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The interaction of human immunodeficiency virus with human cells is responsible
for all stages of the viral life cycle, from the infection of CD4+ cells to reverse
transcription, integration, and the assembly of new viral particles. To date, a large
amount of OMICs data as well as information from functional genomics screenings
regarding the HIV–host interaction has been accumulated in the literature and in public
databases. We processed databases containing HIV–host interactions and found 2910
HIV-1-human protein-protein interactions, mostly related to viral group M subtype B,
137 interactions between human and HIV-1 coding and non-coding RNAs, essential
for viral lifecycle and cell defense mechanisms, 232 transcriptomics, 27 proteomics,
and 34 epigenomics HIV-related experiments. Numerous studies regarding network-
based analysis of corresponding OMICs data have been published in recent years.
We overview various types of molecular networks, which can be created using
OMICs data, including HIV–human protein–protein interaction networks, co-expression
networks, gene regulatory and signaling networks, and approaches for the analysis of
their topology and dynamics. The network-based analysis can be used to determine
the critical pathways and key proteins involved in the HIV life cycle, cellular and
immune responses to infection, viral escape from host defense mechanisms, and
mechanisms mediating different susceptibility of humans to infection. The proteins and
pathways identified in these studies represent a basis for developing new anti-HIV
therapeutic strategies such as new drugs preventing infection of CD4+ cells and viral
replication, effective vaccines, “shock and kill” and “block and lock” approaches to cure
latent infection.

Keywords: virus–host interaction, human immunodeficiency virus, protein–protein interactions, OMICs,
transcriptomics, network analysis

INTRODUCTION

Human immunodeficiency virus (HIV) is one of the most significant pathogens to affect
humankind. According to the World Health Organization, approximately 37.9 million people
are currently living with HIV, and 770,000 people died from HIV-related disorders in
2018. Although the existing combination antiretroviral therapy (cART) provides control of
the virus and prevents transmission, the HIV infection remains a global health problem
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(World Health Organization, 2020). Thus, there is an urgent
need to understand anti-HIV mechanisms, to develop new
strategies for its prophylactics and therapy.

The HIV infection process involves several stages from
the binding of virions to receptors on the human CD4+ cell
surface to the splicing and export of viral mRNAs from the
nucleus to the cytoplasm, and the assembly of virions at the
plasma membrane as well as the budding and maturation
of the released virions (Kirchhoff, 2013; Chen et al., 2018).
Like other viruses, HIV cannot complete any aspect of its
life cycle without interacting with the host cellular machinery,
primarily human proteins and various types of RNA. The
human macromolecules, which are required for various stages
of HIV life cycle, called host dependency factors (HDFs).
Macromolecules, which are part of cell defense mechanisms and
prevent viral infection, called host restriction factors (HRFs).
During the HIV attack, several HRFs interfere with viral
replication at different steps (Shukla and Chauhan, 2019). For
instance, cytidine deaminase, APOBEC3G (apolipoprotein B
mRNA editing enzyme, catalytic polypeptide-like 3G) induces
lethal hypermutations (deamination of C to U) in the HIV
genome, which are detrimental to viral replication. For more
information on HDFs and HRFs see the reviews (Yamashita and
Engelman, 2017; Chen et al., 2018; Engelman and Singh, 2018;
Shukla and Chauhan, 2019).

Most of the existing anti-HIV drugs are inhibitors of
three HIV enzymes, namely protease, reverse transcriptase and
integrase; however, researchers are also studying HDFs as new
potential targets (Arhel and Kirchhoff, 2010; Zhan et al., 2016;
Zuo et al., 2018; Puhl et al., 2019). The approved drugs
maraviroc and ibalizumab have the following mechanism of
action: maraviroc is an antagonist of C chemokine receptor type
5, CCR5, and ibalizumab is a monoclonal antibody to the epitope
on the CD4 receptor (Kinch and Patridge, 2014; Puhl et al., 2019).
Enfuvirtide and albuvirtide block the fusion of viral and cellular
membranes by binding to the HIV-1 gp41 subunit of the viral
envelope that anchors the gp120 subunit, which normally binds
to the CD4 receptor (Fung and Guo, 2004). Some other strategies
for development of active molecules targeting HDFs are reported
in the literature (Zhang et al., 2015; Tan et al., 2019).

Besides the creation of new inhibitors of HIV enzymes and
HDFs, some other approaches are currently under development
to treat HIV infection, namely the creation of anti-HIV
vaccines (Hsu and O’Connell, 2017), immunotherapy with
broadly neutralizing antibodies (Lacerda et al., 2013; Sok and
Burton, 2018; Haynes et al., 2019), and creation of methods
to cure latent HIV infection (Peterson and Kiem, 2018;
Sadowski and Hashemi, 2019).

To date neither therapeutic nor preventive anti-HIV vaccine
exists (Gray et al., 2016). Although hundreds of vaccine
candidates have been clinically tested, only the RV144 trial
has achieved positive yet moderate protection (Gao Y. et al.,
2018). The difficulty in the creation of anti-HIV vaccine can
be explained by the fact that people do not develop protective
immunity to HIV infection; whereas almost all successful
vaccines were created for diseases, for which the immunity can
be developed after exposure to a live pathogen (Brett-Major et al.,

2017). The development of effective anti-HIV vaccines gave rise
to bioinformatics approaches for computational analysis of viral
variants and corresponding host factors (i.e., T-cell epitopes)
(Fischer et al., 2007; Korber et al., 2009; Barouch et al., 2013;
Hulot et al., 2015; Khan et al., 2017), which can be beneficial for
the creation of potential anti-HIV vaccine.

