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SUMMARY

Understanding the molecular principles that govern the composition of theMHC-
I immunopeptidome across different primary tissues is fundamentally important
to predict how T cells respond in different contexts in vivo. Here, we performed a
global analysis of theMHC-I immunopeptidome from 29 to 19 primary human and
mouse tissues, respectively. First, we observed that different HLA-A, HLA-B, and
HLA-C allotypes do not contribute evenly to the global composition of the MHC-I
immunopeptidome across multiple human tissues. Second, we found that tissue-
specific and housekeeping MHC-I peptides share very distinct properties. Third,
we discovered that proteins that are evolutionarily hyperconserved represent
the primary source of the MHC-I immunopeptidome at the organism-wide scale.
Fourth, we uncovered new components of the antigen processing and presenta-
tion network, including the carboxypeptidases CPE, CNDP1/2, and CPVL.
Together, this study opens up new avenues toward a system-wide understanding
of antigen presentation in vivo across mammalian species.

INTRODUCTION

In adaptive immunity, CD8+ T cells have the ability to eradicate abnormal cells through recognition of small

peptide fragments presented by MHC (human leukocyte antigen (HLA) in humans) class I molecules. In this

context, jawed vertebrates evolved an important antigen processing and presentation (APP) system

capable of presenting thousands of different MHC class I peptides on the surface of virtually any nucleated

cells (Neefjes et al., 2011), and transmissible tumors could be a selective factor of APP evolution (Dujon

et al., 2020; Gastaldello et al., 2021). In mammals, around 200 different cell types are decorated by large

repertoires of self-MHC-I-associated peptides, collectively referred to as the mammalian MHC-I immuno-

peptidome (MHC-I immunopeptidome) (Caron et al., 2017; Vizcaı́no et al., 2020).

The interindividual and intraindividual complexity of the MHC-I immunopeptidome accounts for its overall het-

erogeneity (Gfeller and Bassani-Sternberg, 2018; Maccari et al., 2017; Vizcaı́no et al., 2020). In fact, each MHC-I

allotype generally presents a distinct subset of peptide antigens, which are characterized by the presence of

specific anchor residues that are necessary to bind MHC-I (Falk et al., 1991). In human, up to six different

HLA-I allotypes are expressed at the individual level, and thousands, if not millions of different HLA-I allotypes

are expressed across human populations, hence increasing enormously the inter-individual heterogeneity of the

MHC-I immunopeptidome (Robinson et al., 2017). In contrast, the MHC-I immunopeptidome of the C57BL/6

mouse strain is relatively simpler because peptide antigens are presented by only two classical MHC-Imolecules

(H2Db andH2Kb). In addition to its allotype-dependent composition, themammalianMHC-I immunopeptidome

is also complicated by its tissue-dependency. In fact, two pioneering mapping studies recently pointed toward

large variations in the repertoire of MHC-I-associated peptides across different tissues (Marcu et al., 2021;

Schuster et al., 2018). However, very little is known about the molecular principles that shape the tissue-depen-

dent processing and presentation of peptide antigens at the organism level.

Classical biochemistry approaches have established the blueprint of antigen processing and presentation

(Neefjes et al., 2011; Yewdell et al., 2003). In a nutshell, the biogenesis of peptides presented by MHC-I
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Baden-Württemberg,
Germany

6DKFZ Partner Site Tübingen,
German Cancer Consortium
(DKTK), 72076 Tübingen,
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Hospital Tübingen, 72076
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molecules is initiated with the transcription and translation of the source genes, and the resulting proteins

are typically degraded by the proteasome and/or immunoproteasome in the nucleus and cytosol (Kincaid

et al., 2011). Cytosolic peptides are rapidly targeted by cytosolic aminopeptidases, such as thimet oligo-

peptidase (TOP) (York et al., 2003), leucine aminopeptidase (LAP) (Towne et al., 2005), and tripeptidyl

peptidase II (TPPII) (Reits et al., 2004), which trim and destroy most peptides. A fraction of peptides es-

capes destruction by translocation into the ER lumen via transporter associated with antigen presentation

(TAP) (Reits et al., 2000; Yewdell et al., 2003). In the ER, peptides may be further trimmed by ER amino-

peptidase associated with antigen processing (ERAAP) and then bind MHC-I molecules for stabilization

by the peptide loading complex (Blees et al., 2017; Serwold et al., 2002). Once stable, MHC-I-peptide

complexes are released from the ER and are transported to the cell surface for peptide presentation

to CD8+ T cells.

Modern immunopeptidomics is driven by high-resolution mass spectrometry (MS) and investigates the

composition and dynamics of the MHC-I immunopeptidome (Caron et al., 2015a; 2015b). Complementing

classical biochemistry techniques, immunopeptidomic technology platforms have yielded important sys-

tematic insights into the biogenesis of the MHC-I immunopeptidome (Granados et al., 2015). For instance,

they have refined binding motifs for a wide range of MHC-I alleles in human (Abelin et al., 2017; Gfeller and

Bassani-Sternberg, 2018), they have indicated that large numbers of MHC-I peptides derive from genomic

‘hotspots’ (Müller et al., 2017; Pearson et al., 2016) as well as noncoding genomic regions (Laumont et al.,

2018), and they have demonstrated that abundant transcripts and proteins contribute preferentially to the

composition of the MHC-I immunopeptidome (Abelin et al., 2017; Bassani-Sternberg et al., 2015; Fortier

et al., 2008; Granados et al., 2012; Pearson et al., 2016). Furthermore, immunopeptidomic approaches

have validated that defective ribosomal products (DRiPs), immunoproteasome subunits as wells as other

key players involved in the processing of peptide antigens (e.g., proteasome, ERAAP) markedly influence

the repertoire of peptides presented by MHC-I molecules (Bourdetsky et al., 2014; Milner et al., 2013; Na-

garajan et al., 2016; Trentini et al., 2020; Verteuil et al., 2010).

The understanding of how theMHC-I immunopeptidome is generated in different primary tissues in vivo, in

human as well as in animal models, is fundamentally important to rationalize and predict how T cells

respond in various contexts (Tscharke et al., 2015). However, immunopeptidomics studies that focused

on the systematic deciphering of the MHC-I immunopeptidome biogenesis have been almost exclusively

conducted in transformed cells. Therefore, the rules that govern the composition and tissue-dependency

of the mammalian MHC-I immunopeptidome remain poorly understood and many fundamental questions

remain unanswered to date. For instance, what is the relative contribution of individual HLA-I allotypes to

the composition of theMHC-I immunopeptidomewithin and across tissues? To what extent does theMHC-

I immunopeptidome conceal tissue-specific patterns/signatures that are conserved across species? What

are the many transcription factors, proteases, aminopeptidases, and carboxypeptidases involved in the

generation and processing of MHC-I peptides in different tissues, and how does the expression and activity

of those proteins influence the tissue-dependency and overall heterogeneity of the MHC-I immunopepti-

dome at the organism-wide scale? In this study, we applied a systems-level, cross-species approach to

tackle these fundamental questions.

RESULTS

Two immunopeptidomic mapping studies have very recently drafted the first tissue-based atlases of the

mouse and human MHC-I immunopeptidome (Marcu et al., 2021; Schuster et al., 2018). These pioneering

mapping efforts provide qualitative and semiquantitative information about the currently detectable

repertoire of MHC-I peptides in most organs, both in mouse and human. Specifically, the mouse atlas

was generated from 19 normal primary tissues extracted from C57BL/6 mice expressing H2Kb and

H2Db (Schuster et al., 2018). The human atlas was generated from 29 human benign tissues extracted

from 21 different subjects expressing a total of 51 different HLA-I allotypes (Marcu et al., 2021) (Figure 1).

Those HLA-I allotypes cover the most frequent HLA-A, HLA-B, and HLA-C alleles in the world. Below, we

first focused on the analysis of the MHC-I immunopeptidome in different mouse and human tissues to

provide a general understanding of the heterogeneity, tissue-dependency, and conservation patterns

of the MHC-I immunopeptidome. Next, we connected tissue immunopeptidomes to RNA-seq and pro-

tein expression data found in various tissue-based atlases (Geiger et al., 2013; Söllner et al., 2017;

Wang et al., 2019) to dissect how the mammalian MHC-I immunopeptidome is being shaped in different

tissues (Figure 1).
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HLA-I allotypes are unevenly represented across tissue immunopeptidomes

A key open question regarding the heterogeneity of the human MHC-I immunopeptidome is whether in-

dividual HLA-I allotypes contribute evenly or unevenly to the composition of theMHC-I immunopeptidome

across different tissues. In fact, every subject presents up to two HLA-A, two HLA-B, and two HLA-C allo-

types. If all allotypes were evenly represented at the cell surface across tissues, one would expect similar

proportions of peptides assigned to each allotype in all tissues. To address this question, we first assessed

the global tissue distribution of all detectable peptides that were assigned to HLA-A, HLA-B, and HLA-C.

