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Abstract

Seasonal influenza kills hundreds of thousands every year, with multiple constantly changing strains in circulation at any given
time. A high mutation rate enables the influenza virus to evade recognition by the human immune system, including immunity
acquired through past infection and vaccination. Here, we capture the genetic similarity of influenza strains and their evolutionary
dynamics with genotype networks. We show that the genotype networks of influenza A (H3N2) hemagglutinin are characterized by
heavy-tailed distributions of module sizes and connectivity indicative of critical behavior. We argue that (i) genotype networks are
driven by mutation and host immunity to explore a subspace of networks predictable in structure and (ii) genotype networks provide
an underlying structure necessary to capture the rich dynamics of multistrain epidemic models. In particular, inclusion of strain-
transcending immunity in epidemic models is dependent upon the structure of an underlying genotype network. This interplay is
consistent with self-organized criticality where the epidemic dynamics of influenza locates critical regions of its genotype network. We
conclude that this interplay between disease dynamics and network structure might be key for future network analysis of pathogen
evolution and realistic multistrain epidemic models.
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Significance Statement:

Seasonal influenza threatens global public health, resulting in millions of severe infections every year and a significant economic
burden. Vaccination is a key intervention for preventing infections, but vaccine strains must be closely matched to circulating
strains to ensure protection. Here, we show that genotype networks provide a map of influenza strains that captures genetic sim-
ilarity and evolutionary pathways. We argue that genotype networks are necessary for modeling epidemics consisting of multiple
strains. In particular, genotype networks enable modeling of diseases in which protection against one strain offers some protection
toward other strains. In turn, we find that the dynamics of multistrain epidemics are key to understanding the unique structure
of the influenza genotype networks.

Each year, seasonal influenza results in 290,000 to 650,000 deaths
globally, 9 million to 36 million cases in the United States
alone, and results in significant economic burdens (1–3). Despite
widespread vaccination and increased surveillance efforts in re-
cent years, influenza continues to show prominent seasonality in
temperate regions and causes a year-round burden in tropical re-
gions (4, 5).

Influenza viruses (INFV) mutate rapidly with antigenic drifts
and shifts, leading to the frequent emergence of new strains that
are different enough to escape recognition by host immunity (6).
As a result, we see frequent epidemics and necessitate yearly up-

dates to vaccine strains based on sequencing data and future pro-
jections (7–9). Optimal vaccine strain selection is dependent upon
the ability to both forecast prevalent future strains and select
a limited number of vaccine strains, such that these strains of-
fer optimal immune protection by leveraging strain-transcending
immunity (10, 11). Modern seasonal INFV vaccines induce anti-
bodies for three to four unique strains of INFV, providing direct
immunity for these strains and some cross-protective (or strain-
transcending) effects toward antigenically similar strains. Simi-
larly, these antibodies are induced in response to a clinical in-
fluenza infection (12).
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INFV epidemiology has benefited from decades of research us-
ing phylogenetics and molecular evolution to carefully interrogate
features of INFV evolution (13–15). Exercises in applied evolution-
ary theory have served as validations for the use of molecular
methods toward meaningful predictive evolution (16, 17). These
methods, in combination with larger data sets, offer increasingly
accurate probabilistic models for INFV evolution. As effective as
they have been, these approaches are based on particular popula-
tion genetic assumptions and limitations. For example, tree-based
methods are necessarily acyclic and as such do not fully capture
the relatedness of strains.

Phylodynamic approaches have features of neutral networks,
defined by genotypes that evolve via drifting through epochal
evolution (18, 19). Genotype networks constitute another ap-
proach used to study INFV evolution, and are built on differ-
ent assumptions and constraints than other approaches (20–24).
Previous networks have been constructed from the highly anti-
genic hemagglutinin (HA) protein sequences of INFV (20). The
networks revealed features not well represented in phylogenetic
trees, such as identical trait evolution in separate lineages (conver-
gent evolution). More importantly, dynamical systems describing
the spread of pathogens are often parameterized through geno-
type networks rather than phylogenetic trees to better capture
strain-transcending immunity (25–30). Unfortunately, these pre-
vious studies use toy networks as genotype networks are prone to
fragmentation in the presence of low sampling rates, reducing the
number of observed plausible evolutionary pathways. Sampling
has increased dramatically in the last decade, which now allows
for a more accurate account of the evolution of INFV genotype
networks.