To create effective vaccine, deep understanding of interplay
between HIV and human immune system is required. The
HIV causes innate immune response and later adaptive T
cytotoxic and humoral responses, which cannot completely
cure infection due to several reasons (Levy, 2015). First, high
mutation rate of virus causes formation of viral variants with
antigens’ epitopes, which cannot be recognized by HIV-specific
antibodies and CD8+ T cells (Gallo, 2015; Brett-Major et al.,
2017). Second, HIV has additional mechanisms to escape from
immune response (Dirk et al., 2016; Langer et al., 2019; van
Stigt Thans et al., 2019). Third, in conditions of chronic
infection, persistent exposure of T cells to high levels of
antigen results in a severe T-cell dysfunctional state called
exhaustion (Fenwick et al., 2019). Immune checkpoint molecules,
including PD-1, CTLA-4, TIM-3, CD160, 2B4 and LAG-3, play a
critical role in the maintenance of exhaustion and dysfunction.
Administration of immune checkpoint inhibitors has therefore
attracted considerable interest as a strategy to enhance HIV-
specific T cell responses (Seddiki and Lévy, 2018; Mylvaganam
et al., 2019). Fourth, since viral cDNA is integrated into the
human genome, latent HIV reservoirs such as CD4+ T memory
cells are present (Gallo, 2015; Pitman et al., 2018; Sadowski
and Hashemi, 2019). These reservoirs do not produce viral
particles, but they can give rise to infectious virions following
activation by various stimuli, leading to viral rebound when
cART is interrupted (Brett-Major et al., 2017). Fifth, mucous
membranes are bottleneck for multiple viral variants, because
only one (the so-called transmitted/founder variant) or a few
HIV variants are able to overcome this barrier. These variants
have unique properties allowing escaping from immune response
in mucosa and transporting to lymph nodes, e.g., they are
relatively more resistant to interferons and bind dendritic cells
more efficiently (Iyer et al., 2017; Rios, 2018). Therefore the
difficulty in developing effective preventive anti-HIV vaccine
is to detect the viral variant, which is able to penetrate the
mucosal barrier.

The development of therapeutic strategies to cure latent HIV
infection is an important research direction along with the
development of vaccines. Three main strategies are currently
developed, namely gene therapy and genome editing of CCR5
or integrated HIV genome itself (Wang and Cannon, 2016;
Peterson and Kiem, 2018), “shock and kill” and “block and
lock” strategies (Gallo, 2016; Darcis et al., 2017; Pitman
et al., 2018; Sadowski and Hashemi, 2019). “Shock and kill”
approach is based on the application of latency reversing
agents, which cause reactivation of viral gene transcription
and generation of virions. Their application causes elimination
of infected cells through immune response and virus-induced
apoptosis; however, these processes are incapable of eliminating
all infected cells, thus, additional methods are used together
with the application of latency reversing agents (Pitman et al.,
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2018; Mylvaganam et al., 2019; Sadowski and Hashemi, 2019).
“Block and lock” is an opposite strategy, which is based
on prevention of viral RNA expression even in the case
of T cell reactivation. It can be achieved by application
of HIV Tat inhibitors, small interfering RNA (siRNA) or
short hairpin RNA (shRNA) that can target and destroy the
viral RNAs, and others (Darcis et al., 2017; Pitman et al.,
2018; Sadowski and Hashemi, 2019). The more aggressive
strategy is the application of gene therapy and genome editing.
Several gene editing approaches including those based on Zinc
Finger Nucleases (ZFN), transcription activator-like effector
nucleases (TALEN) and Clustered Regularly Interspaced Short
Palindromic Repeats/Cas-9 (CRISPR/Cas-9) have been applied
to cause CCR5 disruption or remove/modify integrated HIV
genome. These approaches demonstrated promising results for
in vitro and animal experiments as well as in clinical trials
(Wang and Cannon, 2016; Peterson and Kiem, 2018; Herrera-
Carrillo et al., 2019) but they are still under investigation now
(Vansant et al., 2020).

The studies of HIV-host interaction is important because it
helps to understand the factors influencing the speed of disease
progression and pathogenesis features at individual patients. It
is known that some people, called long-term non-progressors,
have the ability to suppress viremia to undetectable levels, while
maintaining elevated CD4 cell counts in the absence of cART
(Poropatich and Sullivan, 2011; Gonzalo-Gil et al., 2017). They
are subdivided into several groups. For instance, elite controllers
are HIV infected individuals, who suppress viremia to less than
50 copies/ml, while maintaining CD4 cell counts from 200 to
1000/ml. Viremic controllers achieve a lesser degree of virologic
control (viral load between 200 to 2000 copies/ml), while usually
maintaining CD4 cell counts less than 500/ml, in the absence
of cART. The phenomenon of long-term non-progressors can
be mainly explained by enhanced cellular immune response
and decreased susceptibility of CD4+ T cells to HIV infection
(Gonzalo-Gil et al., 2017). Investigation of mechanisms of HIV
control in these groups of patients is very important, because
mimicking similar responses in chronically infected individuals,
e.g., by therapeutic vaccine, will lead to functional remission of
HIV infection (Seddiki and Lévy, 2018).