Among 29 sampled benign tissues extracted from a total of 21 different subjects, we found HLA-A, HLA-B,

and HLA-C immunopeptidomes to be unevenly represented across tissues (Figures 2A and S1A). To

increase the resolution of this analysis, we investigated the contribution of each HLA-A, HLA-B, and

HLA-C allotypes expressed in the three subjects for which the most tissues had been sampled (i.e., AUT-

DN11, AUT-DN13, and AUT-DN12) (Figures 2B–2D). Consistently, we found differential peptide distribu-

tions across tissues for many HLA-I allotypes. For instance, �55% of peptides in the Colon of subject

AUT-DN12 were assigned to A*02:01 compared to �22% on average in all other tissues, resulting in an

enrichment of about 2.5-fold for A*02:01 (Figure 2D). The enrichment of A*02:01 peptides in the Colon

of subject AUT-DN12 was also further accompanied by an underrepresentation of A*11:01, B*15:01, and

B*35:01 in the Colon, and an enrichment of C*03:04 and C*04:01 alleles (Figure 2D). Similarly, we also noted

that �50% of peptides in the liver of subject AUT-DN13 were assigned to HLA-B40:02 compared to �20%

on average in all other tissues, resulting in an enrichment of about 2.5-fold for this specific HLA-B allotype in

this particular subject (Figure 2C). To provide a global picture about enrichment values that are associated

with individual HLA-I allotypes, we calculated the average enrichment of all HLA-I allotypes across the

investigated subjects and highlighted alleles that were enriched by more than 1.5-fold in at least one tissue

(Figure 2E). This analysis highlighted 37 enrichment values distributed across 27 specific HLA-I allotypes

and 18 different tissues (Figure 2E). Overall, those enrichment values ranged from 1.5 to 8.1-fold, and

nine (out of 16) HLA-A, 9 (out of 21) HLA-B, and 9 (out of 14) HLA-C allotypes were assigned in at least

Figure 1. Overview of immunopeptidomics, proteomics, and transcriptomics datasets analyzed

(Left hand side) Graphic description of the Mouse B57BL/6 MHCI Ligand Atlas, which was connected with two published

proteomics and mRNA expression atlases of mouse tissues. (Right hand side) Graphic description of the Human HLAI

Ligand Atlas, which was connected with two published proteomics and mRNA expression atlases of human tissues
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one tissue with an enrichment value above 1.5-fold. Thus, our results show that HLA-I allotypes do not

contribute evenly to the composition of the MHC-I immunopeptidome across different tissues and sub-

jects, and therefore, considerably contribute to the overall heterogeneity of the human MHC-I

immunopeptidome.

The high level of heterogeneity among immunopeptidomes of different tissues shows

pronounced similarities between mouse and human

Antigen processing and presentation is a conserved and ubiquitous biological process in mammals. Here,

we hypothesized that the MHC-I immunopeptidome of different tissues might conceal tissue-dependent

immunopeptidomic patterns/signatures that are conserved between mouse and human. First, we looked

A

C

B

D

E

Figure 2. Distribution of HLA-A-specific, B-specific, and C-specific immunopeptidomes across human tissues

(A) Relative proportion of individual HLA-A-specific, B-specific, and C-specific immunopeptidomes per tissue among all

subjects.

(B–D) Relative proportion of individual HLA allele-specific immunopeptidomes per tissue for AUT-DN11 (B), AUT-DN13

(C), and AUT-DN12 (D).

(E) Enrichment of HLAI allotypes across all tissues sampled. Average enrichment values are depicted where allotypes

were sampled across several subjects
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at the distribution of MHC-I peptide counts that were detected by MS across different mouse (Figure 3A)

and human (Figure 3B) tissues. Expectedly, we noted that specific mouse organs yielded high numbers of

MHC-I peptides (e.g., Spleen) whereas immune privilege organs (e.g., Brain and Testis) yielded low

numbers of MHC-I peptides (Figure 3A). Very similar observations were made in humans (Figure 3B) (Marcu

et al., 2021). In fact, direct comparison of MHC-I peptide counts between mouse and human tissues re-

sulted in a positive correlation (R-squared value = 0.44) (Figure 3C). Next, we performed principal compo-

nent analysis (PCA) of tissue dependent intensities of mouse and human MHC-I peptides (Figures 3D and

3E). PCA were performed from highly heterogeneous immunopeptidomic data integrating peptides and

C

E F

BA

D

Figure 3. Comparison of tissue dependent MHCI-associated (Mouse) and HLAI (Human) -associated peptides

(A) MHCI peptide counts for each sampled mouse tissue, colors depict the MHCI alleles (H2Db and H2Kb).

(B) HLAI peptide counts for all sampled human tissues. Boxplots are represented as several tissues were sampled across

different individuals.

(C) Comparison of MHCI peptide counts/tissue (Mouse) and HLAI peptide counts/tissue (Human).

(D) Principal component analysis of the measured intensities (log10) of MHCI peptides (Mouse).

(E) Principal component analysis of the measured intensities (log10) of HLAI peptides (Human).

(F) Tissue connectivity map of the ‘B57BL/6 MHCI Ligand atlas. Heatmap depicts the number of shared MHCI peptides

across tissues (Mouse). Note: The number of uniquely observed/tissue-specific peptides can be found along the

diagonal. Spinal cord (mouse) and Myelon (human) are equivalent terms
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corresponding intensities presented by two mouse and 51 human MHC-I allotypes, respectively. Despite

the high heterogeneity, our analysis revealed two main clusters in each species. Notably, immune-related

organs clustered together in both species (see cluster one in Figures 3D and 3E). Immune clusters included

Spleen, Bone Marrow, Lymph nodes, and Thymus (mouse), as well as other types of nonimmune related

organs such as Kidney, Lung, Liver, and Colon. The described observations raised the following question:

what are the MHC-I peptides that are either shared or unique across these tissues?

To address the above question, we created connectivity matrices, which summarize the number of MHC-I

peptides shared and uniquely observed between all possible pairs of tissues in mouse (Figure 3F) and

human (Figure S1B). The number of uniquely observed/tissue-specific peptides can be found along the

diagonal of the connectivity matrices in Figure 3F and Figure S1B. In mice, we observed that 13% (961

out of the 7665 unique peptides found in mouse) of the total H2Db/Kb immunopeptidome was shared

across Spleen, Bone Marrow, Kidney, Lung, Liver, and Colon (Figure 3F). As an example, 1881 peptides

(25% of the total H2Db/Kb immunopeptidome) were shared between Spleen and Kidney, and 1381 pep-

tides (18% of the total H2Db/Kb immunopeptidome) were shared between Bone marrow and Liver (Fig-

ure 3F). In humans, we observed that 4% of the total HLA-ABC immunopeptidome was shared across

these six organs for all subjects. Once deconvolved by allotype or subject, we observed that, on average,

3% (range: 0.5% HLA-C*07:04–9% HLA-A*01:01 and B49:01) and 0.8% (range: 0.4% AUT-DN08–1.3%,

AUT-DN12) of HLA-I peptides were shared across these organs, respectively (Figure S2). In contrast,

larger fractions of MHC-I peptides were found to be uniquely observed in each species. Overall,

42% (3212 out of 7665 unique peptides) and 44% (32,187 out of 73,639 unique peptides) of the total

H2Db/Kb-immunopeptidome and HLA-ABC- immunopeptidome were uniquely observed in specific tis-

sues, respectively. These peptides are further referred to as tissue-specific peptides. Thus, our data

show, using the currently available technology, that a significant proportion of MHC-I peptides are tis-

sue-specific whereas a relatively smaller proportion of peptides are shared across various immune and

nonimmune organs, both in mouse and human (see also ‘limitations of the study’). To our knowledge,

this is the first time that estimates of tissue-specific and shared MHC-I peptides are reported at the or-

ganism level. These two categories of MHC-I peptides may show distinct properties or trends, and were

further investigated below.