In this study, we utilize a large modern data set of INFV H3N2
sequences (over 28,000) and a genotype network approach to cap-
ture the genetic relationship between the 2010 and 2020 INFV
H3N2 strains and their evolutionary dynamics. Sequences of the
highly antigenic HA protein of INFV A (H3N2) are used to analyze
the structure and temporal evolution of the genotype network and
its exploration of genotype space. Finally, a multistrain epidemic
model is implemented to explore how the density and distribution
of edges (or mutation pathways) determine epidemic potential in
the context of strain-transcending immunity. We demonstrate the
existence of a fundamental structure underlying INFV genotype
space, one that captures temporal features of virus evolution and
suggests underlying predictability. In doing so, we fortify the rel-
evance of genotype networks as a meaningful approach to the
study of virus evolution, one that can complement mathemati-
cal and phylodynamic approaches in future efforts to study and
predict the dynamics of evolution of INFV and other RNA viruses.

Data and model
Network generation
Protein sequences were obtained for complete INFV A (H3N2) HA
samples from the Influenza Research Database (31). Samples ac-
quired from the Influenza Research Database are sourced from
databases that include NCBI GenBank and RefSeq. Samples were
obtained on 2020 January 16 and restricted to a collection date of
1999 January 4 through 2019 October 1 and collected from human
hosts only. A 3-month delay between final sample collection date
and data retrieval date was implemented to account for delays in
data reporting.

A total of 30,175 sequenced samples for HA were obtained. Se-
quences were further restricted to allow for the precise genetic se-

quence comparison required for network edge construction. Sam-
ples with missing or uncertain residues (n = 1,278) and sequences
with more or less than 566 amino acids (n = 17) were removed.
The remaining 28,880 samples were condensed into set V of 9,714
unique sequences.

The number of differing amino acids across all sites for se-
quences v and w, dv,w, was found for all pairs of sequences of
length l = 566:

dv,w =
l∑

i=1

x, where x =
{

1, if vi �= wi

0, if vi = wi
v, w ∈ V.

An edge ev,w is formed if dv,w = 1. Each edge indicates a plausible,
but not definitive, mutation pathway between two viable strains
that requires one point mutation, thus no intermediate strains nor
multimutation events. The resulting genotype network is defined
as G = (V, E), where E is the set of all edges ev,w.

Temporal analyses restricted data by year using seasonal
trends of the Northern Hemisphere, given its dominance of the
data set. Sequences were binned according to a 5-y window, where
each year consisted of July 1 through June 30 of the following year.
For example, a 5-y window centered on 2010 would contain se-
quences from 2007 July through 2012 June.

Multistrain epidemic model
Building on previous work (25–30), we assume that the epi-
demiological dynamics of INFV follow the classic Susceptible–
Infectious–Recovered–Susceptible (SIRS) model, and introduce an
underlying, data-driven, genotype network that defines potential
mutations and allows strain-transcending immunity. An individ-
ual infected with strain i ∈ [1, N] can cause a mutation at a rate μ

to a strain j ∈ Ni, where Ni is the set of first network neighbors of
strain i.

All strains spread concurrently in a well-mixed host popula-
tion. Individuals are susceptible (S) if they possess no previous im-
munity. Each susceptible individual progresses to infectious state
Ii, corresponding to strain i, at a rate βIi. The basic transmission
rate β is held constant for all strains, as we focus on neutral evo-
lution (antigenic drift) as a first approximation.

Infectious individuals in Ii will either (i) recover at rate γ to state
Ri and acquire full immunity for strain i and partial immunity to
other strains j �= i or (ii) undergo a mutation to strain j at a rate μ

for all strains j in Ni. Recovered individuals in Ri will either (i) lose
immunity and progress back to S at rate α or (ii) get infected with
strain j �= i and progress to Ij at a reduced rate β∗ due to their partial
immunity. Specifically, β∗ is an exponentially decaying function of
genetic distance between strains i and j,

β∗
i j = β

(
1 − e−xi j/�

)
,

where xij is the network distance between strains i and j (short-
est path between strains i and j in the genotype network, different
from dv,w used above) and � is the characteristic length of immu-
nity (0 < � < ∞) as it transcends specific strains over the genotype
network. Note that we make the assumption that an individual’s
immune response is set by the most recent infection as account-
ing for a full immune history would result in N! possible immune
states.

