcumin absorption.
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Table 1. In vivo studies involving a carrier and targeting agent for the delivery of curcumin for the
treatment of AD.

Carrier
Amount of
Curcumin

Nanoparticles

Particle Size
(nm)

Carrier and
Conjugation Details Animals Used Main Results

M
et

al
-b

as
ed

200 mg/kg (for
30 days) N/A Magnesium oxide

nanoparticles
Albino rats (oral

delivery)
Declined AChE

levels [99]

20 mg/kg
(unknown
duration)

N/A
Gold nanoparticles

functionalized
puerarin

Sprague Dawley
lipopolysaccharide

(LPS)-induced
inflammation
(intravenous

injection)

Anti-inflammatory
effects [145]

Li
pi

d-
ba

se
d

2.5 mg/kg (for
10 days) 200 Lipid-core

nanocapsules

(male adult
Wistar rats)

Aβ(1-42)-infused
(intraperitoneal
administration)

Improved
animal memory

Anti-inflammatory
effects [66]

4 mg/kg (for
7 days) N/A Solid Lipid

Nanoparticles

Sprague−Dawley
rats (parenteral
administration)

Improved
animal memory

[151]

10 mg/kg (for
7 days) 28.8 Co-crystal Micelles

Female
Sprague-Dawley rats
(intranasal delivery)

4.5- and 6-fold
enhancement in

relative
bioavailability of

curcumin [60]

10 mg/kg
(applied for

3 weeks)
90.5

Nanostructured lipid
carrier and
Polysorbate
80 coating
(targeting:
lactoferrin)

Sprague-Dawley (SD)
rats

(intravenous
injection)

Improved
bioavailability of

curcumin
Aβ plaques

decreased [152]

20 mg/kg
(applied for

3 weeks)
75–163

Nanostructured lipid
carrier (NLC)

(targeting:
lactoferrin)

Sprague-Dawley
(SD) rats

(injection via caudal
veins)

Aβ plaques
decreased [153]

25 mg/kg
(applied once) 139–514

Solid Lipid
Nanoparticles

(targeting:
N-trimethyl
Chitosan)

male Balb/c mice
(oral administration)

23% higher
bioavailability than

curcumin [154]

50 mg/kg
(applied once) N/A Solid lipid

nanoparticles

Wistar rats
(intravenous

injection)

Better
bioavailability [58]

10 mg/kg
(for 15 days) N/A Lipid core

nanocapsules

Female Swiss
Albino Mice

(intracerebroventricular
injection)

Anti-inflammatory
effects [85]

80 mg/kg
(applied once) 129 Nanostructured lipid

carriers
Sprague-Dawley rats
(oral administration)

Better
bioavailability [75]

83 mg/kg
(every other day

for 2 months)
N/A Solid lipid

nanoparticles
5xFAD mouse

(intraperitoneally)

Improved animal
memory (escape
latency: 10 s) [40]

N/A 207 Nanoliposomes

APPxPS1 mice
stereotactic

(intracerebral
injection)

Aβ plaques
decreased [155]
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Table 1. Cont.

Carrier
Amount of
Curcumin

Nanoparticles

Particle Size
(nm)

Carrier and
Conjugation Details Animals Used Main Results

PL
G

A
-b

as
ed

0.5–20 mg/kg
(for 5 days 200 PLGA

Wistar rats
Amyloid induced

(stereotaxic injection)

Aβ plaques
decreased [24]

2 mg/kg (every
2 days for
3 weeks)

128 PLGA-cyclic
CRTIGPSVC peptide

(APP/PS1dE9) mice
(intraperitoneal

injection)

Reduced
inflammation,

improved
memory [86]

15 mg/kg (for
14 days) 63.2

PEG-PLGA
(targeting: transferrin

and Tet-1 peptide)

BALB/c mice
(intravenous

injection)

Improved
bioavailability

Improved animal
memory (Escape

latency: 30 s) [156]

1 mg/kg
(applied once) 97

PEG–PLGA/PEG–
PBLG

Nanoparticles
(targeting:

odorranalectin)

Male Sprague
Dawley (SD) rats

(intranasal)

Improved
bioavability [147]

