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Abstract
Respiratory influenza virus infections represent a serious threat to human health. Underly-

ing medical conditions and genetic make-up predispose some influenza patients to more

severe forms of disease. To date, only a few studies have been performed in patients to cor-

relate a selected group of cytokines and chemokines with influenza infection. Therefore, we

evaluated the potential of a novel multiplex micro-proteomics technology, SOMAscan, to

quantify proteins in the respiratory mucosa of influenza A and B infected individuals. The

analysis included but was not limited to quantification of cytokines and chemokines

detected in previous studies. SOMAscan quantified more than 1,000 secreted proteins in

small nasal wash volumes from infected and healthy individuals. Our results illustrate the

utility of micro-proteomic technology for analysis of proteins in small volumes of respiratory

mucosal samples. Furthermore, when we compared nasal wash samples from influenza-

infected patients with viral load� 28 and increased IL-6 and CXCL10 to healthy controls,

we identified 162 differentially-expressed proteins between the two groups. This number

greatly exceeds the number of DEPs identified in previous studies in human influenza

patients. Most of the identified proteins were associated with the host immune response to

infection, and changes in protein levels of 151 of the DEPs were significantly correlated with

viral load. Most important, SOMAscan identified differentially expressed proteins heretofore

not associated with respiratory influenza infection in humans. Our study is the first report for

the use of SOMAscan to screen nasal secretions. It establishes a precedent for micro-prote-

omic quantification of proteins that reflect ongoing response to respiratory infection.
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Introduction
Each year, about 500 million people are infected by the influenza A virus (IAV) worldwide, of
which about 500,000 die [1]. In recent history, the emergence of new influenza subtypes has
caused several pandemics [2–4]. The most severe pandemic in 1918 caused about 30–50 mil-
lion deaths worldwide [5], and a new variant of a seasonal H1N1 virus, pH1N1, caused a
world-wide pandemic in 2009 [6–8]. Avian viruses can also directly infect humans. In particu-
lar, two subtypes, H5N1 and H7N9, may cause severe disease with lethal outcome [9–13].
Adverse health conditions, such as obesity and diabetes, and genetic make-up predispose influ-
enza patients to more severe forms of the disease [14–19]. Cytokines and chemokines released
in a cytokine storm in response to influenza infection contribute to disease severity [20].
Unraveling the pathogenesis of influenza in humans so as to identify potential targets for
human therapeutics and predictors of disease severity necessitates the evaluation of the main
site of viral replication, the mucosal tissues of the respiratory tract. The majority of the disease
pathogenesis caused by influenza occurs after viral replication has already started to decline
[21], thus adding to the impetus to develop host-response-targeted therapies in addition to
continuing evaluation of better antiviral therapeutics. Additionally, host-response-based diag-
nostics may improve identification of patients at highest risk of disease progression. Quantita-
tive mucosal biomarker identification is important for such work to proceed rationally.

Most multiplex assays for disease protein biomarkers in inflammation and infection have been
limited to detection of chemokines and cytokines expected to play a role in disease pathogenesis
and for which prepared kits are readily available. Hence those assays have inherent bias. Here, we
have attempted a new approach to biomarker identification in influenza infected patients using
an aptamer-dependent, micro-proteomic approach (SOMAscan1). SOMAscan is a recently
developed technology that can simultaneously quantify more than 1,000 human proteins in small
volumes of complex biological fluids [22]. We used the SOMAscan version 1.2k that had a multi-
plex library of 1,129 SOMAmers (Slow Off-rate Modified nucleic acid based Aptamers) that each
quantifies a single soluble protein [23]. SOMAscan transforms the number of each protein-
bound SOMAmer into a quantitative measure of protein concentration [24]. SOMAscan is highly
sensitive with a threshold of detection of 30 femtomolar,<1 pg/ml and 108-fold dynamic range
for quantification of proteome changes in mice [25] and humans [22, 24, 26, 27].

Here, we identified several differentially expressed proteins in mucosal secretions that here-
tofore have not been associated with respiratory influenza infection in humans. Our results
indicate that SOMAscan is well suited for biomarker discovery in respiratory infections.