The model assumes that (i) an individual may be infected by at
most one strain at a time, (ii) an individual’s immune response is
determined by the strain responsible for their last infection, and
(iii) transcendence of immunity decays exponentially as a func-
tion of the distance between strains. The model was implemented
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Fig. 1. INFV A (H3N2) HA genotype network degree and component size distribution. (Left) CCDF of degrees. The tail of degree distribution does not
significantly differ from a power-law distribution with αk = 2.29 for kmin = 7 (P = 0.11, αsignificance = 0.05, 103 repetition Kolmogorov–Smirnov test).
(Center) CCDF of component sizes. Component size distribution does not significantly differ from a power-law distribution with αc = 1.66 for cmin = 7
(P = 0.59, αsignificance = 0.05, 103 repetition Kolmogorov–Smirnov test). (Right) Sample count of a sequence versus degree k of corresponding node.
Sample count is highly correlated with node degree (r = 0.941).

Table 1. Statistics of the entire network G and its giant component GC.

n m 〈k〉 kmax D CGlobal r

G 9714 7599 1.86 257 (11, 257) – 0.0096 (0.0005, 0.0112) −0.13 (0.00, −0.05)
GC 1629 2225 2.73 257 (11, 257) 17 (23.5, 16.5) 0.0010 (0.0004, 0.0112) −0.20 (−0.03, −0.08)

Number of nodes n and edges m as well as average degree 〈k〉, maximum degree kmax, diameter D, clustering coefficient CGlobal, and assortativity (degree correlations)
coefficient r. Numbers in parentheses correspond to the average values obtained under 100 realizations of two null models, respectively: Erdős–Rényi random graphs
parameterized by density only and a configuration model parameterized by the full degree distribution.

with a system of differential equations containing one suscepti-
ble state and an infected and recovered state for each strain. The
dynamical system describing this model is presented in the “Ma-
terials and methods” section, and its dynamics were studied in
ref. (30).

The model itself can run over any genotype network defined
as a number of strains i ∈ [1, N] and a set of neighboring strains
j ∈ Ni for each strain. In what follows, we therefore couple the
model with known generative models of networks that can help
explain some key network features found in the genotype data.

Results
INFV A (H3N2) HA genotype network
The INFV A (H3N2) HA genotype network represents 28,880 sam-
ples of HA, resulting in 9,714 nodes (unique strains), 7,599 edges
(possible point mutations between strains), and 3,262 connected
components, of which 384 consist of more than one node. With
29.6% of nodes of degree k = 0 and 44.0% of k = 1, the network fea-
tures a skewed degree distribution, stretching up to a maximum
degree of k = 256. The tail of the complementary cumulative dis-
tribution function (CCDF) of degree, P(K ≥ k), exhibits power-law
behavior: P(K ≥ k) ∝ k−αk with an estimated scale exponent αk =
2.29, Fig. 1 (left panel). This is in agreement with the heavy-tailed
degree distribution found by Wagner in the largest connected
component of a smaller data set from 2002 to 2007 (20). In grow-
ing networks, this degree distribution points to generative mod-
els with approximately linear preferential attachment underlying
the dynamics of the observed genotype network (32–34). Linear
attachment is a critical mechanism such that a growing network
produces power-law degree distributions, at a transition between
exponential distributions under sublinear attachment and con-
densation to a star graph under super-linear attachment (35, 36).

The distribution of component sizes of the genotype network
is similarly skewed. The tail of the CCDF of component sizes
P(C ≥ c) follows a power-law distribution, where P(C ≥ c) ∝ c−αc with
scale exponent αc = 1.66, Fig. 1 (center panel). This scaling is also
be suggestive of another critical process in the formation of the
genotype network, as this distribution of component sizes with
scale exponent αc = 1.5 is a well-known result for the critical point
of percolation processes and random graphs (37).

The degree of a node and the number of times its corresponding
sequence was sampled are highly correlated, Fig. 1 (right panel).
Structurally important nodes of high degree (hubs) are there-
fore robust to reduced sampling, given that the duplicate sample
count of a strain may be a proxy for its population prevalence.
The network also contains numerous cycles amidst its heteroge-
neous tree-like structure. Its 500 triangles indicate mutations at
the same site between three sequences, while sparse squares in-
dicate potential convergent evolution (20). These structures are
clearly displayed in genotype networks, while phylogenetic tree
construction do not include convergent evolution structurally.
The tree-like topology of the network prevents longer cycles from
forming. Further network summary statistics are shown in Table 1
for the entire network G and the giant component GC. The trian-
gles are captured by global clustering Cglobal, which is equivalent
to the proportion of triplets (three connected nodes) that form a
closed triangle. Despite the biological relevance of triangles (20),
we find that they are neither overrepresented nor underpresented
when compared to random networks with a fixed degree distribu-
tion; as shown in Table 1.