MHC-I peptides shared across multiple tissues are highly abundant and strongMHC-I binders

To investigate the properties of tissue-specific peptides versus those that are presented across a wide

range of tissues, we sought to assess the influence of peptide abundance and MHC binding affinity on

tissue distribution. Hence, we plotted the number of tissues in which a peptide has been detected

against their average abundance or predicted MHC-I/HLA-I binding affinity (NetMHCpan4.0 rank score)

(Figure S3 for mouse and Figures S4 and S5 for human). The human dataset has to be viewed in a

subject-specific manner as each subject presents its own repertoire of HLA-I alleles. In mouse, we

found that increasing cross-tissue presentation of MHC-I peptides strongly correlated with increasing

peptide abundance and increasing affinity for the MHC-I molecules (decreasing NetMHCpan 4.0

rank score) (Figure S3). The same behavior was generally observed in humans, where peptides widely

represented across tissues were highly abundant (Figure S4) and predicted to be strong HLA-I binders

in all subjects (Figure S5). A possibility is that stable and abundant MHC-I peptides originating from

abundant source proteins are easier to detect by MS. Beside this potential MS bias, our current

data suggest that peptide abundance and binding affinity for MHC-I molecules are important proper-

ties that may contribute to the widespread or tissue-specific presentation of peptides in the mamma-

lian MHC-I immunopeptidome.

Tissue-specific MHC-I peptides arise from genes that are almost uniquely expressed in the

peptide-producing tissue

Expression of tissue-specific source proteins contributes to shaping the tissue-specificity of the human

MHC-I immunopeptidome (Marcu et al., 2021). Pioneering work in mice also proposed that transcriptomic

signatures of thymic cells can be conveyed to the cell surface in the MHC-I immunopeptidome (Fortier

et al., 2008). Several MS-based immunopeptidomic studies have also shown that MHC-I peptides are pref-

erentially encoded by genes that are actively transcribed, but all those studies were performed in vitro us-

ing cultured cell lines (Abelin et al., 2017; Fortier et al., 2008; Granados et al., 2012; Pearson et al., 2016).

Hence, how gene expression shapes the composition of the mouse MHC-I immunopeptidome across

many different tissues in vivo has never been reported to date. To address this, we first assigned every
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mouse MHC-I peptide found in the tissue draft atlas of the MHC-I immunopeptidome to its source gene.

Using an RNA-Seq atlas of gene expression in mouse normal tissues (Söllner et al., 2017), we next assessed

the transcript abundance of the MHC-I peptide source genes in nine tissues for which mRNA expression

data were available (i.e., Brain, Colon, Heart, Kidney, Liver, Pancreas, Small intestine, Stomach, and

Thymus) (Figure 4). From this RNA-Seq atlas, 94% of the identified MHC-I peptides were matched to

mRNA entries. Then, using the matched dataset, we found that genes coding for any detectable MHC-I

peptides as well as for tissue-specific MHC-I peptides were more actively transcribed compared to genes

that were not coding for any detectable MHC-I peptides (Figures 4A and 4B).

Next, we reasoned that tissue-specific MHC-I peptides could derive from tissue-specific transcripts. To test

this hypothesis, we averaged for every tissue the transcript abundance of genes coding for tissue-specific

peptides and compared their expression across the nine tissues (Figure 4C). As depicted, we observed that

brain-specific MHC-I peptides derived from genes that were uniquely expressed in the brain. Interestingly,

liver-specific MHC-I peptides derived from genes that were predominantly, but not exclusively expressed

in the liver—an expression pattern that was observed for seven out of nine tissues (colon, kidney, liver,

heart, small intestine, stomach, and thymus; Figure 4C). Thus, we provide new evidence at the organ-

ism-scale that tissue-specific MHC-I peptides are generally encoded from genes that are highly expressed

in the same tissue of origin. Together, these results are in accordance with conclusions drawn in humans

(Marcu et al., 2021) and enforce the notion that gene expression plays a fundamental role in shaping the

tissue specificity of the MHC-I immunopeptidome in mammals.

A

B C

Figure 4. mRNA expression of MHCI source genes in multiple mouse organs

(A) Violin plots depicting the distribution of mRNA expression of genes which generate MHCI peptides (0), genes which

generate tissue specific MHC peptides (1) or does not generate MHCI peptides (2

B) Donut plot depicting the number of tissue-specific MHCI peptides found in tissues for which mRNA expression data is

available (9 of 19 tissues sampled in the ‘B57BL/6 MHCI Ligand Atlas’.

(C) Heatmap representing the average mRNA expression of genes coding for tissue-specific MHCI peptides across

tissues. Z score is color coded
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MHC-I peptides that are broadly presented across many tissues are encoded by genes that

are highly expressed and evolutionarily hyperconserved

Above, we provided evidence that the MHC-I immunopeptidome is composed of tissue-specific peptides

as well as peptides that are widely presented across many different tissues. Although tissue-specific MHC-I

peptides appear to stem from genes predominantly expressed in the original tissue, we asked whether

MHC-I peptides that were presented across most tissues derived from highly transcribed genes across

the entire human or mouse genome. To answer this question, we created a selection of MHC-I peptides

that were widely represented among the sampled tissues, referred herein as ‘housekeeping/universal

MHC-I peptides’ (Figure S6A). Although this selection is straightforward for the mouse data where we

considered peptides identified in all 19 of the 19 tissues (35 selected peptides; 0.5%) as housekeeping/uni-

versal peptides, a more complex approach was needed to select those peptides in the human dataset

where several subjects, each representing a specific set of HLA-I alleles, were present (827 peptides,

1.1%). Details about the selection of those peptides in the human immunopeptidome tissue draft are

described in themethods section ‘Selection of Housekeeping/Universal Peptides’ and are visualized in Fig-

ures S6B–S6F and S7). First, we found that the selected MHC-I peptides originated from 38 to 251 source

genes in mouse and human, respectively (Tables S1 and S2, and Figures S6 and S7). Importantly, we discov-

ered that these genes were among the most transcriptionally expressed genes across the entire mouse

(Figure 5A) and human (Figure 5B) genome. This result is in line with the above observation that widely pre-

sented peptides across the organism are of high abundance (Figures S3 and S4). Moreover, it is noteworthy

that those housekeeping/universal MHC-I peptides did not preferentially originate from large (heavy) pro-

teins, as it could have been expected because of the higher numbers of possible peptide antigen products

from large proteins (Figure S8).

Genes expressed in the majority of tissues in an organism play vital functions, are evolutionarily hypercon-

served and are widely referred to as housekeeping genes (She et al., 2009; Zeng et al., 2016; Zhu et al.,

2008). Akin to housekeeping genes, peptides that are represented in most tissues across an entire organ-

ism—referred above to as housekeeping/universal MHC-I peptides—could also originate from hypercon-

served proteins as they may have coevolved for millions of years with ancients and ubiquitous degradation

systems to become the fundamental ground source of MHC-I peptides for most tissues. Hence, we

A

C D

B

Figure 5. Expression and genetic conservation of genes coding for MHCI/HLAI peptides presented across most

tissues (housekeeping/universal peptides)

(A and B) mRNA expression of source genes of housekeeping/universal MHCI/HLAI peptides compared to all other

mRNA transcripts in mouse (A) and human (B).

(C and D) Exon and promoter conservation distributions of source genes of housekeeping/universal MHCI/HLAI peptides

compared to source genes of tissue-specific MHCI peptides in mouse (C) and human (D).
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hypothesized that universal MHC-I peptides are encoded by genes that are evolutionarily hyperconserved

across evolution. To address this concept, we took advantage of the genome alignments between mouse

and 59 vertebrates as well as between human and 99 vertebrates, made available by the UCSC Genome

Browser (Lee et al., 2020) (see STAR Methods section ‘Conservation of source genes from universal

MHC-I peptides’). To assess evolutionarily conservation across species, PhastCons scores (Siepel et al.,

2005), which predict the probability of conservation for every base pair in the aligned genomes, were con-

sulted for mouse and human genes of interest (see STAR Methods for details). When comparing the con-

servation scores of tissue-specific MHC-I peptide source genes with those from housekeeping/universal

MHC-I peptide source genes, the latter were significantly more conserved at the Promoter and Exon level,

both in Mouse (p value = 2.8 3 10�11; p value = 1.06 3 10�144) (Figure 5C) and Human (p value = 3.25 3

10�25; p value = 2.32 3 10�87) (Figure 5D). For example, the conservation probability (PhastCons score)

of 70% of the more conserved Exons (Cumulative Frequency >0.3) of tissue-specific peptide source genes

in mouse is greater than 20%, whereas the conservation probability of 70% of the more conserved Exons of

housekeeping/universal peptide source genes in mouse is greater than 80%. Thus, this analysis indicates

that tissue-specific versus housekeeping/universal MHC-I peptide source genes do not share the same de-

gree of conservation across evolution. Together, our results suggest that highly expressed and hypercon-

served genes contribute to the selected 0.5 and 1.1% of the mouse and human immunopeptidome that is

shared across most tissues in vivo, respectively.