2 mg/kg
(applied once) 247

Chitosan-Coated
Poly(lactic-co-glycolic

acid) Nanoparticles
and

Hydroxypropyl-β-
Cyclodextrin

Inclusion Complexes

Male C57BL/6 mice
(intranasal)

Better
bioavailability [6]

5 mg/kg (for
10 days) <120

Red blood cell (RBC)
membrane-coated

PLGA
(targeting: T807

molecules)

Male ICR mice
(tail vein injection)

Better
bioavailability

Improved animal
memory (Escape

latency: 45 s)
Plaques decreased
Anti-inflammatory

effect [157]

5 mg/kg (for
10 days) 170

Red blood cell (RBC)
membrane-coated

PLGA particles
(targeting: T807

molecules)

Female ICR mice
(tail vein injection)

Improved animal
memory
Higher

bioavailability
plaques decreased

[158]

25 mg/kg (for
once) 163 PLGA

Male
Sprague-Dawley rats

(intravenously
injection)

Improved organ
distribution [59]

25 mg/kg (for
3 months) <100

PEG-PLGA
(targeting: B6

peptide)

Male APP/PS1
mouse

(intraperitoneal
injection)

Improved animal
memory (Escape

latency: 30 s)
Higher

bioavailability
plaques

decreased [25]

PE
G

-b
as

ed

10 mg/kg (for
once) 184

D-α-tocopheryl PEG
1000 succinate and

Tween 80

Male Wistar rats
(intraperitoneal

injection)

Improved organ
distribution [159]

13.6 mg/kg
(applied once) 213 PEG 400 based

gelling system

Male Wistar rats
(Intranasal or
intravenously)

Bioavailability of
curcumin increased

with the
carrier [160]

O
th

er
po

ly
m

er
s

5 mg/kg
(applied once) 152

Poly(n-
butylcyanoacrylate)

nanoparticle

Male Kunming mice
(intravenous

injection)

Enhanced
transport to the

brain [161]

25 mg/kg
(4 weeks) N/A

N-
isopropylacrylamide

(NIPAAM),
vinylpyrrolidone

(VP), and acrylic acid
(AA)

Athymic mice
(intraperitoneal

route)

Higher
bioavailability of

curcumin
anti-oxidant

activity
increased [68]
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When curcumin was combined with nanostructured lipid carriers, curcumin’s organ
distribution increased tremendously. The intestinal epithelium and gastrointestinal tract
acts as a barrier to curcumin absorption. Encapsulation of curcumin with nanostructured
lipid carriers increased the bioadhesion at the wall of the gastrointestinal tract. Curcumin
concentration was determined with use of HPLC assay [75]. Figure 6 shows concentration
of curcumin in the brain after administration of 80 mg/kg curcumin encapsulated drug.

Figure 6. Curcumin nanostructured lipid carrier (Cur-NLC) tissue concentration in the brain with
time [75].

With the application of curcumin with a nanostructured lipid carrier, the amount
of curcumin in the brain significantly increased, and its retention time in the brain was
prolonged. In addition to the higher distribution and greater retention time, solid lipid
curcumin also increased anti-inflammatory and neuroprotective effects [81].

Maiti et al. [81] showed that, as well as higher brain permeability, solid lipid curcumin
particles had a higher affinity for Aβ plaques than curcumin did. Aβ plaques decreased by
50% in 5 days after the application of 50 mg/kg of curcumin nanoparticles. Cresyl-violet
staining showed that the plaques were found to be reduced in the prefrontal cortex and
hippocampus. Curcumin also maintained neuron viability, which was observed from
BDNF, glial-derived neurotropic factor (GDNF) and nerve growth factor (NGF). Finally,
inhibition of GFAP was observed in the prefrontal cortex, hippocampus (CA1, CA3, dentate
gyrus), subiculum, entorhinal cortex and striatum. This was attributed to activation of
peroxisome proliferator-activated receptor-gamma (PPAR-γ) after an injection of curcumin.

LPS was used to induce neural inflammation, and after the application of gold particle-
functionalized curcumin, the LPS’s proinflammatory effects were diminished [145]. In this
study, functionalization of curcumin with gold nanoparticles (20 mg/kg) increased the
brain uptake of curcumin.