Results

SOMAscan detects a broad spectrum of proteins in mucosal secretions
We first evaluated whether an unbiased proteomic screen like SOMAscan would identify pro-
teins in mucosal samples other than those detected in standard cytokine and chemokine assays
[28, 29] and already known to be relevant for inflammation and immune response to respira-
tory influenza infection. For this, we analyzed 24 nasal wash samples from a previously
described influenza cohort [28] (S1 Table). The samples included 18 from patients with identi-
fied influenza infection, 11 patients infected with IAV H3 strain, two infected with IAV pH1
subtypes, and five infected with influenza B. The healthy control group consisted of samples
from six individuals who were not infected with influenza, who showed no clinical signs of
infection, such as fever, cough, or sore throat [28] and who appeared to be otherwise healthy.
Viral loads in infected patients, determined by quantitative reverse transcription PCR
(qRT-PCR) [28], ranged from 0.72 to 5.1x106 copies/ml [28].
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The nasal washes were analyzed with the 1.2k version of SOMAscan with 1,129 SOMAmers
that simultaneously quantified 1,030 different human proteins [24]. Quantitative expression
signals were log2-transformed and quantile-normalized and then examined by principle com-
ponent analysis (PCA) to visualize variation and grouping of samples. PCA is a mathematical
transformation that reduces variation in a large data set to a few dimensions that project differ-
ences determined by the strongest variables. The first two dimensions that represent the high-
est variations of a PCA analysis can be visualized in a 2D plot. In this way, samples that are
most disparate with respect to protein expression levels are found more distantly located from
each other in the 2D PCA plot, and samples with similar protein expression levels are closer to
each other in the plot. As shown in Fig 1, most infected patients (red circles) segregated
together indicating that their protein expression levels were similar. Most influenza virus-posi-
tive patients segregated to the right of PCA1 = 0 suggesting that these patients had similar
changes in their mucosal proteome compared to others in the cohort. The healthy controls
(grey circles) segregated to the left except for ID_3058 that segregated with the leftmost group
of virus-infected patients. Three patients who were diagnosed as virus-positive (red circles),
based on qRT-PCR [28], segregated with healthy controls (grey circles). Patient ID_3045 segre-
gated independently of all other patients. The imperfect PCA distribution of infected versus
healthy patients is in part due to the small sample size but also reflects the large uncontrollable
heterogeneity which is an intrinsic property of human cohorts. Here, many confounding fac-
tors, such as adverse health conditions, time after infection, genetics, and general environment,
may influence mucosal protein expression levels and are difficult or impossible to control.

Fig 1. PCA analysis of normalized protein expression values. Principle component analysis (PCA) was performed with quantile normalized log2–
transformed protein expression values from nasal washes for all 24 samples. The first two principal components are shown representing 24% and 17%,
respectively, of the total variation. Healthy controls are labeled gray and IAV-positive samples (in which influenza A or B was detected by PCR) are labeled
red. In addition, sample identities (e.g. ID_4043) are shown. Horizontal and vertical axis represent principle component 1 and 2, respectively.

doi:10.1371/journal.pone.0153674.g001
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There was good correlation between measurements in SOMAscan for four analytes that
were previously quantified by Luminex in samples from the same patients [28]. Relative pro-
tein expression levels for IL-6, CXCL10/IP10, CCL7/MCP3, and CXCL8/IL-8 were highest
among proteins measured by SOMAscan, and those levels correlated well with measurements
of the same proteins by Luminex (S1 Fig). The majority of proteins quantified by SOMAscan
were not measured in the previous Luminex study. The correlation between Luminex and
SOMAscan validates our results and verifies SOMAscan's potential to identify proteins relevant
to pathophysiology, inflammation, and immune response in mucosal secretions after influenza
infection.

Differentially expressed proteins in influenza virus infected patients
A comparison of all 18 samples from infected patients with the six samples from healthy indi-
viduals did not identify statistically significant differentially expressed proteins (DEPs). This
result is consistent with the incomplete segregation of positive and negative samples in the
PCA (Fig 1) and previous chemokine and cytokine measurements in samples from the entire
patient cohort from which the samples analyzed herein were obtained [28]. The low viral load
in some of the infected patients (S1 Table) may account for this result. It is well known from
animal experiments that immune responses and pathologies depend largely on viral loads
(reviewed in [30]). Furthermore, the distribution of viral loads among all of the infected
patients in the entire patient cohort [28] was bimodal (S2 Fig). Based upon the bimodal distri-
bution between patients with higher versus lower viral RNA levels in the entire influenza
infected patient cohort, we selected a subset of patients with a minimum viral load of 28 (subset
A, S2 Table) to identify proteins that were differentially expressed between infected patients
(12 samples) and healthy controls (6 samples). Fig 2 shows the PCA for this subset. Compari-
son of the SOMAscan results between virally-infected patients and healthy controls from sub-
set A by LIMMA revealed a total of 23 DEPs, 5 increased and 18 decreased (log2-fold
change� 1 and adjusted p< 0.01) (S3 Table).