Discovery of new components of the constitutive antigen processing and presentation

network in mouse and human tissues

Differential expression and activity of antigen processing and presentation proteins across tissues may

contribute to the observed variability in the composition of the MHC-I immunopeptidome from one tissue

to another (Rock et al., 2016). In this regard, transcript levels of HLA-I, TAP1/2, and immunoproteasome

were very recently shown to correlate positively with the total number of MHC-I peptides detected across

different human tissues (Marcu et al., 2021). To date, such correlative analysis has only been applied at the

transcript level for a handful number of preselected immune-related genes and has never been performed

at the protein level in a systematic fashion. Hence, we reasoned that an unbiased computational approach

could be used to systematically identify any protein of the proteome for which their respective abundance

across tissues correlates with the total number of MHC-I peptides across those same tissues. Therefore, we

set out to apply this correlative approach at the proteome-wide scale using protein abundances measured

across different mouse and human tissues from two tissue-based proteomics atlases generated byMS (Fig-

ure 6A) (Geiger et al., 2013; Wang et al., 2019).

First, we computed a total of 4,175 (on 4,175 gene coding proteins) and 70,656 (on 11,776 gene coding pro-

teins) correlations in mouse and human, respectively (see STAR Methods). Importantly, we found a subset

of 164 and 120 correlating proteins in mouse and human, respectively, whose abundance significantly

correlated with the total number of MHCI peptide counts in a given tissue (p value < 0.01 and R-squared

> 0.4 in Mouse; p value < 0.05 and R-squared > 0.4 for at least two subjects in Human) (Figures S9A and S9B,

Tables S3 and S4). From the 164 mouse proteins, 122 correlated positively (74%) and 42 correlated nega-

tively (26%) with MHCI peptide counts. Out of the 120 significantly correlating human proteins, 74 corre-

lated positively (62%) and 46 negatively (38%) (Figure S10).

To broadly assess biological processes in which these proteins are implicated, we performed gene

ontology (GO) analysis on these significantly correlating proteins (Table S5). From the top 50 most signif-

icantly enriched GO terms implicated in biological processes in mouse and human, 15 were shared across

both species (Figure S11). Remarkably, the shared GO terms were attributed to proteins implicated in the

regulation of the proteolysis, antigen processing, and immune response (Figures 6B and 6D). A prominent

example protein, PSMB3 whose tissue dependent intensity very well correlates with the amount of MHCI

peptides found in each tissue is shown in Figure 6C. Furthermore, manual curation of the literature allowed

us to associate those proteins to specific functional modules known to orchestrate transcription (e.g.,

STAT3, NFKB), TCR-MHC signaling (e.g., LCP1, VAV1), and antigen processing (e.g., PSMB3/5, PSME4,

LAP3, and ERAP1) (Figure 6D). Among the latter, many proteasome subunits, proteases, carboxypepti-

dases, and aminopeptidases were identified (Figure 6D). For example, PSMB3 is a component of the

20S core proteasome complex (Elenich et al., 1999; Huber et al., 2012); PSME4 is a proteasome activator

subunit, also known as PA200 (Rêgo and Fonseca, 2019), and ERAP1 plays a central role in peptide trim-

ming for the generation and presentation of MHC-I peptides (Serwold et al., 2002). For these three specific
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Figure 6. Correlation of protein abundances at the proteome-wide scale with the total number of MHCI or HLAI peptides detected across tissues

(A) Protein expression data from protein expression maps of mouse and human tissues were correlated with the total number of MHCI or HLAI peptides

detected per tissue. Correlations were simulated for every protein measured across nine or more tissues. Significantly correlating proteins were further

investigated.

(B) Gene Ontology terms enriched from 164 mouse and 120 human proteins whose abundance significantly correlates with the number of MHCI/HLAI

peptides counted per tissue.

(C) Example correlation of proteasome subunit Psmb3 in mice with MHCI peptides counted across tissues.
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proteins, their abundance increased as a function of the number of MHC-I peptides (Figures 6C and S12

and Tables S3, S4, and S5). In contrast, we found the opposite trend for other proteins. For instance, abun-

dance of Uchl1, Ube2n, and PSMB5 proteins decreased as a function of the number of MHC-I peptides (Fig-

ures S10B–S10D), the latter being known to be replaced by the immunoproteasome and thymoproteasome

subunit PSMB8 and PSMB11 in immune and thymic cells, respectively (Murata et al., 2018). Most strikingly,

we found four poorly characterized carboxypeptidases (CPE, CNDP1, CNDP2, and CPVL) showing signif-

icant correlations between protein abundance and number of MHC-I peptides across tissues (Figure 6D).

This unexpected finding is interesting because very little is known about the role of carboxypeptidases in

antigen processing. Therefore, furtherinvestigation is required to determine the precise role of CPE,

CNDP1, CNDP2, and CPVL in shaping the global composition of the mammalian MHC-I immunopepti-

dome in health and diseases. Thus, our systems-level analysis allowed us to identify many known key

players of the antigen processing network, thereby validating our computational approach, in addition

to expanding the network through identification of new components. Collectively, our study provides an

unprecedented source of information regarding the biogenesis of the mammalian MHC-I immunopepti-

dome and opens up new avenues to further explore the role of new proteolytic enzymes in antigen process-

ing in vivo.

DISCUSSION

The components of the antigen processing and presentation pathway shape how T cells respond to self

and nonself (Rock et al., 2016). Those components have been traditionally discovered using hypothesis-

driven approaches or genomic screening of cell lines presenting a phenotype of interest (Burr et al.,

2019; Neefjes et al., 2011; Paul et al., 2011). MS-based immunopeptidomic approaches have also been

used to validate the impact of those proteins on the global composition of the MHC-I immunopeptidome

using in vitro or ex vivo model systems (Alvarez-Navarro et al., 2015; Nagarajan et al., 2016; Verteuil et al.,

2010). To date, no study has taken advantage of the uncharted combination of immunopeptidomic, prote-

omic, transcriptomic, and genomic data from a range of different primary tissues to infer the fundamental

principles that form the mammalian MHC-I immunopeptidome. In fact, akin to systems immunology

methods (Villani et al., 2018), we deployed in this study an unbiased immunopeptidomic data-driven strat-

egy using multiple tissue-based omics datasets, both in mouse and human, to i) reinforce the notion that

the composition of the mammalian MHC-I immunopeptidome is highly context-dependent, ii) provide

fundamental information about the tissue-dependency, conservation, and biogenesis of the MHC-I immu-

nopeptidome at the organism-wide scale, and iii) uncover new proteins that may collectively orchestrate

the content and tissue-specificity of the MHC-I immunopeptidome.