Poly(lactide-co-glycolide) (PLGA) has been approved as a promising pharmaceutical
delivery platform for its excellent biocompatibility, low cytotoxicity, and biodegradabil-
ity [162,163]. In some studies, curcumin was loaded in PLGA to treat AD. However,
PLGA by itself was not found effective for penetrating the BBB [164]. Figure 7 shows that
curcumin concentration in the brain rose significantly after encapsulation in PLGA [24].
Moreover, Ryu et al. [165] showed that when curcumin was co-administered with piperine
orally, curcumin levels were increased by 2000% at 45 min after administration.
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Figure 7. Concentration of drug in the brain for different dosages of uncoated bulk curcumin (BC)
and curcumin/PLGA nanoparticles. * p < 0.05 versus BC [24]. Reproduced from [24] with permission
from American Chemical Society.

Thus far, clinical trials have shown insignificant levels of curcuminoids in brain
tissue, which indicates the necessity of brain-targeted delivery of efficient concentrations
of it [48,166]. Insulin receptors, transferrin and integrin receptors, and receptor-mediated
transport are highly abundant on the endothelial cells of the blood–brain barrier. Among
these receptors, transferrin is commonly exploited for BBB targeting [154]. Low-density
lipoprotein receptors also have overexpression in the brain capillary endothelial cells,
which points to the tremendous potential of lipoproteins for brain drug delivery [150].
Thus far, the exploited targeting agents for in vivo studies have been lactoferrin, transferrin,
odorranalectin, T807 molecules, Tet-1 peptide, B6 peptide, and N-trimethyl chitosan.

Curcumin-loaded PEG–PLGA with the B6 peptide was produced to target the brain,
and encapsulation with PLGA and PEG–PLGA increased its bioavailability by 15.6 and
55.4%, respectively [25]. PLGA internalize into the cells via clathrin-mediated endocyto-
sis [24]. However, the acidic byproducts of degradation may make PLGA encapsulation
unsuitable for brain delivery [162,167]. In the study of Jai et al. [154], PEG–PLGA was
combined with transferrin (an iron-binding blood plasma glycoprotein) and the peptide
Tet-1, the latter of which significantly increased the percentage of the brain’s uptake of
5 mg/kg of curcumin compared to combination with transferrin alone.

In the study of Gao et al. [155], red blood cells were functionalized with T807 and the
triphenylphosphine (TPP) cation for intravenous delivery of curcumin to the mitochondria
in the brain tissue. T807 is a low-molecular-weight tau positron emission tomography
imaging agent, so it can cross the BBB. It also has a strong affinity for phosphorylating
tau-positive human brain sections [168]. TPP is one of the most promising mitochondria-
targeting agents, as rodents in Morris maze studies demonstrated improved learning and
memory when red blood cells were functionalized with T807 and TPP and improved SOD
levels. Damage to the hippocampus from ROS activity was reduced as were levels of
hydrogen peroxide (H2O2), γ-glutamyl transpeptidase (γ-GT), and MDA. Moreover, GFAP
and Iba-1 decreased, which indicated a decrease in inflammation after drug treatment. [155].

Another method used to deliver curcumin is through the nose [169]. It enables
curcumin to bypass the BBB to enter the brain and cerebrospinal fluid through the nasal
mucosa [147]. Curcumin in the nasal cavity reaches the nasal mucosa and arrives at the
olfactory region and trigeminal nerve pathways [6]. In the study of Li et al. [147], PEG–
PLGA was conjugated with odorranalectin to improve delivery. Odorranalectin extended
the residence time of curcumin in the nasal mucosa and promoted its nasal uptake and
increased the bioavailability of curcumin in vivo.
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In another study of Zhang et al. [6], PLGA was coated with chitosan to open the
tight junctions between nasal mucosal epithelial cells to enable transport to the brain.
Curcumin levels in the brain were studied using the LC−MS/MS method, which indicated
significantly elevation after coating with chitosan.

Overall, results indicated that some drawbacks exist for the frequently studied carrier
systems. PLGA has the disadvantage of fast clearance from the reticuloendothelial system
before reaching the brain. Therefore, it is usually conjugated with PEG to increase retention
time and enhance curcumin delivery to the brain [170,171]. As discussed earlier, the
size of the nanocarriers is critical. Micelles smaller than 50 nm may be excreted before
reaching the brain, whereas liposomes may be too large and be removed from the system
by phygocytes [160,161]. Among lipid-based nanocarriers, nanoparticles have been shown
to be promising; therefore, exploitation of PEG–PLGA or solid lipid nanoparticles after
conjugation with targeting agents are encouraging.