In subset A, sample ID_4043 segregated separately in the PCA (Fig 2) from the other influ-
enza virus-positive samples and had low levels of CXCL10 and IL6 (data not shown). CXCL10
and IL6 are known to be highly elevated after influenza infection [29], and the previous cyto-
kine-chemokine analysis [28] indicated that plasma CXCL10 was correlated with viral loads.
Therefore, we analyzed a second subset (subset B) which was identical to subset A except that
the outlier sample ID_4043 was deleted. Thus, subset B (S2 Table) consisted of six healthy con-
trols (same as in subset A) and 11 influenza-infected patients (12 minus 1 from subset A). The
corresponding PCA showed good segregation between uninfected control and influenza virus-
positive groups (S3 Fig). Accordingly, analyses of IL6 and CXCL10 expression levels showed sig-
nificant differences between the two groups (Kruskal-Wallis, p< 0.01 and p< 0.05, respec-
tively) (S4 Fig), even though samples from two healthy controls had relatively elevated CXCL10
compared to the other healthy controls. Further analysis of subset B using LIMMA revealed a
total of 162 DEPs, 63 increased and 99 decreased in samples from virally infected patients com-
pared to uninfected individuals (log2-fold change� 1 and adjusted p< 0.01) (S4 Table). Func-
tional analysis of these DEPs using the Reactome pathway database showed enrichment for
pathways that are activated during the host immune response (Fig 3). Furthermore, 151 of the
162 (up- or down-regulated) DEPs were also highly correlated with viral load. 56 of the 151
DEPs were positively and 95 were negatively correlated with viral load (0.6< ρ<—0.6 and
FDR< 0.01) (Fig 4, S5 Table).

In conclusion, the SOMAscan analysis revealed the expected large heterogeneity among the
24 samples, similar to selective cytokine-chemokine multiplex assays, and reproduced results
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obtained previously with Luminex assays. In addition SOMAscan identified many additional
DEPs that could not be detected in the previous study of the influenza cohort from which our
samples were derived. Thus, SOMAscan is well suited for the detection of proteome differences
in patients’ responses to influenza virus infection.

Discussion
In this study, we demonstrate the utility of an unbiased, micro-proteomic analysis from small
volumes of nasal washes to quantify proteome differences between influenza virus-infected
patients and healthy individuals. SOMAscan identified more than 160 differentially expressed
proteins (DEPs) from human respiratory influenza patients with a minimum viral load of 28.
Not surprising, most of the DEPs are associated with inflammation and/or immune response
pathways. Among the 160 DEPs, 151 were correlated with viral loads in the respective subpop-
ulation of influenza virus-infected patients

Among the DEPs with increased expression detected in our study, many are associated with
the recruitment and activation of memory T cells. CXCL11 [31], CXCL10 [32, 33], IL-16 [34,
35], and GNLY (granulysisn) [36], are all chemokines chemotactic for activated and memory
CD4 T cells, especially Th1 [33]. Another DEP that was correlated with viral load is amphire-
gulin. Amphiregulin is an epithelial and fibroblast cell mitogen and growth factor that, chroni-
cally, is also associated with inflammation [37, 38]. Recent results from lung influenza
infection of mice point to a critical role for amphiregulin in limiting inflammation or otherwise

Fig 2. PCA analysis of normalized protein expression values of subset A. Principle component analysis (PCA) was performed with normalized log2–
transformed protein expression values from nasal washes for 18 samples from the subset A that was selected based viral load being higher than > 28. The
first two principal components are shown representing 42% and 16%, respectively, of the total variation. Healthy controls are labelled gray and IAV-positive
samples are labelled red. In addition, sample identities (e.g., ID_4002) are shown. Horizontal and vertical axis represent principle component 1 and 2,
respectively.

doi:10.1371/journal.pone.0153674.g002
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protecting lung epithelium from damage after influenza virus infection [39–41]. Both innate
lymphocytes (ILC) [41] and regulatory T cells [39] contributed to local amphiregulin in
infected mouse lungs. It will be interesting to know what cells produce amphiregulin and
whether it may be a biomarker to predict disease severity in human influenza patients.