In this study, we found that many proteins of the ubiquitin-proteasome degradation system as well as many

proteases, aminopeptidases, and carboxypeptidases were more abundant in organs presenting a large

number of MHC-I-peptide complexes. In addition, proteins known to negatively regulate protein degrada-

tion were found to be more abundant in organs presenting low numbers of MHC-I peptides. In fact, cor-

relations between protein abundances and numbers of MHC-I peptides detected in tissues were found

to be remarkably informative and could be used to systematically infer the role of new proteolytic enzymes

in antigen processing. Proteolytic enzymes are critically important in antigen processing. Beside the pro-

teasome, �20 proteases act in the MHC-I presentation pathway and can alter presented peptides (Lázaro

et al., 2015). ERAP1 is probably the most relevant example here because this aminopeptidase plays a major

role in antigen processing through N-terminal peptide trimming into the ER and is associated with a num-

ber of different autoimmune diseases (Hanson et al., 2018; Serwold et al., 2002). Other aminopeptidases

such as leucine aminopeptidase 3 (LAP3) and peptidase D (PEPD) were showcased in this study. Most sur-

prisingly, we identified four carboxypeptidases (CPE, CNDP1, CNDP2, and CPVL)—none of them reported

so far to influence the repertoire ofMHC-I peptides. These carboxypeptidases might represent new players

of the antigen processing and presentation pathway. If tested and validated, such findings would be partic-

ularly fascinating because ACE (ACE) is the only ER-resident carboxypeptidase documented so far (Eise-

niohr et al., 1992; Shen et al., 2008, 2011), and was shown to be immunologically relevant through

Figure 6. Continued

(D) Protein modules identified from the global correlative analysis are associated with antigen generation, processing, and recognition. Mouse and human

proteins annotated to enriched GO terms were manually curated from the literature and were classified based on their respective biological function:

proteasome, aminopeptidase, carboxypeptidase, protease, ubiquitin protein, guanine nucleotide–exchange factor (GEF), actin binding protein and

transcriptional regulator, and NFKB related. Proteins depicted in gray are uncharacterized enzymes of the antigen processing network.
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production of minor histocompatibility antigens, polyoma virus epitopes, and HIV gp160 epitope (Neefjes

et al., 2011). The use of chemical inhibitors and CRISPR technology, together with high-throughput immu-

nopeptidomic experiments would be of great value in this context to systematically investigate the role of

new proteolytic proteins in shaping the composition and heterogeneity of theMHC-I immunopeptidome in

different cell and tissue types.

Two distinct categories of self-peptides were investigated in this study: those that are tissue-specific and

those that are widely presented across most tissues, referred in this study as housekeeping/universal MHC-

I peptides. Notably, our results show that these two categories of self-peptides share very distinct intrinsic

features. The latter is composed of peptides that are highly abundant and strongMHC-I binders in addition

to derive from highly expressed genes that are preferentially hyperconserved across evolution. In contrast,

tissue-specific peptides are relatively less stable and are encoded by genes that are strongly expressed in

the tissue of origin, but weakly or not expressed inmost tissues. Such features may play a role in modulating

T cell tolerance and autoimmune disorders. In fact, tolerance mechanisms through recognition of self-pep-

tides, both in the thymus and in the periphery, are critical to eliminate or control self-reactive T cells that

would otherwise lead to autoimmunity (Granados et al., 2015; Verteuil et al., 2012; Xing and Hogquist,

2012). In this regard, the current data show that a relatively large number of MHC-I peptides are tissue-spe-

cific, both in mouse and human. In theory, all those tissue-specific MHC-I peptides could be found in med-

ullary thymic epithelial cells (mTEC). Presentation of tissue-specific MHC-I peptides in mTEC could be

largely governed by autoimmune regulator (AIRE), the transcription factor that crucially regulates promis-

cuous gene expression for the establishment of self-tolerance (Anderson et al., 2002; Takahama et al.,

2017). To date, the precise contribution of AIRE in shaping the repertoire of tissue-specific MHC-I peptides

in mTEC remains undocumented, but deciphering its precise contribution, both qualitatively and quanti-

tatively, would improve our understanding of T cell tolerance against tissue-specific self-MHC-I peptides.

This is important because AIRE deficiency causes a failure in optimal promiscuous gene expression, and

therefore in the establishment of self-tolerance in T cells, leading to the onset of autoimmune diseases

in humans and mice (Takahama et al., 2017). Similarly, failure to self-tolerance against the other category

of self-MHC-I peptides, those that are abundantly presented everywhere—i.e., the housekeeping/univer-

sal peptides—would have even more devastating consequences as self-reactive T cells would destroy all

organs across the entire organism. Fortunately, we observed that genes coding for those housekeeping

peptides are among the most expressed across entire genomes, hence, increasing the probability that

those peptides will be abundantly presented in the thymus to trigger clonal deletion of immature self-reac-

tive T cells recognizing those peptides. Moreover, we made the fundamental observation that house-

keeping/universal peptides originate from hyperconserved genes. Therefore, the adaptive immune system

may have evolved for 500 million years, a remarkable mechanism enabling the elimination of those T cells in

a highly efficient manner. In contrast, controlling self-reactivity of T cells recognizing tissue-specific pep-

tides might be more challenging, thereby rationalizing the need for peripheral tolerance processes to

avoid tissue-specific autoimmunity (Matsumoto et al., 2019). Another causal logic to explain the occurrence

of broadly presented MHC-I peptides to be hyperconserved would be the fact that the MHC molecules

select for evolutionary conserved peptide sequences (binding motifs) resulting in the broad presentation

of certain peptides with greatest conservation across evolution.

Another important observation in this study was that the multiple HLA-I allotypes expressed by a given in-

dividual may contribute unevenly to the composition of the MHC-I immunopeptidome from one organ to

another. For instance, HLA-B40:02-associated peptides were found to be particularly enriched in the liver

of a given individual compared to all the other organs. Overall, 37 enrichment patterns were observed

across 27 specific HLA-I allotypes and 18 different tissues. This is an important basic information because

peptide antigens that are processed and presented in a tissue-dependent fashion may cause differential

phenotypic consequences in response to the same signal. For instance, in infectious diseases, Plasmodium

parasites (malaria) and SARS-CoV-2 (COVID-19) have the ability to reach and infect many host tissues (Co-

ban et al., 2018; Wadman et al., 2020). In this context, CD8+ T cells may behave very differently from one

tissue to another following tissue-dependent processing and presentation of pathogen-derived peptide

antigens, thereby likely impacting the overall efficiency of viral clearance by T cells. Interestingly, tapasin

could play an important role in shaping the observed differential composition of the HLA-I immunopepti-

dome between allotypes and tissues, as it was recently proposed to expand the HLA-I peptide repertoire

across humans, ultimately influencing immune responses to pathogens and vaccines (Bashirova et al.,

2020). Moreover, tissue-dependent antigen presentation may lead to a web of tissue-resident memory
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T cells that functionally adapt to their environment to stop viral spread across the organism (Kadoki et al.,

2017; Poon et al., 2021). Hence, tissue-specific variations in the MHC-I immunopeptidome likely play a role

in controlling infections or determining the severity of a disease. One can anticipate that immunopeptido-

mics approaches will be increasingly powerful in the future to investigate the dynamics of the MHC class I

antigen processing and presentation pathway in vivo and evaluate its impact on tissue-dependent T cell

responses in the organism.

Systems understanding of MHC-I antigen presentation at the organism level is at an early stage. MS tech-

nologies are constantly evolving and we anticipate that the tissue-specificity of the MHC-I immunopepti-

dome will be further refined in the future. In fact, we envision that further improvement in proteomics

and immunopeptidomics technologies will enable more robust, precise, and comprehensive measure-

ments of proteomes and immunopeptidomes in healthy tissues as well as in response to a wide range of

immunological perturbations. Integration of those measurements over time, together with new high-

throughput TCR-MHC peptide interaction studies (Dendrou et al., 2018; Moritz et al., 2019), will help

understand how widespread and tissue-specific changes in peptide processing and presentation impact

tissue-dependent T cell responses, and hence, help understand interorgan communications between

T cell networks to shape the organismal circuitry of immunity (Chevrier, 2019; Kadoki et al., 2017). From

a synthetic biology perspective, in-depth understanding of howMHC-I-associated peptides are generated

in vivo will enable accurate prediction of their dynamics, and ultimately, will accelerate the engineering of

new biological systems to control their presentation and function in immunity.

Limitations of the study

This bioinformatic study characterizes the in vivo immunopeptidome of mouse and human. This is the first

study of that kind and is critical for understanding constitutive antigen presentation. However, the study

has a number of technical limitations, which would need to be considered for the design of rigorous follow

up studies: 1) Bulk tissues were used. Therefore, the contribution of various stromal cells vs resident bone

marrow-derived cells was not considered. There are also limitations in analyzing thymus as a whole organ

comprised of negative and positively selecting cells as well as technical limitations in false negative peptide

detection. 2) Immunopeptidome analysis using the currently available protocols is highly biased to

peptides that bind MHC molecules with high affinity, although low affinity peptides can be immunogenic

(Yewdell and Bennink, 1999). 3) MS methods have bias for detecting peptide ligands from different HLA

allotypes, with different charge properties and consensus motifs (Demmers et al., 2019). For this reason,

quantitative comparisons within the same patient (same allele) are interpretable, but cross-comparison be-

tween individuals of different HLA allotypes is difficult to interpret in terms of immunopeptidome coverage,

and especially peptide intensity. 4) The sensitivity of the currently available LC-MS technology is limited.