The degree assortativity r represents the correlation between
the degree of a node and that of its neighbors (Table 1). A neg-
ative value for both the entire network G and the giant compo-
nent GC indicate that high degree nodes tend to attach to low de-
gree nodes. In fact, these negative degree correlations are the only
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Fig. 2. Sample dates among strains of second largest network
component. (Top) Nodes colored by first sample date (eight nodes with
lacking sample dates colored black), with a larger radius corresponding
to more samples (max sample count 337). (Bottom) Sample date
distribution across all dated samples of strains within the above
network.

feature that appears statistically significant when compared to
random networks with fixed-degree distributions; again, this is
consistent with growing random networks under positive attach-
ment kernel (32, 34–36).

Network topology in time
The genotype network grows in time as new strains emerge and
are sampled. For example, the growth of the second largest com-
ponent is shown in Fig. 2, with each node colored by the first sam-
ple date for each strain. This component is large enough to span
several years while remaining small enough to qualitatively ob-
serve network growth in time. The blue-shifted nodes represent
the earliest observed strains among those belonging to this com-
ponent, the first of which was sampled in late 2010. The major-

ity of unique strains were sampled from 2012 to 2015, including
multiple high-degree strains and their neighbors. The most recent
strains from this network component are red-shifted, clearly de-
picting the tree-like growth process.

Numerous hubs are seen throughout the network, with the
largest hubs existing around the 2012 and 2013 flu season that
contributed numerous strains to this component (Fig. 2, bottom).
Seasonality is reflected in the sample date distribution of this
component, with multiple peaks around the start of the calendar
year during flu season.

Features of the genotype network remain fairly stable in time,
even in the presence of a constantly increasing sampling rate.
Genotype networks were constructed using samples within a 5-y
window, sweeping across the entire sample set. These temporally
restricted genotype networks display the structure of the net-
work local in time—an important consideration given that strains
emerge and fall out of circulation. These networks display the in-
creased availability of sequenced samples with each successive
year, with notable increases in sampling since 2008 (Fig. 3, left
panel). The number of nodes and edges has grown steadily in the
past two decades across both the entire network of the 5-y win-
dows and its giant component.

Scaling of both degree distribution and component size dis-
tribution tails remain fairly constant in time. The scale expo-
nent for degree averaged 2.34 across these networks, varying from
2.10 < αk < 3.06. We find over a decade of consistency near its
mean (about 2.2 or 2.5) even as the network grew several times
larger, Fig. 3 (center panel). Similarly, the power-law exponent for
component size averaged 1.63 and varied within 1.44 < αc < 1.73,
demonstrating consistency in time and a comparable indepen-
dence from sample rate as the network grew, Fig. 3 (center panel).
Here cmin and kmin were fixed at 7, enabling a direct comparison
with the entire network.

Local cycles continue to remain prevalent in the network
through time. The global clustering coefficient varied within
6.78 × 10−3 < Cglobal < 1.27 × 10−2, showing greater variability than
scaling factors, Fig. 3 (right panel). Similarly, degree assortativity
varied within −0.365 < r < −0.124, demonstrating variability but
preserving the disassortative structure of the network. The above
features demonstrate that in the presence of variable sequence
sampling rates, genotype networks possess fairly consistent topo-
logical features that are highly predictable from recent years.

Fig. 3. Network statistics in time. INFV A (H3N2) HA genotype networks generated using samples within a sweeping 5-y window from 1999 July
through 2019 June, shown at midpoint. (Left) Number of nodes and edges for entire network and giant component. (Center) Power-law scale exponents
αc and αk,GC obtained by fitting the tail of the distribution above cmin = kmin = 7 following Fig. 1. (Right) Global clustering coefficient Cglobal over time.
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Fig. 4. Epidemics on a large genotype network. We run multistrain epidemic dynamics in a well-mixed population using the network presented in
Fig. 2 as an underlying genotype network. (Left) Endemic burden, defined as the steady-state sum of infectious and recently recovered individuals for
different values of strain-transcending immunity �. (Center) We now separate the density of currently infectious individuals and recently recovered
individuals. This highlight the existence of two important epidemic transitions: An epidemic threshold (equivalent to R0 = 1) where a nontrivial
endemic state emerges and a threshold of immune invasion, which occurs at higher transmission rates. This second transition is noticeable as an
inflection point in I∗ (or a maximum in dI∗/dβ), visible around β = 0.35 for � = 20. (Right) Example of a time series to show how we arrive at a
steady-state value. We plot the overall prevalence I(t) as well as some example strains. All endemic results are integrated up to time t = 25,000.