Human CD4+ T cells are the most widely recognized and
best-described cell type, which are infected by HIV; however,
the virus can also replicate in cells of other types including
monocytes and macrophages, and various kinds of dendritic
and epithelial cells (Kandathil et al., 2016). In particular,
HIV can infect the central nervous system’s various cells,
such as microglia and astrocytes, which leads to neuroAIDS
in about two-thirds of patients, and is characterized by a
decline in brain function and movement skills (Elbirt et al.,
2015; Clifford, 2017; Kumar et al., 2018; Olivier et al., 2018;
Sillman et al., 2018). The corresponding condition is called
HIV-associated Neurocognitive Disorder (HAND), which can
be further categorized from asymptomatic HAND to HIV-
associated dementia linked with cognitive impairment, motor
dysfunction, speech problems, and behavioral changes. To date,
the administration of cART allows significantly decrease the
severity of HAND in HIV-infected subjects; however, low

permeability of antiviral drugs through blood-brain barrier
and presence of latent HIV infection considerably reduce the
efficacy of therapy. To increase the concentration of anti-HIV
compounds in the brain, various drug delivery approaches
and prodrugs are developed (Kumar et al., 2018). Since HIV-
1 acquires latency in various brain cells, e.g., perivascular
macrophages, microglial cells, and astrocytes, the brain tissues
represent an essential reservoir for HIV-1. In spite of cART
administration, it can lead to chronic pathological implications
because minimum viral genome transcription can continuously
produce little virus, and viremia can be rebound upon latency
reactivation (Van Lint et al., 2013); therefore, HAND treatment
also requires the elimination of latent infection by various
approaches described above (Marban et al., 2016; Proust et al.,
2017).

Development of all above mentioned approaches require the
deep understanding of the mechanisms of HIV-host interactions.
To date, a large amount of these OMICs data about the HIV-
host interaction has been recorded in the literature and in public
databases. Network-based analysis allows for integrating OMICs
data of various types, and it can be used to determine critical
pathways and key proteins involved in the HIV life cycle, cellular
and immune responses to infection, and different speed of disease
progression. The identified proteins and pathways may represent
targets for the development of new anti-HIV strategies as well as
the optimization of the existing therapy.

This review consists of two parts. The first part contains a
description of various types of OMICs data, such as HIV-human
protein-protein interactions, RNA-RNA interactions, genomics,
transcriptomics, proteomics, and epigenomics information as
well as data from functional genomics screenings. We review
the content and quantity of the corresponding HIV-related data
from public resources, databases and literature. The second
part contains a description of the network-based analysis of
HIV-human interactions, including the types of networks, the
methods of integrating them with the OMICs data, and methods
of network topology analysis, which can be used to discover
new HDFs and key cellular pathways that form the basis for
developing new anti-HIV therapeutic and prophylactic strategies.

TYPES OF OMICs DATA DESCRIBING
THE HIV–HOST INTERACTION

Interactomics Data
Protein–Protein Interactions
The interaction between HIV and human proteins is the first
event that causes subsequent changes in the cellular pathways
and processes required for the viral life cycle. Thus, information
on protein–protein interactions (PPIs) is the most common
type of data, and it is used for the creation of network-based
models of HIV infection (see below). The information on HIV-
human PPIs can be extracted from at least six public databases
that are focused on pathogen–host interactions (Table 1).
The information in the specialized databases, in turn, was
obtained from publications and more general PPI resources, e.g.,
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TABLE 1 | Public databases containing data on interactions between HIV and human proteins.

Database Number of
HIV-1-human
interactions

Number of human
proteins interacting

with HIV-11

Number of
HIV-2-human
interactions

Number of human
proteins interacting

with HIV-21

References

NCBI database2 1037 842 – – Ako-Adjei et al., 2015

HPIDB 1668 1390 25 24 Ammari et al., 2016

PHISTO 1978 1460 27 26 Durmuş Tekir et al., 2013

VirHostNet 1077 985 13 13 Guirimand et al., 2015

Viruses.STRING 929 827 3 3 Cook et al., 2018

VirusMentha 1206 1052 14 13 Calderone et al., 2015

Total3 2910 2051 34 30

1The number of unique SwissProt identifiers that corresponds to human proteins interacting with HIV proteins. 2The database contains both direct and indirect functional
interactions. We considered direct interactions based on the following keywords: “acetylated by,” “binds,” “cleaved by,” “cleaves,” “degraded by,” “dephosphorylated
by,” “glycosylated by,” “interacts,” “is monomethylated,” “is polyubiquitinylated by,” “isomerized by,” “methylated by,” “modified by,” “myristoylated by,” “palmitoylated by,”
“phosphorylated by,” “processed by,” “sulfated by,” “sumoylated by,” “ubiquitinated by.” 3Total numbers of unique interactions.

BioGRID1, IntAct2, MINT3, DIP4, and STRING5. The proteins in
these databases, except for the NCBI HIV-1 human interaction
database6, are presented as SwissProt7 accession numbers, which
have two primary features. First, they are gene-centric, so each
identifier corresponds to a single gene. However, some HIV
genes, such as gag, pol, and env, encode precursor polyproteins,
which cleaved by HIV protease into two or more particular
proteins (Kirchhoff, 2013). Second, each protein has several
identifiers that correspond to different HIV groups, subtypes
and even isolates, e.g., tat protein from HIV-1 group M subtype
B refers to 20 SwissProt accession numbers corresponding to
20 different isolates. For illustrative purposes, we calculated the
number of pairs listed as “HIV gene symbol – SwissProt identifier
of human protein” for six databases, whereas the differences
in PPIs between the HIV groups, subgroups, and isolates were
ignored (Table 1).