Therefore, precise number/fraction of tissue-specific peptides reported in this study will likely change as

the technology evolves. 5) Related to point (4), tissue data has not been normalized, meaning that less ma-

terial and MHC expression levels in different tissues will guide the overall sequencing depth, and therefore

define the overlap of presented peptide sequences between the tissues. 6) Biological replicates to assess

reproducibility of peptide recovery from each organ of different mice have not been performed in (Schuster

et al., 2018). On that note, multiple replicates could be performed in future mouse and human immunopep-

tidomic mapping efforts to show statistical significance across tissues. 7) The bias of LC-MS acquisition to-

ward the most abundant peptide species may define the relationship with RNA transcript abundance. 8)

LC-MS database interpretation could lead to a bias of identifying peptides from non-variable regions

because spectral interpretation did not include accurately matched personalized databases. 9) Related

to point (8), the mRNA database used did not include noncanonical mRNA. Therefore, many noncanonical

MHC-I peptides were not identified but could be identified in future studies by performing RibSeq on the

same samples, as described (Chong et al., 2020; Cuevas et al., 2021). 10) The conclusion that ’hypercon-

served’ regions are preferentially presented need very careful further validation. 11) Another limitation is

the inability of the NetMHCpan suite tools to correctly annotate peptides to HLA alleles that are less char-

acterized. Hence, further development and application of new peptide clustering andHLA peptide binding

algorithms are expected to improve the accuracy of peptide annotation in future immunopeptidomic map-

ping efforts.

STAR+METHODS

Detailed methods are provided in the online version of this paper and include the following:
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Tampé, R. (2017). Structure of the human MHC-I
peptide-loading complex. Nature 551, 525–528.
https://doi.org/10.1038/nature24627.

Bourdetsky, D., Schmelzer, C.E.H., and Admon,
A. (2014). The nature and extent of contributions
by defective ribosome products to the HLA
peptidome. Proc. Natl. Acad. Sci. U S A 111,
E1591–E1599. https://doi.org/10.1073/pnas.
1321902111.

Burr, M.L., Sparbier, C.E., Chan, K.L., Chan, Y.-C.,
Kersbergen, A., Lam, E.Y.N., Azidis-Yates, E.,
Vassiliadis, D., Bell, C.C., Gilan, O., et al. (2019).
An evolutionarily conserved function of polycomb
silences the MHC class I antigen presentation
pathway and enables immune evasion in cancer.
Cancer Cell 36, 385–401.e8. https://doi.org/10.
1016/j.ccell.2019.08.008.

Caron, E., Aebersold, R., Banaei-Esfahani, A.,
Chong, C., and Bassani-Sternberg, M. (2017). A
case for a human immuno-peptidome project
consortium. Immunity 47, 203–208. https://doi.
org/10.1016/j.immuni.2017.07.010.

Caron, E., Espona, L., Kowalewski, D.J., Schuster,
H., Ternette, N., Alpı́zar, A., Schittenhelm, R.B.,
Ramarathinam, S.H., Arlehamn, C.S.L., Koh, C.C.,
et al. (2015a). An open-source computational and
data resource to analyze digital maps of
immunopeptidomes. Elife 4, e07661. https://doi.
org/10.7554/elife.07661.

Caron, E., Kowalewski, D.J., Koh, C.C., Sturm, T.,
Schuster, H., and Aebersold, R. (2015b). Analysis
of major histocompatibility complex (MHC)
immunopeptidomes using mass spectrometry.
Mol. Cell Proteomics 14, 3105–3117. https://doi.
org/10.1074/mcp.o115.052431.

Chevrier, N. (2019). Decoding the Body language
of immunity: tackling the immune system at the
organism level. Curr. Opin. Syst. Biol. 18, 19–26.
https://doi.org/10.1016/j.coisb.2019.10.010.

Chong, C., Müller, M., Pak, H., Harnett, D., Huber,
F., Grun, D., Leleu, M., Auger, A., Arnaud, M.,
Stevenson, B.J., et al. (2020). Integrated
proteogenomic deep sequencing and analytics
accurately identify non-canonical peptides in
tumor immunopeptidomes. Nat. Commun. 11,
1293. https://doi.org/10.1038/s41467-020-14968-
9.

Coban, C., Lee, M.S.J., and Ishii, K.J. (2018).
Tissue-specific immunopathology during malaria
infection. Nat. Rev. Immunol. 384, 1005. https://
doi.org/10.1038/nri.2017.138.

Cuevas, M.V.R., Hardy, M.-P., Hollý, J., Bonneil,
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STAR+METHODS

KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information and requests should be directed to the lead contact, Dr. Etienne Caron (etienne.

caron@umontreal.ca)

Materials availability

This study did not generate new unique reagents.

Data and code availability

d Source data statement. This paper analyzes existing, publicly available data. These accession numbers

for the datasets are listed in the key resources table.

d Code Statement. All original code has been deposited at https://github.com/CaronLab/MHCIatlas and

is publicly available as of the date of publication. DOIs are listed in the key resources table. Download of

the source code can be performed directly from the above link. Alternatively, the package can be

installed in R using the ‘install_github’ function from the ‘devtools’ package as shown below:

> devtools::install_github(’CaronLab/MHCIatlas’)

The ‘MHCIatlas’ R package includes 30 functions to reproduce the data-analysis presented in this manu-

script as well as the immunopeptidomic, proteomics and transcriptomics datasets used. A quick guide

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Mouse immunopeptidomics Schuster et al. (2018) https://doi.org/10.1038/sdata.2018.157

Human immunopeptidomics Marcu et al. (2021) https://doi.org/10.1136/jitc-2020-002071

Mouse proteomics Geiger et al. (2013). doi: https://doi.org/10.

1074/mcp.M112.024919. Epub 2013 Feb 22.

PMID: 23436904; PMCID: PMC3675825

https://doi.org/10.1074/mcp.m112.024919

Mouse transcriptomics Söllner et al. (2017) https://doi.org/10.1038/sdata.2017.185

Human transcriptomics

(accessed January 10th 2020),

the dataset used was:

‘GTEx_Analysis_2017-06-

05_v8_RNASeQCv1.1.9_

gene_median_tpm.gct’

GTEX repository https://www.gtexportal.org/

home/(accessed January 10th 2020)

GTEx_Analysis_2017-06-

05_v8_RNASeQCv1.1.9_

gene_median_tpm.gct

Human proteomics Wang et al. (2019). doi: https://doi.org/10.

15252/msb.20188503. PMID: 30777892;

PMCID: PMC6379049

https://doi.org/10.15252/msb.20188503

PhastCons Gene conservation

data (Human)

http://hgdownload.soe.ucsc.edu/goldenPath/

hg38/multiz100way/(accessed June 5th 2020)

DOI:https://doi.org/10.18129/B9.bioc.TxDb.

Hsapiens.UCSC.hg38.knownGene

PhastCons Gene conservation

data (Mouse)

http://hgdownload.soe.ucsc.edu/goldenPath/

mm10/multiz60way/(accessed June 5th 2020)

DOI: https://doi.org/10.18129/B9.bioc.TxDb.

Mmusculus.UCSC.mm10.knownGene

Software and algorithms

R https://www.r-project.org/

R Studio https://www.rstudio.com/

MHC-I Atlas In-house code https://github.com/CaronLab/MHCIatlas
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to install and use the R package ‘MHCIatlas’ is provided as supplemental information in form of the

‘MHCIatlas user guide’ pdf document (Data S1).

d Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Six datasets from previously reported studies were used (see each original study for details): 1) a mouse

immunopeptidomic dataset generated from 19 primary tissues (male and female C57BL/6) (Schuster

et al., 2018), 2) a human immunopeptidomic dataset generated from 29 primary tissues and 21 different

individuals (Marcu et al., 2021), 3) a mouse proteomic dataset generated from 28 primary tissues (Geiger

et al., 2013), 4) a human proteomic dataset generated from 29 primary tissues (Wang et al., 2019), 5) a

mouse transcriptomic dataset generated from 13 normal tissues (male C57BL/6) (Söllner et al., 2017),

and 6) a human transcriptomic dataset from the GTEX repository (https://www.gtexportal.org/home/;

see STAR Methods details below).