Multistrain epidemics with underlying genotype
networks
Before running our dynamical system for a multistrain epidemics
on empirical and synthetic genotype networks, it is useful to clar-
ify what structure is represented by these networks. In theory,
there is a true, fixed, full genotype network, which represents all
possible sequences of INFV H3N2 regardless of viability and fit-
ness. In practice however, only a subset of these sequences ac-
tually emerge and are viable, leaving us with a subgraph corre-
sponding to the realized genotype network. To make their way
into our dataset, this network is further sampled by the sequenc-
ing process, leaving us with a subgraph for the observed genotype
network.

Because our dynamical system is represented by a set of contin-
uous and deterministic equations, the model itself blurs the line
between the realized and the observed genotype network. This
assumption is meaningful since sampling of complex networks
can often alter their structure in nontrivial ways (38). However,
sequences in our dataset are sampled an average of 2.97 times
each and structurally important nodes are generally sampled pro-
portionally to their degree as shown in Fig. 1 (right). Furthermore,
Fig. 3 as already shown that key features are relatively fixed in
time even when the size of the temporal samples vary by an or-
der of magnitude.

To illustrate the output of our multistrain model, we this di-
rectly run the equations on one of the largest components in our
dataset in Fig. 4. These results reproduce some of the main re-
sults known from the study of toy genotype networks (27–30, 39).
First, increasing the depth of strain-transcending immunity in the
genotype network does not alter the epidemic threshold of the
system but does lower endemic burden and change its composi-
tion between currently infectious individuals [I(t)] and recovered
individuals [R(t), recently infectious]. Second, we find in Fig. 4 (cen-
ter) that depending on the interplay between the depth of immu-
nity (�) and its waning rate (α) there can exist a regime of local-
ization where the fraction of infectious individuals in the endemic
state (I∗) grows very slowly with the transmission rate (β) before
a second transition [previously theorized as an immune invasion
threshold (30)]. Finally, in Fig. 4 (right) we show a representative
time series that illustrate the rich strain-specific dynamics that

emerge even in a deterministic model, with heterogeneous time
of emergence and cyclical dynamics that eventually settle at an
endemic state (28).

Epidemics with random genotype networks
To investigate how the observed genotype network structure may
be influenced by the spread of disease and learned host immu-
nity, we ran our multistrain SIRS model with varied sytnthethic
genotype networks. The incorporation of a genetic strain structure
allows for both mutation between neighboring strains and cross-
protective immune effects, defined as a function of network dis-
tance. Generative networks models then allow us to better study
how network features affect the overall disease prevalence. Our
hypothesis being that the evolutionary dynamics of INFV A (H3N2)
would localize observed strains preferentially in regions of its full
genotype network that have a structure consistent with high dis-
ease prevalence; the local network structure itself acting as an se-
lection pressure on the realized and observed genotype networks.

The connectivity or edge density of a genotype network may
influence its endemic infection capacity, as suggested by cross-
protective immune effects and the observed criticality within the
genotype network structure. Here, the effects of connectivity were
investigated with the implementation of the multistrain model
on fully random networks, namely G(n, P) Erdős–Rényi random
graphs (40), with a given number of nodes n and edge probabil-
ity P controlling connectivity for an average degree of 〈k〉 = P(N −
1). We measure the endemic disease burden I∗ + R∗, summed over
all strains, once the epidemic dynamics has reached an equilib-
rium (i.e. after a long period of transient dynamics). This disease
burden was observed across varying edge densities and levels of
immunity transcendence in Fig. 5 (top left) to determine the rela-
tionship between connectivity and endemic infections for a geno-
type network of a given size.