To demonstrate the intersections between the database
contents, we created an Upset plot (Lex et al., 2014) (Figure 1).
Figure 1 shows that the NCBI HIV-1 human interaction
database and the PHISTO database8 have the highest numbers
of unique HIV-1-human PPIs, with 540 and 475 respectively,
whereas only 86 PPIs were present in all six databases.
Among all the databases, the NCBI HIV-1 human interaction
database was created using the manual curation of data
taken from the literature. It contains a description of the
functional significance of interactions, e.g., “phosphorylation,”
“acetylation,” “activation,” and “inhibition.” In addition to
direct interactions, the NCBI HIV-1 human interaction
database also contains indirect ones, which primarily reflect
an influence on the gene expression or protein activity (the
corresponding indirect interactions are not shown in Table 1 and
Figure 1).

1https://thebiogrid.org
2https://www.ebi.ac.uk/intact
3https://mint.bio.uniroma2.it
4https://dip.doe-mbi.ucla.edu/dip/Main.cgi
5https://string-db.org
6https://www.ncbi.nlm.nih.gov/genome/viruses/retroviruses/hiv-1/interactions
7https://www.uniprot.org
8http://www.phisto.org

By merging the data from six databases, we obtained 2910
unique HIV-1-human PPIs corresponding to 2051 individual
human proteins (Table 1). The large number of human proteins
interacting with HIV-1 can be explained by disadvantages
in the experimental methods used to measure the PPIs
(Goodacre et al., 2020). According to the largest database,
PHISTO, the most common high-throughput approaches to
identifying HIV-human PPIs are affinity-purification coupled
to mass spectrometry, pull-down, and co-immunoprecipitation.
These methods may address physical interactions in which
two proteins are in the same complex but do not interact
directly. According to some estimates, 50 to 70 percent of
all PPIs may be physical but not direct (Goodacre et al.,
2020). Significant numbers of PPIs obtained by high-throughput
methods may be false positives (Goodacre et al., 2020). The
VirHostNet9, VirusMentha10, and Viruses.STRING11 databases
provide confidence scores that reflect the number of studies
in which PPI was detected, and a number and quality of
experimental techniques were used. The scores vary from 0 to
1 and allow for the selection of the most likely PPIs; however,
the medians of the scores (0.21 for VirusMentha, 0.33 for
VirHostNet, and 0.44 for Viruses.STRING) indicate that most
of the interactions are low-confidence. Thus, the real number of
direct interactions is potentially much lower than those presented
in Table 1.

Since the PPI profiles for other viruses were shown to
be different for different viral variants (Neveu et al., 2012;
Goodacre et al., 2020), we calculated the numbers of interactions
for particular groups and subtypes of HIV-1 by accounting
for the viral isolates (Table 2). Almost all the data belong
to HIV-1 group M, whereas the largest number of HIV 1-
human PPIs and isolates is associated with subtype B, followed
by subtypes A and D. The information about the groups
and subtypes for the significant number of interactions (995
PPIs) is not presented in the databases. Merging of data
on different groups and subtypes for the network analysis

9http://virhostnet.prabi.fr
10https://virusmentha.uniroma2.it/about.php
11http://viruses.string-db.org
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FIGURE 1 | Intersections of HIV-1-human PPIs between six databases. Y-axis represents the numbers of HIV-1-human PPIs, which are either unique for a particular
database or shared by two, three, four, five, and six databases. The connections between circles at the bottom part of figure represent intersections of PPIs between
databases. The unconnected circles represent PPIs, which are unique for a particular database. The horizontal bars represent the total numbers of HIV-1-human
PPIs in each database.

TABLE 2 | Distribution of the numbers of PPIs between different HIV-1 groups and subtypes.

Number of
isolates

Range of PPI numbers
for different isolates1

Number of unique
PPIs2

Databases3

HIV-1 group M subtype A 3 162–350 353 b, d

HIV-1 group M subtype B 27 6–1875 1910 a, b, d, f

HIV-1 group M subtype C 1 5 5 b, d, f

HIV-1 group M subtype D 5 167–347 356 b, d, f

HIV-1 group M subtype F1 1 1 1 b, d

HIV-1 group M subtype G 1 1 1 b, d

HIV-1 group M subtype H 1 1 1 b, d

HIV-1 group M subtype U 1 139 139 d

HIV-1 group N 1 1 1 b, d

HIV-1 (group unknown) – 995 995 a, b, c, d, e, f

1Number of “SwissProt identifier of HIV gene – SwissProt identifier of human protein” pairs. 2Number of unique “HIV gene symbol – SwissProt identifier of human
protein” pairs. Information about different isolates was merged. 3The data originated from the databases: (a) VirHostNet, (b) HPIDB, (c) NCBI database, (d) PHISTO, (e)
Viruses.STRING, (f) VirusMentha.

is not strictly correct, because the corresponding interaction
patterns may be different (Neveu et al., 2012; Goodacre et al.,
2020). Nevertheless, this finding is usually ignored, because
the separate analysis of HIV-human PPI data is not possible
for most of the groups and subtypes, except for group M
subtype B, since they are associated with very few or no
interactions (Table 2).

The available number of HIV-2-human interactions is lower
than for HIV-1 (Table 1). One may suggest that this is

observed because HIV-1 is studied more thoroughly than HIV-2
(Campbell-Yesufu and Gandhi, 2011).

The list of 2910 HIV-1-human PPIs is presented in
Supplementary Table S1.