METHOD DETAILS

Retrieval and preparation of omics data from the literature

Mouse immunopeptidome. Raw data from the mouse immunopeptidome dataset (Schuster et al.,

2018) were downloaded and re-analyzed using ‘‘PEAKS 9 (Bioinformatics Solutions Inc., Waterloo, Ontario,

Canada)’’ (Tran et al., 2018). For the analysis, a Peaks 9 project was generated for each pulldown experiment

and parameters for the peptide searches used were non-specific digestion (Enzyme = None), the instru-

ment was set as ‘Orbitrap’, Fragmentation as ‘HCD’ and ‘DDA’ was used for the acquisition method spec-

ified. Furthermore, we set the precursor mass to 10ppm (monoisotopic mass), fragmentation to 0.01Da and

we included Oxidation(M) and Deamidation (NQ) as post translational modifications (PTM’s). We selected

the option ‘Estimate FDR with decoy-fusion’ to assess false discovery rates. From these results, peptides

identified with an FDR<5% were exported and further assessed for binding to the MHC-I alleles H2Kb

and H2Db using NetMHCpan4.0 (Jurtz et al., 2017). Peptides with a length of 8,9,10,11 or 12 amino acids

and a NetMHCpan-4.0 Rank score smaller than 2.0 (Rank% 2.0) were selected as MHC-I peptides. A collec-

tion of all mouse MHC-I peptides is made available in Table S1. All downstream data analysis is based on

this set of MHC-I peptides.

Mouse RNAseq data. Mouse RNAseq data were obtained from (Söllner et al., 2017) supplemental infor-

mation and can be found in Table S1. Data were used for further analysis in the form provided.

Mouse proteomics data. Mouse proteomic data were downloaded from (Geiger et al., 2013) supple-

mental information and can be found in Table S3. Protein intensities presented in Table S3 are the reported

label free intensities normalized across tissues.

Human immunopeptidome. Human immunopeptidome data were obtained from Marcu et al. (2021)

and represent the 2020.06 release of the dataset as can be accessed at https://hla-ligand-atlas.org/.

Mass spectrometry data acquisition and subsequent database searches are described in the method sec-

tions ‘Mass spectrometric data acquisition’ and ‘Database search with MHCquant’ in Marcu et al. (2021),

respectively. Please refer to to these two method sections to access all the details and parameters

regarding data acquisition and database searches for HLA class I peptide identification. Next, peptides

from this dataset were predicted for HLA-I binding using NetMHCpan4.0 (Jurtz et al., 2017). Only alleles

present in the donor database [based on allele genotyping as described in Marcu et al.] were predicted.

Out of six alleles genotyped to each donor, the allele with the lowest/best NetMHCpan-4.0 Rank score

was assigned to a given peptide. For the analysis presented in this manuscript, peptides with a NetMHC-

pan-4.0 rank smaller or equal than 2 (Rank<=2) were considered HLA-I peptides. The quantitative informa-

tion, as reported by MHCquant (Bichmann et al., 2019), was also used in the current manuscript. Raw

peptide intensities were used as approximative quantitative information and no normalization was per-

formed due to the heterogeneous nature of pulldowns and primary tissue samples. A complete list of pep-

tides including metadata can be found in Table S2. In Marcu et al. (2021), all HLA-I peptides identified were

compared to peptides found in the IEDB and the SysteMHC Atlas, and a selected subset of cryptic pep-

tides were validated using synthetic isotope-labeled peptides (Marcu et al., 2021). In vitro HLA-peptide
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binding assays (Sidney et al., 2013) will be performed in the future for cryptic peptides as well as for canon-

ical peptides that are predicted to bind several HLA-I allotypes.

Human RNAseq data. Human RNAseq data were obtained from the GTEX repository https://www.

gtexportal.org/home/(accessed January 10th 2020), the dataset used was: ‘GTEx_Analysis_2017-06-

05_v8_RNASeQCv1.1.9_gene_median_tpm.gct’. The subset of data used for this manuscript can be found

in Table S2. Data were used for further analysis in the form provided.

Human proteomics data. Human proteomics data were obtained from (Wang et al., 2019). The subset of

data used for this publication can be found in Table S4. Data were used for further analysis in the form pro-

vided, unless stated differently.

Principal component analysis of immunopeptidome data

Principal component analysis and visualization was performed in R using the FactoMineR package (Lê et al.,

2008). Input variables consist of 19 mouse tissues and 28 human tissues for which immunopeptidomic data

are available (note that human thymus tissues were sampled differently and were excluded from this anal-

ysis). For each tissue, a vector of individual peptide intensities (log10 transformed) was loaded. The first two

dimensions accounting for most of the variability in the data were plotted (Figures 2D and 2E).

Tissue connectivity maps

For every possible pair of tissues, the number of overlapping peptides was determined for the mouse and

human immunopeptidomes, respectively. A peptide was considered overlapping if an intensity value had

been reported in both tissues. A connectivity matrix was generated from the resulting data for mouse and

human, respectively (Figures 2F and S1B). Noteworthily, the number of peptides unique to a given tissue is

depicted along the diagonal of depicted heatmaps.

Tissue-dependent representation of HLA alleles

The proportion of peptides represented by a specific allele in a given tissue was calculated for every sub-

ject. Similarly, the mean proportion of every allele across tissues was calculated for every subject. These

values were then used to calculate the over- or under-representation of each allele in a tissue compared

to the mean as follows:

Subject dependent allele enrichment in tissues:

%½Allele�in Tissue k
�Pn

k = 1½Allele�in Tissue k
��

n
= Tissue dependent allele enrichment

Examples for subject specific allele representations can be found in Figures 2B–2D. In order to assess

trends across all subjects, we calculated the mean of these over- and under-representation values for all

alleles across all subjects. To find trends among the data, we focused only on alleles over-represented

by, on average, at least 1.5-fold in a given tissue across all subjects. Results are depicted in Figure 2E.

Connecting mouse immunopeptidomic data with mouse RNAseq data

Source genes of mouse MHC-I peptides available from the Peaks results were mapped to ENSEMBL iden-

tifiers using the mouse annotation package org.Mm.eg.db in R (https://doi.org/10.18129/B9.bioc.org.Mm.

eg.db). These source genes were then mapped to the genes in the RNAseq dataset (Söllner et al., 2017) to

assess their tissue-dependent RNAseq expression (Table S1). All mappings between different gene iden-

tifiers were performed using the R package AnnotationHub (https://doi.org/10.18129/B9.bioc.

AnnotationHub).

Source genes from tissue-specific MHC-I peptides in mouse (Mouse source genes)

Genes mapped to a peptide which is present in only one of the nineteen tissues analyzed in the mouse immu-

nopeptidome are considered to be source genes of tissue specific MHC-I peptides. We have not assessed to

what extend additional MHC-I peptides from such a gene are represented across tissues (for genes where

more than oneMHC-I peptidewas identified).We found2448 source genes from tissue-specificMHC-I peptides

in mouse.
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Tissue dependent expression of mouse source genes

In order to visualize the expression of source genes originating from tissue-specific MHC-I peptides, we

mapped the 2448 source genes we found in mouse to the mRNA expression atlas published by (Söllner

et al., 2017). For the 9 tissues where transcriptomics and proteomics data were available, we extracted

mRNA expression levels of the mouse source genes. Expression levels were then averaged across each tis-

sue, grouped by the source tissue (Tissue in which gene represents immunopeptides). Within each source

tissue group, a z-score for the average expression value of genes was calculated. The resulting matrix is

visualized in Figure 4C.

Note: Z-scores were calculated as follows:

z� score=
Source gene expression in given tissue � Mean source gene expression across tissues

Standard deviation of source gene expression

Conservation of source genes from universal MHC-I peptides (Mouse)

Universal MHC-I peptides are defined as MHC-I peptides present in all of the 19 sampled mouse tissues

(Figure S6A). Peptides from 38 genes were found in the mouse dataset (Table S1). We calculated the con-

servation of the exon and promoter regions of the corresponding source genes and compared their ge-

netic conservation to those from source genes of tissue specific MHC-I peptides. Conservation scores

were extracted in form of PhastCons conservation probabilities (Siepel et al., 2005; Siepel and Haussler,

2004) from publicly available multiple alignments of themouse genome and the genomes of 59 vertebrates

(http://hgdownload.soe.ucsc.edu/goldenPath/mm10/multiz60way/) from the UCSC genome browser

(https://genome.ucsc.edu/index.html) (accessed June 5th 2020). BigWig files containing PhastCons scores

for the mouse genome were downloaded and queried for the genes of interest using the R package

rtracklayer (Lawrence et al., 2009) together with gene positional information from the ‘TxDb.Mmusculu-

s.UCSC.mm10.knownGene’ database provided by the UCSC genome browser (https://doi.org/10.