Nontrivial dynamics are revealed by the multistrain epidemic
model with an underlying genotype network structure of Erdős–
Rényi random networks. Endemic disease burdens are lowered
in random genotype networks in the presence of high connec-
tivity and nonzero transcending-immunity parameter �, produc-
ing cross-protective immune effects that outweigh the increase in
mutations. On the opposite end, extremely low connectivity also
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Fig. 5. Endemic disease burden as a function of the connectivity and
heterogeneity of the underlying genotype network. (Top left) We look at
the disease burden I∗ + R∗ in an SIRS model with an underlying, random,
genotype network. The network is specified as an Erdős–Rényi random
graph with varying average degree. (Top right) The network is now
generated by a nonlinear preferential attachment scheme with a fixed
density (corresponding to the empirical INFV genotype network) and
varying attachment kernel ν. In this scheme, ν = 0 corresponds to
uniform attachment, ν = 1 to scale-free networks, and ν = 2 to star-like
networks. Other parameters: Network size n = 250, mutation rate μ =
1/50, transmission rate β = 1/2, recovery rate γ = 1/6, and immune loss
rate α = 1/100. (Bottom left) Component size of random nodes found in
the networks with highest endemic burden in the top left panel, i.e. 〈k〉 =
1. (Bottom right) Degree distribution of nodes found in the networks
with strongest preferential attachment before endemic burden
decreases due to condensation in the genotype network, i.e. ν = 1.

lowers disease burden through increased network fragmentation,
resulting in numerous components that restrict mutation path-
ways between all strains. Together these dynamics produce an op-
timal connectivity that maximizes disease burden. While slightly
affected by parameters, we find that the optimal average degree is
observed increasingly close to 〈k〉 = 1 as the pervasiveness of im-
munity � increases. This density is a critical point of the network
structure where a giant component emerges. Around this critical
transition, we find a power-law distribution of component sizes
with exponent 1.5. This distribution shown in Fig. 5 (bottom left)
is similar to that empirically observed in Fig. 1 (center).

This critical component size distribution is not found at an
average degree 〈k〉 = 1 in the INFV genotype network since its
structure is far from that of Erdős–Rényi random networks. Most
notably, the degree distribution of the real network is not ho-
mogeneous: The power-law degree distribution shown in Fig. 1
is radically different from the Poisson degree distributions of
Erdős–Rényi networks. As previously stated, the observed degree
distributions and negative correlations are both consistent with
preferential attachment models. To explore degree heterogeneity,
we therefore turn to a nonlinear preferential attachment model
where networks are grown according to a rich-get-richer process
where new strains are a mutation of existing strains chosen ran-
domly but proportionally to their current degree to some power ν,
controlling the network heterogeneity (35, 36). In Fig. 5 (top right),
we find that the strongest rich-get-richer effect that a genotype
network can support before decreases in disease burden is a lin-

ear attachment effect, reminiscent of the relationship observed
in Fig. 1 (right). Under this linear preferential attachment, we find
a power-law degree distribution with scale exponent 2.43, close
to the exponent of 2.3 observed in the INFV genotype network in
Fig. 1.

The results of these two experiments are consistent with our
hypothesis. Namely, regions of a full genotype network that are
at critical points in terms of density and rich-get-richer processes
lead to higher disease burden such that there is a selection pres-
sure for the realized genotype network to localize around these
regions. Importantly, these experiments do not test actual mech-
anism for the growth of the realized and observed genotype net-
works. While growing networks with a power-law degree distribu-
tion can imply a preferential attachment statistic (33, 34), other
mechanisms can produce similar networks (41). We can, however,
venture two hypotheses for how a rich-get-richer comes into play
in the observed genotype network. It can emerge from either (i)
mutation patterns, as strains with more neighbors are more likely
to re-emerge and re-explore their neighborhood or (ii) prevalence
patterns, as the individual strain fitness and reproduction rate can
be estimated structurally from strain degree.

Discussion
In this study, we utilize a large data set and a genotype network
to examine INFV evolution from 1999 to 2020. In doing so, we re-
veal features suggestive of a fundamental structure underlying
INFV genotypic space, and by extension, virus evolution. The INFV
genotype networks explore a subspace of all networks that is pre-
dictable in structure as they grow in time. Features such as scale-
free degree distributions and component size distributions, both
related to underlying critical phenomena (42), remained present
and consistent in networks generated using temporal subsets of
strain samples.