Interactions Between Messenger RNAs and
Non-coding RNAs
There is growing evidence regarding the role of non-coding
RNAs, such as micro RNA (miRNA) and long non-coding RNA
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(lncRNA), in HIV-human interactions (Lazar et al., 2016; Fruci
et al., 2017; Balasubramaniam et al., 2018). Dozens of human
miRNAs are known to bind the messenger RNAs (mRNAs)
of HDFs and modulate HIV replication either positively or
negatively. Human miRNAs can also provide anti-HIV activity
through the direct targeting of the viral genome and viral
mRNAs (Balasubramaniam et al., 2018). However, the HIV
genome also encodes miRNA targeting human mRNA and
miRNA as well as viral mRNAs. These interactions regulate
apoptosis and cell survival, the events that give HIV-infected
cells a survival advantage, and they have a positive impact on
viral replication and provide an escape from the host immune
response (Lazar et al., 2016; Fruci et al., 2017). Information
about the interactions between HIV-1 and human RNAs can
be obtained from three specialized databases, namely ViRBase12

(Li et al., 2015), VmiReg13 (Shao et al., 2015), and VIRmiRNA14

(Qureshi et al., 2014), which integrate the corresponding data
from publications. The numbers of various types of interactions
in the databases are shown in Table 3.

The ViRBase includes data on a few interactions between
human lncRNAs and human or HIV mRNAs. For example,
human lncRNAs 7SL and Y3 interact with members of the
APOBEC3 family of human proteins, which possess antiviral
activity through the deamination of viral RNA (Wang et al., 2007;
Zhen et al., 2012). The lncRNA encoded by the NEAT1 human
gene is involved in interactions with and posttranscriptional
regulation of unspliced HIV-1 transcripts (Zhang et al., 2013).

The list of RNA-RNA interactions from the three databases is
presented in Supplementary Table S2.

Genomics, Transcriptomics, Proteomics,
and Epigenomics Data
Genomics Data
The high mutation rate of the HIV genome is one of the
reasons for the formation of multiple HIV variants, which
have new antigen properties that allow the virus to escape
from an immune response (Rogozin et al., 2005; Cuevas
et al., 2015). However, polymorphisms in the human genome
can also influence the susceptibility to and severity of HIV
infections (Le Clerc et al., 2019; Tough and McLaren, 2019). The
candidate gene studies revealed a 32-bp deletion in the CCR5
gene (CCR5-132) encoding a co-receptor that is essential for

12http://www.rna-society.org/virbase/index.html
13http://210.46.85.180:8080/vmireg
14http://crdd.osdd.net/servers/virmirna

TABLE 3 | Various types of interactions between HIV-1 and human RNAs
presented in public databases.

Type of interaction ViRBase VmiReg VIRmiRNA Total

Human miRNA–viral mRNA 43 7 21 49

Human miRNA–human mRNA 50 – 3 51

Viral miRNA–human mRNA 21 13 2 21

Viral miRNA–viral mRNA 5 2 – 5

Viral miRNA–host miRNA 2 – – 2

HIV binding to CD4+ cells. The homozygotes of the CCR5-
132 mutation are resistant to HIV, whereas heterozygotes
demonstrate slower disease progression. Other significant gene
loci related to the viral load and HIV progression are located in
HLA (human leukocyte antigen) genes. They encode the major
histocompatibility complex, which presents peptides derived
from HIV proteins to T-helpers, one of the critical stages of
an immune response to infection. The genome-wide association
studies (GWASs) allow for the linking of thousands and
millions of genome polymorphisms, primarily single nucleotide
polymorphisms (SNPs), to various phenotypes, e.g., the viral load,
HIV susceptibility or disease progression (Le Clerc et al., 2019;
Tough and McLaren, 2019). To date, more than 20 GWASs
related to HIV were performed; however, they did not allow for
the identification of new SNPs, which have strong, statistically
significant and reproducible associations with HIV-associated
phenotypes, such as viral load and capability to viremic control
(Le Clerc et al., 2019). Given GWASs confirmed the significance
of CCR5 and HLA gene polymorphisms, whereas newly
revealed associations were weak and usually non-reproducible.
Nevertheless, a few human genes may be considered as potential
candidates, e.g., CXCR6 encoding C-X-C chemokine receptor
type 6, which is one of the co-receptors for the binding
of the HIV-2 and m-tropic HIV-1 strains along with CCR5.
A detailed description of HIV-related GWASs explored to date
is given in the review (Le Clerc et al., 2019). The corresponding
associations between human genetic polymorphisms and HIV-
related phenotypes can be obtained from the GWAS Catalog15,
GWAS Central16 resources. The results of HIV-related genomics
studies can also be accessed through the dbGaP database17.

Transcriptomics Data
Information on the expression levels of coding and non-coding
RNAs is the most represented OMICs data type in HIV research.
The public data from HIV-related transcriptomics experiments
can be downloaded from Gene Expression Omnibus18 (GEO)
and ArrayExpress19. We searched these databases with the
keyword “HIV” and manually inspected the results. We
found 232 transcriptomics experiments in which the mRNA,
miRNA or lncRNA levels were measured by microarrays or
RNA sequencing-based methods under different conditions,
in different cell types, in vivo or in vitro (Table 4 and
Supplementary Table S3). Most of the experiments were focused
on measuring mRNA profiles, and, to a lesser degree, on miRNA
profiles, whereas only one study was related to the lncRNA
profile. Comparisons of RNA transcription profiles between
CD4+ cells obtained from HIV-infected or healthy individuals
were the most common types of experiments; however, additional
conditions were taken into account in most experiments. For
example, over 30 experiments were related to the comparison
of transcriptional profiles between chronic progressors that are