18129/B9.bioc.TxDb.Mmusculus.UCSC.mm10.knownGene). PhastCons scores for nucleotides of the

exon and promoter regions of housekeeping and tissue-specific source genes were extracted from

the BigWig files. Promoter regions were defined as 200 bases downstream and 2000 bases upstream of

the transcription start site. Conservation scores were then calculated using a 12-base pair sliding window

along the extracted genetic regions and the maximum PhastCons value was used as the conservation

score. The cumulative frequency of these PhastCons values for the exon and promoter regions of source

genes from universal MHC-I peptides and source genes from tissue-specific MHC-I peptides were calcu-

lated and compared using the Wilcoxon rank sum test, respectively. This analysis and workflow were

inspired by Zeng et al. (2016) and Zhu et al. (2008) who investigated the genomic conservation of house-

keeping genes compared to tissue specific genes in mouse and human, respectively. Furthermore, ideas

for the implication of PhastCons conservation rates were derived from Sun et al. (2014).

Annotating the molecular weight of MHC-I peptide source genes (Mouse)

Molecular weights of proteins were retrieved from www.uniprot.org (Complete Mus musculus proteome,

reviewed + un-reviewed proteins, accessed June 17 2020). Uniprot identifiers were matched to ENSEMBL

gene identifiers and used for analysis.

Connecting human immunopeptidomic data with human RNAseq data

Source genes of humanMHC-I peptides weremapped to ENSEMBL identifiers using the human annotation

package org.Hs.eg.db in R (org.Hs.eg.db: Genome wide annotation for Human. R package version 3.8.2).

These source genes were then mapped to the genes in the RNAseq dataset (‘GTEx_Analysis_2017-06-

05_v8_RNASeQCv1.1.9_gene_median_tpm.gct’) to assess their tissue-dependent RNAseq expression (Ta-

ble S2). All mappings between different gene identifiers were performed using the R package Annotation-

Hub (https://doi.org/10.18129/B9.bioc.AnnotationHub).

Source genes from tissue-specific MHC-I peptides (Human)

Source genes representing one or more MHC-I peptides that were measured in only one tissue sample in

the human immunopeptidome dataset were considered source genes from tissue-specific MHC-I pep-

tides. In human we found 12,095 of such genes. Similar to the mouse analysis, we did not assess to what

extendt these genes yield additional peptides present in more than one tissue sample.
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Conservation of source genes from universal MHC-I peptides (Human)

Defining source genes from universal MHC-I peptides in human is less straightforward compared to the

mouse due to the heterogeneity of subjects from which tissues were sampled and HLA alleles representa-

tion. Hence, we defined a source gene from universal MHC-I peptides in the available human immunopep-

tidome as a gene for which one or more MHC-I peptides were either 1) present across all tissues in at least

two patients or 2) present across all samples in which the assigned HLA allele was present or 3) among the

top 100 peptides identified the most frequently across all measured samples, independent of allele or sub-

ject (Figures S6B–S6F). In order to avoid a bias towars peptides from donors where only few tissues were

sampled, we focused only on donors where 14 or more tissues were sampled. This analysis resulted in a

total of 251 source genes from universal MHC-I peptides (Figure S7 and Table S2).

Conservation analysis was performed using PhastCons retrieved from an alignment of the hg38 human

genome with 99 vertebrates. Data were downloaded from the UCSC genome browser at http://

hgdownload.soe.ucsc.edu/goldenPath/hg38/multiz100way/(accessed June 5th 2020). Genetic positions

of genes of interest (genes from universal and tissue-specific MHC-I peptides) were mapped using the

‘TxDb.Hsapiens.UCSC.hg38.knownGene’ database (https://doi.org/10.18129/B9.bioc.TxDb.Hsapiens.

UCSC.hg38.knownGene) and conservation scores were calculated and compared the same way as the

mouse conservation scores.

Annotating the molecular weight of MHC-I peptide source genes (Human)

Molecular weights of proteins were retrieved from www.uniprot.org (Complete Homo sapiens proteome,

reviewed + un-reviewed proteins, accessed June 17 2020). Uniprot identifiers were matched to ENSEMBL

gene identifiers and used for analysis.

Computing and analyzing protein wise correlation between tissue MHC-I peptide counts and

protein abundances in mouse and human

Protein expression data from mouse and human proteomic tissue drafts (Tables S3 and S4) were obtained

from (Geiger et al., 2013) for mouse and (Wang et al., 2019) for human. Both datasets were chosen due to

their recency and wide range of tissues sampled. Correlations between the expression pattern of a given

protein across tissues and the overall number of MHC-I peptides sampled across tissues in mouse or hu-

man subjects were measured. Expression values (log10 transformed) of each protein across tissues were

plotted against the number of total MHC-I peptides identified in each tissue and R-squared and p values

were computed if more than 9 measurement pairs (expression value and total number of MHC-I peptides)

were available. The R package ‘stats’ and the implemented function ‘lm’ was used to generate linear fits

and R-squared values. For the human dataset, correlations were calculated for immunopeptidome data

from every subject where above criteria were fulfilled. Expression values from jejunum and duodenum

from the human proteomics dataset (Wang et al., 2019) were averaged and paired with total MHC-I peptide

counts in the small intestine. p-values and R-squared values were reported. For the human data, we

required p values < 0.05 and R-squared values > 0.4 in at least two patients to consider a correlation to

be non-random (Figure S9A). For the mouse data where only one donor is available, correlations with p

values < 0.01 and R-squared > 0.4 were considered to be non-random observations (Figure S9B). Correla-

tion data for all proteins of the mouse and human datasets can be found in Tables S3 and S4, respectively.

Functional proteomic analysis

Gene set enrichment analysis (GSEA; http://www.broad.mit.edu/gsea/) was performed using GSEA soft-

ware and the Molecular Signature Database (MsigDB) on proteins from systematic cross-tissue analysis

of MHC class I peptides and protein expression. Top 50 significant gene sets using the Gene Ontology

modules overlap analysis were considered significant with p value and FDR <0.05. We acknowledge our

use of the GSEA, GSEA software, and MSigDB (Subramanian et al., 2005). Results can be found in Table S5.

QUANTIFICATION AND STATISTICAL ANALYSIS

Significance of the correlations between tissue MHC-I peptide counts and protein

abundances in mouse and human

As a first step, the significance of the correlations was defined based on a previous proteomics study (Ku-

biniok et al., 2017). In brief, Kubiniok et al. showed that R-squared values > 0.4 generally imply less than 1%

false positive among fitted data compared to a randomized dataset of the same nature [see Figure S2 in
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Kubiniok et al. (2017) for details]. Then, we used a similar approach in the current study to assess the

behavior of the dataset and found that the number of false positives is generally less than 5% for R-squared

values above 0.4 (Figure S9A). Based on these results, we decided to choose an R-squared value of 0.4 as a

general measure for a cut-off value together with the p value cut-off for this type of proteomics data.

Accordingly, we show in Figure S9B and S9C that the R-squared value cut-off of 0.4 adds to the stringency

of data that were selected when using a p value of 0.05 (Human) or 0.01 (Mouse) as a cut-off. Next, we used

the R package stats and the function ‘lm’ (https://www.rdocumentation.org/packages/stats/versions/3.6.2/

topics/lm) to apply the statistical method and generate the fitted curves. Note that we used only proteins

for which at least ten measurements were available since ten data points were shown to be the minimal

requirement for linear regression, as previously reported (Jenkins and Quintana-Ascencio, 2020). Hence,

we systematically excluded proteins with less than ten measurements from the analysis. Apart from that,

no immunopeptidome data was excluded from the mouse and human dataset described. Furthermore,

we validated our method by crosschecking for an enrichment of true positive hits amongst the selected

data. For example, prominent proteins involved in the degradation of proteins and generation of MHC-I

peptides, like Psmd1, Psme4 and Erap1, show correlation values close to the set R-squared value cut-off

(Figure S12).
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