It may be hypothesized that selecting vaccine strains near
to hubs can provide a set of candidate strains for vaccine se-
lection. It may also be hypothesized that well-selected strains
would not be near observed hubs, were they to effectively neu-
tralize spread of strains near to it in the network space. Strains
selected for vaccines are recommended in part by the anti-
genic similarity between candidate strains and strains circulat-
ing during the targeted INFV season. Interestingly, we see the
A/Texas/50/2012(H3N2)-like virus (WHO vaccine recommenda-
tion from 2014 to 2015) and A/Victoria/361/2011(H3N2)-like virus
(2012 to 2014) as edgeless nodes, respectively, two and four mu-
tations from their nearest strains in the network. The 2010–
2012 H3N2 recommendation, A/Perth/16/2009(H3N2)-like virus,
has four neighboring strains, including a hub two strains away. Fu-
ture work will include a thorough analysis of the relationship be-
tween vaccine strains and temporal network structure. This rela-
tionship introduces further dynamical interplay as vaccines often
include strains already spreading successfully but then, in turn,
affect the epidemic dynamics and therefore limit further spread
and mutations around these strains.

Given the numerous mutations possible, it may not be realis-
tic to use genotype networks to predict new strains with mean-
ingful accuracy. However, it may be possible to predict their ge-
netic relationship to strains existing in the network structure.
Any such efforts would effectively create a map of the genotype
space currently occupied by INFV, and suggestive of where in that
space it may evolve (see Fig. 6). Here, we find that INFV evolution-
ary dynamics never returns to regions of the network left more
than a year or two in the past, in line with descriptions based on
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Fig. 6. Higher-order mutations help explain the global structure of the
genotype network. We show the 12 largest network components. In the
top panel, we show how double and triple mutations help explain
almost all jumps across components. We also note that components are
never rediscovered after more than a few months without new strains
emerging therein. Altogether, this analysis shows that the sampling of
strains might be better than originally expected, but also that
higher-order networks structures (paths of multiple mutations) might
eventually help us better understand the global patterns of INFV
immune evasion.

travelling wave models (43) but adding a descriptive layer for the
growth and local structure of the observed network. Assuming
the genetic distance is proportional to antigenic distance (22, 44,
45), this is a consequential development with regards to our un-
derstanding of cross-protective immune effects and vaccination
strain selection. That is, the outlined approaches may offer per-
spective on which specific genotypes of a given INFV strain might
offer the best cross-protective immunity. Future work may in-
clude development of models further able to predict and refine
the space of plausible future strains.

The predictable statistics of the genotype network topology in-
dicates that the INFV A (H3N2) HA genotype network is influenced
by strain-transcending immunity. This is consistent with the dy-
namics of a multistrain epidemic model. As the pervasiveness of
learned immunity increases, the peak endemic burden expected
in our multistrain model shifts closer to, and becomes narrower
around, a critical network density corresponding to the emer-
gence of a giant component and a power-law distribution of com-
ponent sizes. In the future, knowing what mechanisms help shape
the genotype network could allow network inference frameworks
to identify critical new strains as they emerge (46, 47).

The strong positive relationship between degree and sample
count implies preferential attachment based on degree; however,

node age implements a consequential maximum age at which a
node may acquire new neighbors. This corresponds to the point
at which the strain is not widely circulating or extinct in the host
population. Furthermore, the multistrain model indicates that
strain-transcending immunity drives this strain extinction pro-
cess as cross-protective effects increase population immunity to-
ward strains in time. As shown by the model, any stronger prefer-
ential attachment mechanisms would also decrease the expected
epidemic burden.

This study introduces the use of network growth processes
that could be used in parallel to other methods used to study
pathogen evolution. These include phylodynamics (43), genealog-
ical trees (48), antigenic cartography (23, 24), and other network
approaches. With regard to phylodynamics, our approach requires
few of the population genetic (and other) assumptions that are
embedded in phylodynamic approaches. Moreover, our results of-
fer improvements over existing network models through the ad-
ditional insights: the identification of critical properties in INFV
genotype networks and the offering of mechanisms for its un-
derlying structure. Our observations are consistent with our hy-
pothesis that the observed INFV genotype network explores a
subspace predictable in structure, influenced by the effects of
strain-transcending immunity. A more realistic network growth
process [involving, for example, convergent evolution, correlated
mutations, and epistatic effects (49)] would be necessary to bet-
ter fit the observed genotype network structure. Likewise, this ob-
served structure is also impacted by the imperfect sampling of
INFV strains. Future efforts may utilize more densely sampled
populations.