The three DEPs with highest correlation to viral load in subset B were RPS6KA5 (MSK1,
mitogen and stress activated kinase 1), KNG1 (kininogen), MAP2K1 (MEK-1, mitogen-acti-
vated protein kinase kinase-1), ANXA1 (annexin A1), and STIP1 (stress induced phosphopro-
tein 1). All of these proteins are associated with the initiation or resolution of inflammation
and/or stress response and were strongly correlated with viral load. RPS6KA5 (MSK1) had the
highest correlation with viral load in subset B (rho = 0.91, p< 0.01). MSK1 has been associated
with activation [42–44] and inhibition of inflammation [44, 45] in lung epithelium. MSK1 is
downstream of ERK1/2 and p38MAPK and can phosphorylate NFκB p65 and is a key regulator

Fig 3. Functional analysis of DEPs from subset B. Pathway enrichment analysis for normalized log2–transformed expression values of proteins that were
differentially expressed in IAV-positive versus IAV-negative patients from subset B is presented. Pathway terms that were enriched for the DEPs from subset
B are indicated on the y-axis, the number of DEPs in the respective pathway category is indicated on the x-axis. The p-value for the probability that the
observed distribution of expression occurred by chance is represented by colors of bars. The cut-off value for the pathway p-values was chosen at 0.05.

doi:10.1371/journal.pone.0153674.g003

Mucosal Proteome Influenza Infection

PLOS ONE | DOI:10.1371/journal.pone.0153674 April 18, 2016 6 / 16



of lung airway inflammation. MEK-1 is upstream of ERK1/2 and MSK-1 in the non-canonical
pathway for p65/RelA phosphorylation by MSK1 leading to NFκB activated transcription of
inflammatory cytokines and chemokines [46] including those detected as DEPs described
above. MSK1 phosphorylation of p65/RelA is also critical for inflammatory cytokine produc-
tion in an experimental model for respiratory syncytial virus (RSV) infection [47]. Herein is
the first reported association of this key regulator of inflammation with respiratory influenza
infection. Kininogen is a co-factor in the plasma kinin-kallikrein, contact system for blood
coagulation and the generation of inflammatory mediators [48]. High molecular weight kini-
nogen (HMWK) is precurosor for bradykinin, which is an important mediator of endothelial
permeability. Hantavirus infected endothelial cells induce increased cleavage of HMWK with
increased bradykinin and vascular permeability [49]. Increased nasal secretions have been cor-
related with increased glandular bradykinin in experimental infection of adult humans with
IAV H1N1 [50]. Annexin A1 functions as a resolvin to reverse or resolve inflammation after it
is initiated [51].

Most previous studies of respiratory influenza infection in humans have limited analyses of
soluble proteins in serum or nasal washes to cytokines and chemokines predicted to be relevant

Fig 4. Scatter plot of RPS6KA5 expression levels and viral load. Scatter plot of normalized log2–transformed relative protein concentrations of RPS6KA5
which was the DEP that most strongly correlated with viral titers and log2-transformed virus titers are presented for patients from subset B. Red line: linear
regression model.

doi:10.1371/journal.pone.0153674.g004
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to inflammation and immune response (reviewed in [52–54]). For example, the previous study
of the large patient cohort from which our samples were derived [28] investigated changes in
41 cytokines and chemokines using Luminex. Distinct changes for IFNA2, CCL7 (MCP-3),
IL6, and VEGFA (VEGF) in nasal washes and CCL7 (MCP-3), IL10, IL6, and CXCL10 (IP-10)
in peripheral blood of human patients were significantly correlated with disease severity [28]
but not viral load. IL6 was also identified as a DEP in our study; however, it should be noted
that we used a more stringent p = 0.01. When p = 0.05, CCL7, IL6 and CXCL10 are also DEPs
in our study. Another study compared plasma cytokines, metalloproteases, and complement
activation in seven patients infected with H1N1 and found 16 proteins that were differentially
expressed in the blood of influenza infected patients [29]. Five of the 16 proteins, CXCL10, IL6,
IL17D, CSF2, PDGFB, from that study were also identified as DEPs in our study (adjusted
p = 0.05). Moreover, elevated levels of CXCL10 (IP-10), IL6, IL17, and IL2 in sera of 16 hospi-
tal-admitted patients infected with H7N9 were previously reported, and IL6 and CXCL10 cor-
related with the 13 patients that developed severe disease [55]. A more recent study identified a
correlation between serum levels of cytokines MIF, SCF, MCP-1, HGF, and SCGF-β and dis-
ease severity after H7N9 respiratory influenza infection [56]. We also found IL17D, IL6, and
CXCL10 to be elevated DEPs in influenza virus-infected patients in our study.