15https://www.ebi.ac.uk/gwas
16https://www.gwascentral.org
17https://www.ncbi.nlm.nih.gov/gap
18https://www.ncbi.nlm.nih.gov/geo
19https://www.ebi.ac.uk/arrayexpress
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in a chronic stage of the infection and develop AIDS without
using cART, viremic controllers, and elite controllers (see section
“Introduction”). Most of the transcriptome measurements were
performed on human cells derived from HIV-infected and
healthy donors; however, in some cases, experiments were
performed on human cell lines or primary cells infected with HIV
in vitro. HIV infection of primary CD4 T cells requires T cell
activation signals, and the activated cell is twice as likely as a non-
activated cell to be productively infected with HIV-1 (Oswald-
Richter et al., 2004; Biancotto et al., 2008). Therefore, primary
CD4 T cells are activated artificially before the HIV-1 infection
in studies in vitro; however, such stimulation may affect the
cellular transcriptome, proteome, epigenome, and interactome,
and introduce significant bias into results of the experiment.

In addition to the investigation of human cell transcriptome,
three experiments were focused on the transcriptomes of the
human intestinal, lung, and oral microbiota from HIV-infected
and healthy subjects (see Table 4), because they seem to play
an essential role in HIV progression and the development of
opportunistic infections (Dang et al., 2012; Vujkovic-Cvijin et al.,
2013; Iwai et al., 2014).

We found plenty of experiments in which microarrays and
“bulk” RNA sequencing were used to measure the transcriptome;
however, the investigated cell populations may really be
heterogenic, and measurement of “mean” transcript expression
values can introduce significant bias into results of the analysis.
For instance, the proportion of viral-infected cells is quite
low even in the CD4+ T cell population of HIV-1 infected
patients (Baxter et al., 2016); therefore, the results of “bulk”
studies do not necessarily reflect the characteristics of viral-
infected cells themselves. To overcome this limitation, some
studies (Sedaghat et al., 2008; Vigneault et al., 2011; Cohn et al.,
2018; Chen et al., 2019) used methods allowing purifying the
cell subpopulations, such as latently infected, activated cells
and cells with HLA-DR− phenotype, before measuring the
transcriptome. These methods can be coupled with single-cell
RNA sequencing, which allows for the identification of clusters
of blood cells or cell subtypes with different transcriptional
responses to HIV infection (Chen et al., 2019; Kulkarni et al.,
2019). For example, Cohn and colleagues developed a method to
enrich and isolate reactivated latent cells by combining antibody
staining, magnetic enrichment, and flow cytometry, accompanied
by single-cell RNA sequencing. They found that reactivated
latent cells produce full-length viruses which are identical to
those found in viral outgrowth cultures, and represent clones
of in vivo expanded T cells as determined by the sequence
of their T cell receptors. Gene expression analysis revealed
that these cells share a transcriptional profile that includes
expression of genes implicated in silencing the virus and allows
for cell division without activation of the cell death pathways
(Cohn et al., 2018).

Additionally, we found six HIV-related studies in the GEO
database for which single-cell RNA sequencing was applied
(Supplementary Table S4). For example, Farhadian et al. (2018)
performed single-cell RNA sequencing on cerebrospinal fluid and
blood from adults with and without HIV. They found a rare
(<5% of cells) subset of myeloid cells that are found only in

cerebrospinal fluid and present a gene expression signature that
overlaps significantly with neurodegenerative disease-associated
microglia. This immune cell subset may perpetuate neuronal
injury during HIV infection (Farhadian et al., 2018).

Most of the HIV-related experiments were performed to
identify differentially expressed genes (DEGs) between two or
more conditions with subsequent functional annotation. The
functional annotation of the DEGs is usually performed by
pathway enrichment analysis (Khatri et al., 2012; Kuleshov et al.,
2016), which allows for the identification of pathways, Gene
Ontology20 biological processes or other functional categories
that were “enriched” by DEGs compared to the background
gene set, e.g., all human genes. For example, Devadas et al.
(2016) identified the transcriptional changes in the peripheral
blood mononuclear cells during HIV-1 and HIV-2 infection.
HIV-1 caused changes in the expression of 316 genes, whereas
HIV-2 changed the expression of only 57 genes. The pathway
enrichment analysis allowed for the identification of the pathways
and Gene Ontology biological processes associated with the
infection. The authors found that the pathways and cellular
processes perturbed by HIV-1 and HIV-2 are not the same, e.g.,
only the HIV-1 virus influenced genes related to the cell cycle and
apoptosis. The observed differences possibly explain the different
rates of disease progression from HIV-1 and HIV-2 and the
observations showed that HIV-2 is generally less pathogenic than
HIV-1 (Devadas et al., 2016).

It should be noted that some transcriptomics studies were
performed to measure the gene expression changes under the
application of anti-HIV vaccine candidates (Zak et al., 2012;
Fourati et al., 2019). Currently, there are no effective anti-HIV
vaccines; thus, understanding the cellular mechanisms of the
immune response at the transcriptome level to more or less
effective vaccine candidates, and in individuals with stronger
or weaker vaccine effect may help researchers to develop more
effective ones (Haynes et al., 2016; Trovato et al., 2018).

Nine transcriptomics studies are related to another important
problem: HIV latency. The comparison of transcriptional profiles
of latently and productively infected cells, as well as cells treated
with different latency reversing agents may allow revealing
mechanisms of latency and identifying new more effective
solutions for “shock and kill” or “block and lock” approaches.
For example, White et al. (2016) compared transcription profiles
of uninfected and latently infected central memory cells, and
identified 826 DEGs, many of which were related to p53 signaling.
The authors found that inhibition of the transcriptional activity
of p53 during HIV-1 infection reduced the ability of HIV-1 to be
reactivated from its latent state. Their observations may help to
develop new latency reversing agents (White et al., 2016).