In the literature, the applied range of curcumin varied from 0.5 to 300 mg/kg, so
it would be beneficial to carry out a systematic study to determine the most effective
dosage. The studies also indicated that although the low brain concentration of curcumin
stimulated neurogenesis, extremely high brain concentrations inhibited neurogenesis and
neuroplasticity. Therefore, the concentration of curcumin should be carefully chosen to
optimize its effects on AD.

Thus far, only in vivo studies on the effects of curcumin have been carried out, and
these have limitations. For instance, mice may undergo stress during experiments which
might result in biased results. Moreover, the translation of data from in vivo studies needs
extensive research before any clinical use.

In future studies, curcumin may be combined with other antioxidants to increase its
therapeutic effect on AD. Thus far, examinations of signaling pathways are very limited
when carriers are used. It would be beneficial to study them to see if curcumin is still viable
after delivery. Graphene oxide is another promising drug carrier to enhance delivery to
the brain [166,172,173]. Overall, curcumin shows promise for treating AD, but extensive
research is needed to understand how to exploit it for clinical use.

3. Conclusions

Curcumin was investigated heavily as a treatment for AD. It stimulated neurogenesis
via the Notch and Wnt/β-catenin pathways, diminished the secretion of proinflammatory
cytokines, and led to the deactivation of GSK-3β, which in turn reduced Aβ production
and the buildup of plaques by downregulating the ROS/JNK pathway. Furthermore,
downregulation of NF-κB signaling led to GSK3β-mediated inhibition of BACE1, which
ultimately reduced Aβ plaques. However, the exact mechanism by which curcumin
regulated these processes is still unknown.

To increase curcumin’s permeability across the blood–brain barrier, it was encapsu-
lated and conjugated with different agents. The studies indicated that lipid-based carriers
and PLGA increased its organ distribution tremendously. The functionalization of cur-
cumin with metallic nanoparticles also enhanced the uptake of curcumin in the brain.
Furthermore, the conjugation of carriers with targeting agents, such as Tet-1 peptide, trans-
ferrin, lactoferrin, and chitosan increased the blood–brain barrier permeability of curcumin.
However, research on the mechanism of curcumin with a delivery vehicle is limited. It
would be beneficial to study the important signaling pathways after curcumin is encapsu-
lated with nanocarriers to see if the action mechanism of curcumin is sustained. Overall,
the studies indicated that curcumin is a very promising antioxidant for the treatment of
AD, and the use of carriers and targeting agents is very effective for enhancing delivery to
the brain.
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Abbreviations

ALA α-lipoic acid
AP1 Activator protein 1
AD Alzheimer’s disease
APP Amyloid precursor protein
BACE Beta-secretase 1
BBB Blood–brain barrier
BDNF Brain-derived neurotrophic factor
COX-2 Cyclooxygenase-2
Dkk-1 Dickkopf
DHA Docosahexaenoic acid
DCX Doublecortin
EGCG Epigallocatechin-3-gallate
GDNF Glial derived neurotropic factor
GFAP Glial fibrillary acidic protein
HE Hematoxylin and eosin
HPLC High-performance liquid chromatography
LPS Lipopolysaccharide
IGF-1 Insulin-like growth factor
MDA Malondialdehyde
MS Mass spectrometry
NGF Nerve growth factor
NO Nitric oxide
iNOS Nitric oxide synthase
NMDA N-methyl-d-aspartate
NF-κB Nuclear factor kappa B
Nrf2 Nuclear factor erythroid 2-related factor
PPAR-γ Peroxisome proliferator-activated receptor-gamma
PARP-1 Poly [ADP-ribose] polymerase 1
PLGA Poly(lactide-co-glycolide)
ROS Reactive oxygen species
SOD Superoxide dismutase
Stat3 Signal transducer and activator of transcription 3
Tht Thioflavin T
TPP Triphenylphosphine cation
Wif-1 Wnt inhibitor factor
γ-GT γ-glutamyl transpeptidase
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