A number of global proteomic analyses have been performed with influenza-infected cells
in vitro [57–64] and mouse lungs ex vivo [65]. A recent global proteomic analysis of plasma
proteins associated with influenza infection used two-dimensional gel electrophoresis and liq-
uid chromatography mass spectrometry (LC-MS) [66]. Only FAM157A, leucine-rich alpha 2
glycoprotein, serum amyloid A protein, and dual oxidase 1 were statistically significantly differ-
ent in plasma of healthy versus influenza-infected individuals by LC-MS.

In addition to up-regulated proteins, our study also identified many proteins with reduced
expression in influenza virus-infected patients versus healthy controls. Of the proteins with
reduced expression identified in our study, the five most-reduced DEPs in samples from influ-
enza-infected patients that were also correlated with higher viral loads were CTSD, KLK7,
MFGE8, MAPK9 and CD27, respectively. Cathepsin D (CTSD) is a lysosomal aspartic protease
that has been shown to be highly expressed in alveolar resident macrophages and Kupffer cells
following IAV infections in mice [67, 68]. KLK7 is a chymotrypsin-like serine protease that
cleaves proteins at tyrosine, phenylalanine or leucine [69]. It is expressed in the epithelium of the
upper and lower respiratory tract (nose, paranasal sinuses, larynx, trachea, bronchial tree) and in
their submucosal glands but not the alveolar epithelium [70]. MFGE8 (lactadherin) is a cell adhe-
sion protein that has been suggested to connect smooth muscle cells and elastic fibers of arteries
[71]. Importantly, MFGE8 has been shown to promote opsonization of apoptotic cells and their
subsequent phagocytosis through its phosphatidylserine (PS) and RGD integrin binding
domains, respectively [72]. MAPK9 (JNK2) has been reported to play a role in p53 regulation
and T cell differentiation and activation [73–75]. MAPKs and JNKs have been shown to play a
role in the immune response to avian and human IAV infections [76–78]. CD27 is a member of
the TNF-receptor family and serves as a T-cell costimulatory molecule [79]. In humans, CD27
+ B cells exhibit a memory cell phenotype [80]. In T cells, CD27 is required for efficient CD4
+ and CD8+ responses to influenza virus infection. This was only true for generating and main-
taining antigen-specific T cell immunity, not effector cell expansion [81]. Of note, these reduced
DEPs are involved in lung homeostasis and immunity and their reduced expression negatively
correlates with viral load, suggesting that they could potentially be part of a biomarker or signa-
ture of infection severity. Importantly, none of these proteins are represented in other standard
cytokine-chemokine multiplex panels typically used to analyze infected patient samples.

SOMAscan is capable of measuring a much larger number of cytokines and chemokines
than are evaluable by standard techniques (Luminex and ELISA), especially with the limited
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sample volumes inherent in human translational studies. Additionally, other proteins, not
known to contribute to inflammation, nor associated with inflammation or immunity are
assessable. Therefore, SOMAscan allowed the identification of potentially novel pathways in
the context of viral infections that may not be discovered with a pre-selected or biased multi-
plex assay such as Luminex and ELISA. While these proteins have reported functions, future
studies could identify novel functions during viral infection that would provide additional
insights into the complex host-influenza virus interactions.