In summary, we stress that increased genomic surveillance of
multistrain pathogens will allow for similar analyses of other
diseases with variable antigenic properties. As the evolutionary
forces acting on multistrain pathogens differ, we may expect dif-
fering network structures from pathogen to pathogen. For in-
stance, HIV has unique pressures from lifetime infection and
pathogen evolution, highly active antiretroviral therapy used in its
management, as well as bottleneck transmission events and se-
lection biases (50)—all mechanisms that could lead to unique net-
work features. Rapidly changing pathogenicity and virulence in
emergent viruses, such as SARS-CoV-2, could yield dynamic net-
work features. As the COVID-19 pandemic has generated data at
an unprecedented pace and level of granularity, it may offer the
opportunity for an analogous comparison (51).

More broadly, our findings support the importance of multiple
methods—utilizing both existing phylodynamic approaches and
network and graph theoretical methods—toward a comprehen-
sive picture of virus evolutionary dynamics. The use of multiple
methods can be complementary, as standard canon from evolu-
tionary theory and methods from complex systems can each offer
useful information about pathogen evolution.

In the future, we might be able to characterize the underly-
ing physics of RNA virus infection networks that can be used to
predict long-term patterns, toward improved public health inter-
ventions: vaccine strain selection, analysis of evolutionary trajec-
tories, and refinement of the understanding of cross-protective
immunity.

Materials and methods
Statistical methods
Distribution tails were fitted with power laws using the “pow-
eRlaw” package (52, 53). For the full network generated from all
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years of the data set, we fit power-law distribution tails for ob-
served values (degree, component size), where tail implies the dis-
tribution of observed values greater than some minimum. Mini-
mum values (kmin, cmin) of 5 or greater were considered, and the
best goodness of fit was observed at kmin = cmin = 7 for both de-
gree and component size. These minimum values were then con-
strained to 7 for networks consisting of 5 y of data in our temporal
analysis.

Multistrain epidemic model
The dynamics of the model described in the main text and ref. (30)
can be tracked with the following set of ordinary differential
equations:

dS
dt

= −β

N∑
i=1

SIi
N

+ α

N∑
i=1

Ri,

dIi
dt

= β
SIi
N

− γ Ii + μ

N∑
j=1

Ai, j (I j − Ii ) +
N∑

j=1

β∗
i j

IiR j

N
,

dRi

dt
= γ Ii − αRi −

N∑
j=1

β∗
i j

I jRi

N
,

with β∗
i j = β

(
1 − e−xi j/�

)
.

Experiment on Erdős–Rényi networks
In the left column of Fig. 5, we present the endemic disease burden∑

iIi + Ri (i.e. recent infections) of our multistrain epidemic model
on Erdős–Rényi networks (40). The endemic state is defined as the
fixed point where all derivatives of the system are equal to zero.
Erdős–Rényi networks are obtained by generating a set of n = 250
nodes and connecting each possible pair of nodes with probability
P = 〈k〉/(N − 1) such that the expected degree of all nodes (number
of first network neighbors) is set by 〈k〉.

Experiment on preferential attachment networks
In the right column of Fig. 5, we present the endemic disease
burden

∑
iIi + Ri of our multistrain epidemic model on networks

grown through preferential attachment (35, 36). These networks
are obtained by starting from a pair of connected nodes and
growing the network until we reach a network of size n = 250
nodes.

The networks are grown through the following discrete
stochastic process. At each time step, we either connect an exist-
ing pair of nodes with probability P or connect a new node to an
existing node with complementary probability 1 − P. The proba-
bility P sets the expected density of the network, since after t time
steps we expect t edges and (1 − P)t nodes for an average degree
〈k〉 = 2/(1 − P). In our experiment, P is chosen to fix the average
degree to that observed in the giant component of our empirical
data, i.e. 〈k〉 = 2.73.

At every time step, we therefore need to pick either two existing
nodes (probability P) or one existing node (complementary prob-
ability 1 − P). These existing nodes are chosen proportionally to
their degree k proportionally to the kernel kν . Meaning a given
node i of degree ki will be chosen with probability kν

i /
∑

j kν
j . A ker-

nel with ν = 0 corresponds to uniform attachment, whereas the
linear kernel ν = 1 corresponds to the much studied linear attach-
ment model of Barabási and Albert (32).
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