In addition to the differential expression analysis,
transcriptomics data may be used for the construction of
co-expression and gene regulatory networks (see below).

Beside GEO and ArrayExpress resources, specialized
HIVed database21 also provides access to some HIV-related
transcriptomics and proteomics experiments derived from

20http://geneontology.org
21http://hivlatency.erc.monash.edu
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TABLE 4 | An overview of HIV-related transcriptomic experiments.

Experiment type Cell types Conditions

in vivo (140) Primary immune cells and tissues:
peripheral blood mononuclear cells (29), CD4+ T cells (24),
whole blood (19), CD8+ T cells (13), monocytes (12), B cells (4),
NK cells (3), lymph nodes (2), plasma (2), and others
Other primary cells and tissues:
frontal cortex (6), jejunum, colon or rectal cells (4), lymphoma
cells (3), adipose cells (2), retinal cells (2), skeletal muscle cells
(2), and others

HIV infection status:
infected, uninfected (65)

HIV progression types:
resistant to HIV, long-term non-progressors, elite controllers, chronic
progressors, and others (36)

HIV infection stages:
acute, chronic (latent), AIDS (4)

Quantitative characteristics of HIV infection:
CD4+ cells count and HIV RNA level (5)

HIV associated diseases:
HIV-associated neurocognitive disorders, HIV-associated tumors, and
others (22)

HIV co-infections:
mycobacterium tuberculosis, Neisseria gonorrhoeae, pneumococcal
meningitis, hepatitis C virus, kaposi’s sarcoma-associated herpesvirus, and
others (17)

Small molecule treatment including antiretroviral drugs:
treated or not treated patients, before or after therapy, before and after
treatment interruption, and other (23)

Vaccine trials (6)

Microbiome changes:
transcriptional changes in gut, tongue and lung microbiome induced by HIV
(3)

Cell subtypes:
comparison of transcription profiles between immune cell subtypes (9)

In vitro (93) Primary cells:
CD4+ T cells (15), monocyte-derived macrophages (15),
peripheral blood mononuclear cells (8), monocyte-derived
dendritic cells (6), macrophages (2), primary human neurons (2),
and others
Cell lines:
Jurkat cells (12), SupT1 cells (7), HEK293T cells (4), CEM-SS
cells (3), ACH-2 and A3.01 cells (2), SH-SY5Y cells (2), U1 cells
(2), U-937 cells (2), WE17/10 cells (2), and others

HIV infection status:
infected, uninfected (51)

HIV infection time-series:
different times after infection in vitro (22)

HIV latency:
viral latency in various CD4+ cells and reactivation by different agents (9)

Treatment of cells with small molecule substances including
antiretroviral drugs (11)

Treatment of HIV-infected cells with cytokines (4)

Infection of cells with various HIV variants and vectors expressing
wild type or mutated HIV proteins (30)

The numbers of corresponding experiments calculated as numbers of GEO and ArrayExpress identifiers are given in brackets.

literature. It contains data on gene expression levels during HIV
infection and replication as well as at HIV latency (Li et al., 2017).

The list of HIV-related transcriptomics experiments prepared
in this study is presented in Supplementary Table S3.

Proteomics Data
The mass spectrometry-based proteomics approaches allow
researchers to measure the absolute or relative amounts of

proteins in human cells under various conditions. The public
proteomics data describing HIV–human interaction can be
obtained from ProteomeXChange22, which contains information
from the PRIDE Archive23 and some other sources. Several
datasets are also published in GEO. We manually inspected the

22http://www.proteomexchange.org
23https://www.ebi.ac.uk/pride/archive

Frontiers in Microbiology | www.frontiersin.org 8 June 2020 | Volume 11 | Article 1314

http://www.proteomexchange.org
https://www.ebi.ac.uk/pride/archive
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-11-01314 June 15, 2020 Time: 22:42 # 9

Ivanov et al. Network Analysis of HIV–Host Interaction

corresponding databases and performed a search in PubMed
using the keywords “HIV” and “proteome.” We found more than
900 publications and selected those 25 proteomics studies, where
genome-wide protein profile was measured, and corresponding
data was made publicly available (see Supplementary Table S5).
Most of these studies are focused on identifying differentially
expressed proteins (DEPs) between the same conditions as those
in the transcriptomics studies (see above); however, some of
the studies have features unique to proteomics experiments
(see below). The transcript and protein levels have only weak
correlation across different experimental conditions, mainly
because of the existence of complex regulation at all stages
of gene expression: from transcription to regulation of protein
translation, maturation, transport and degradation (Vogel and
Marcotte, 2012; Wang et al., 2019). The changes in protein level
may also not be accompanied by changes in transcript level
and vice versa. For example, HIV protease destroys the human
proteins, which leads to a decrease in protein levels, but may
not lead to the changes in the corresponding transcripts. Thus,
the simultaneous assessment of changes in the transcriptome
and proteome under the same cells and other experimental
conditions is extremely important for the building of in silico
integrative models that provide the most accurate results.
For example, Golumbeanu et al. (2019) measured both the
proteomics and transcriptomics responses to HIV-1 infection
in SupT1 CD4+ T cells at five time points. They identified
new HDFs involved in a wide range of cellular processes,
such as cell signaling, immune response, cell cycle, gene
expression, or metabolism. The majority of these factors were not
found differentially expressed at the RNA level. Unfortunately,
other published studies were only focused on the changes
in the proteome.