The SOMAscan results were generally correlated well with Luminex and other assays that
identified DEPs in mucosal fluids from influenza virus-infected patients. For example, IL-6,
CXCL10/IP10, CCL7/MCP3, and CXCL8/IL-8 were among proteins present at high levels in
nasal washes when measured by SOMAscan. Those proteins had similarly high relative levels
in the same samples when measured by Luminex [28], but SOMAscan measured 25-fold more
proteins. Among the proteins quantified by SOMAscan but not Luminex or other assay meth-
ods, many were highly correlated to influenza viral loads. As noted above, all of those proteins
are integral to pathways important in inflammation and stress response. DEPs that segregated
according to clinical disease severity were not identified. This result is not surprising since clin-
ical disease severity was not correlated with viral loads in the patient samples assayed. Possibly
serum protein levels measured by SOMAscan would have yielded correlation with disease
severity since many of the clinical symptoms of disease are systemic. Also a larger patient sam-
pling with more samples per disease severity group may yield significant correlations among
proteins measured by SOMAscan and disease severity among influenza virus-infected patients.
Finally, absolute correlation between different assay systems will always be compromised by
differences in the method for collection of results, e.g., light absorbance, fluorescence intensity,
etc., and differences in epitope recognition and binding for any given protein. The latter will be
particularly relevant for antibody-dependent versus aptamer-dependent ligand binding. As
noted in a recent commentary, SOMAscan will be no better or worse for detecting and quanti-
fying a known protein.

The primary benefit provided by SOMAscan is in its discovery potential for identifying
associations between proteins among a large catalog of proteins and a phenotype of interest
[82]. It is within this context that we think the results from our study can move understanding
of respiratory pathophysiology associated with influenza infection forward.

SOMAscan thus represents a very promising alternative methodology to existing technolo-
gies for the discovery of biomarkers for disease severity in respiratory infections including
influenza. Furthermore, SOMAscan may also have great potential to analyze proteome changes
within the mucosa in the context of other bacterial or viral respiratory infections or lung dis-
eases in humans that are presently understudied because of limitations with other multiplex
assay technologies.

Materials and Methods

Ethics statement
This study was conducted in compliance with Department of Health and Human Services reg-
ulations in 45 CFR46 and the Declaration of Helsinki. The Institutional Review Boards of
St. Jude Children’s Research Hospital and the University of Tennessee Health Science Center/
Le Bonheur Children’s Hospital approved the study. Nasal lavage samples were acquired from
the St, Jude Children's Research Hospital Human Influenza Research Specimen Repository
[28]. The samples were originally acquired after receiving written, informed consent from par-
ticipants or the participants' parents/guardians. Use of the patient samples in the present study
was approved by the UTHSC IRB (13-02691-XM).
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Patient samples
Subject inclusion criteria, definition of respiratory influenza infection, criteria for categorizing
disease severity, and methods for sample collection and storage have been described [28].
Twenty-four samples from the repository were provided for the present study based solely
upon the criteria of detection of influenza viral genome and disease severity after infection. Six
samples per group were selected from each of four groups: i) uninfected healthy controls: indi-
viduals with no clinical signs or symptoms of respiratory infection and otherwise healthy; ii)
mild: no emergency room (ER) visit or hospitalization; iii) moderate: ER visit but no hospitali-
zation; and iv) severe: hospitalization. All of the assayed specimens were collected on the day of
initial diagnosis (study day 0 in [28]). The uninfected, healthy controls were household con-
tacts of infected patients who did not become infected with influenza. Patient demographics
and viral loads determined by qRT-PCR are presented in S1 Table.

SOMAscan analysis
The SOMAscan assay including calibration of the sample matrix for nasal lavage samples was
performed by SomaLogic, Boulder, CO. Sixty μl of a 1:2 dilution of each nasal lavage superna-
tant was used for the SOMAscan assay.

SOMAmers are modified nucleic acid aptamers, each with both unique protein binding
characteristics and unique identifying primary nucleic acid sequence that can be detected and
quantified by DNAmicroarray. Each SOMAmer has been validated for its unique specificity,
upper and lower limits of detection, and intra- and inter-assay variability. SOMAscan uses a
1,129 SOMAmer library to quantify 1,030 individual proteins or protein complexes that are
detected by the library as relative fluorescence units of each SOMAmer bound to its respective
protein [23]. Each SOMAmer has a unique specificity for a defined epitope. A given SOMAmer
may thus bind to an isolated polypeptide or to a heterodimer of the same protein with another
protein. Another SOMAmer may bind to the same heterodimer but neither polypeptide alone.
Hence two different SOMAmers may be listed as detecting the same protein, but in fact bind to
individual epitopes. Thus, the number of proteins (1,030) that can be detected is less than the
total number of SOMAmers (1,129) used in the analysis. Details of SOMAmer validation, the
list of proteins quantified by the current SOMAmer library, and SOMAscan assay procedure
are at http://www.somalogic.com/Technology/SOMAscan-basic-info.aspx.

Bioinformatics
Data were analyzed using the R software package [83]. Pre-processing steps included quantile
normalization and log2 transformation of the signal intensity (relative light units) measures pro-
vided by the SOMAscan platform. Principal component analysis (PCA) analysis were performed
using the affycoretools package [84]. Identification of differentially expressed probe sets (DEPs)
was performed with the LIMMA package [85] using BH correction for multiple testing [86] using
the indicated thresholds for fold-change and adjusted p-values (see results). Heatmaps were per-
formed using the R software package [83]. GO, KEGG, Reactome enrichment analysis and was
performed with the R package ReactomePA provided in the R package cluster Profiler [87].

Supporting Information
S1 Fig. Correlation of protein quantification by SOMAscan and Luminex. Correlation anal-
ysis of log2 relative fluorescence units (RFU) from SOMAscan and protein concentration (log2
of pg/ml) from Luminex study described by [28] are presented for IL6, CXCL10/IP-10, CCL7/
MCP3, and CXCL8/IL8. Labels at top and left refer to individual chemokines and technology
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used for detection (SO: SOMAscan, LU: Luminex). The diagonal represents the histogram of
the measured protein level determined by SOMAscan (SOMA) or Luminex (LUMI), the bottom
left below the histogram diagonal represents scatter plots of pairs of measurements, the top
right above the histogram diagonal presents correlation coefficients and p-values from a linear
regression analysis of the respective pair-wise analyses. n = 24. ��: p<0.01, ���: p< 0.001.
(PDF)

S2 Fig. Distribution of viral loads. Upper panel: Histogram of log2-transformed viral loads
showing the distribution of viral loads as measured by quantitative real-time reverse-transcrip-
tion polymerase chain reaction at day 0 from all patients of the cohort [28] (n = 139 samples).
The threshold of 256 (log2 = 8) is shown as a stippled line. Lower panel: Histogram of log2-
transformed viral loads showing the distribution of viral loads as measured by quantitative
real-time reverse-transcription polymerase chain reaction of the patients selected for the
SOMAscan study (n = 24).
(PDF)

S3 Fig. PCA analysis of normalized protein expression values for subset B. Principle compo-
nent analysis (PCA) was performed with normalized log2–transformed protein expression val-
ues from nasal washes for 17 samples from the subset that were selected based on high vs. low
viral loads and omitted outlier sample ID_4043 (subset B). The first two principal components
are shown that represent 46% and 16%, respectively, of the total variation. Healthy control
samples are labeled gray, and influenza virus-positive samples are labeled red. In addition, sam-
ple identities (e.g., ID_4002) are shown. Horizontal and vertical axis represent principle com-
ponent 1 and 2, respectively.
(PDF)

S4 Fig. Expression values for CXCL10 and IL6 from subset B.Normalized log2–transformed
protein concentration of CXCL10 (A) and IL6 (B) for 17 samples from subset B that were
selected based on high vs. low viral load. Bars represent mean expression values per group +/-
1 SEM. "negative": samples that were diagnosed IAV-negative; "positive": samples that were
diagnosed IAV-positive. IL6 and CXCL10 expression levels showed significant differences
between the two groups (Kruskal-Wallis, p< 0.01 and p< 0.05, respectively).
(PDF)

S1 Table. Demographic data, type of influenza virus identified, log2 viral load, and relative
severity of symptoms and clinical disease of respective patients.
(DOCX)

S2 Table. List of patients included into subsets A and B.
(DOCX)

S3 Table. List of proteins that were differentially expressed between uninfected control and
influenza virus-positive patients from subset A. The patient identifiers are those from S1
Table. The numerical values for each patient column are the respective normalized log2 protein
levels for each patient for each protein identified in column A and B. Log2 Fold Change (FC),
Average (average respective protein level for all patients), t-statistic, p, adjusted p, and B were
all calculated with LIMMA.
(TXT)

S4 Table. List of proteins that were differentially expressed between uninfected control and
influenza virus-positive patients from subset B. Column labels are the same as in S2 Table.
(TXT)
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S5 Table. List of DEPS from subset B that were correlated with viral load. cor is Spearman's
correlation coefficient (ρ).
(TXT)
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