Another advantage of proteomics approaches is the capability
to measure the changes in post-translational modifications
of human proteins during HIV infection. We found three
studies related to the estimation of such changes (Greenwood
et al., 2016; Yang et al., 2016; Lapek et al., 2017). Greenwood
et al. (2016) performed an analysis of more than 6500 HIV
and cellular proteins in the CEM-T4 cell line infected by wild
type and Vif-deficient viruses. Among others, they measured
changes in phosphoproteome and found Vif-dependent
hyperphosphorylation in more than 200 cellular proteins,
particularly the substrates of the aurora kinases (Greenwood
et al., 2016). Since the distinct profile of glycosylated surface
proteins can be used for targeting latently infected cells, Yang
et al. (2016) measured differences in the glycol-proteome in
ACH-2 and A3.01 cell lines, which are models of latently infected
and uninfected cells. They identified a change in the levels of 236
glycosite-containing peptides from 172 glycoproteins between
two cell lines. These proteins participate in cell adhesion,
immune response, glycoprotein metabolism, cell motion, and
cell activation (Yang et al., 2016). The study by Zheng et al.
(2011) aims at the identification of differences between immune
response to different opportunistic infections (Epstein-Barr virus
and Kaposi’s Sarcoma) based on proteome analysis.

Most proteomics experiments were performed by mass
spectrometry-based approaches; however, a few studies used

protein arrays, which are usually focused on particular sets
of proteins. For example, Yang et al. (2013) aimed at
the identification of autoantigens recognized by the broadly
neutralizing antibodies to 2F5 and 4E10 epitopes of HIV-1 gp41.
The corresponding protein array contained more than 9400
recombinant human proteins. As a result, the authors found
human kynureninase and splicing factor 3b subunit 3 acting as
human self-antigens.

The list of HIV-related proteomic experiments is presented in
Supplementary Table S5.

Epigenomics Data
HIV-related epigenomics studies are focused on the changes
in DNA methylation profiles (Zhang et al., 2016, 2018; Liu
et al., 2019), post-translational modifications of histones (Marban
et al., 2011; Park et al., 2014; Lucic et al., 2019), genome-
wide chromatin accessibility (Johnson et al., 2018), and the
identification of DNA binding/occupancy sites for human/HIV
proteins (Marban et al., 2011) based on ChIP-chip, ChIP-
seq, and ATAC-seq approaches (Supplementary Table S6). The
corresponding data can be obtained through the GEO database.
In total, we found 34 studies related to changes in the epigenome
under HIV infection. Importantly, some of them have linked
transcriptomics data, which was obtained during the same
experiments. The list of HIV-related epigenomics experiments is
presented in Supplementary Table S6, whereas some examples
are given below.

Marban et al. (2011) searched the HIV-1 Tat protein binding
sites in the human genome using the ChIP-seq approach.
In parallel, they performed the corresponding transcriptomic
study as well as ChIP-chip experiments to identify histone H3
acetylation sites. All the measurements were taken in Jurkat-Tat
and Jurkat cells. The authors found that only ∼7% of the Tat-
bound regions are near transcription start sites at gene promoters,
whereas ∼53% of the Tat target regions are within DNA repeat
elements. They also revealed that Tat binding sites are not
significantly associated with DEG promoters, whereas changes
in histone H3 lysine 9 acetylation are significantly associated
(Marban et al., 2011).

Some of the epigenomics studies were focused on the
investigation of HIV-1 integration sites. It is known, that
viral DNA integration is not a random process, but HIV-
1 predominantly integrates into open chromatin regions of
active transcription, including genes that were activated in
cells after infection by HIV-1 (Schröder et al., 2002; Lucic
et al., 2019). Lucic et al. (2019) revealed that targeted genes
are proximal to super-enhancer genomic elements and cluster
in specific spatial compartments of the T cell nucleus. They
showed that these gene clusters acquired their location during
the activation of T cells and concluded that the clustering of
these genes, along with their transcriptional activity, are the
major determinants of HIV-1 integration in T cells (Lucic et al.,
2019). Demeulemeester et al. (2014) identified the amino acid
residues in HIV-1 integrase that directly contact target DNA
bases and affect local integration site sequence selection. They
found natural polymorphisms, which retarget viral integration
away from gene dense regions. These variants were associated
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with rapid disease progression in patients with a chronic HIV-1
subtype C infection.

The epigenetic mechanisms, including histone modifications,
may affect the transcriptional silencing of HIV and viral
latency. Park et al. (2014) performed a genome-wide analysis
of histone modifications in HIV-1 latency cell lines using
ChIP-seq. They revealed that HIV-1 latency led to the
downregulation of histone H3K4me3 and H3K9ac levels in
387 and 493 regions and upregulation in 451 and 962 sites.
The genes associated with up- and down-regulated histone
levels participate in various pathways and processes: cell death,
protein import into nucleus, T cell activation, cell cycle, cell
proliferation, and metabolic process. Authors also compared
obtained results with the data on gene expression and found
that the cell cycle regulatory genes such as CDKN1A and
cyclin D2 identified by differentially modified histones might
play an essential role in maintaining the HIV-1 latency
(Park et al., 2014).

Data on Functional Genomics Screenings
To identify the HDFs, a genome-wide inactivation of gene
expression through small interfering RNA (siRNA) and small
hairpin RNA (shRNA) can be performed. In three large-scale
studies conducted in 2008, 842 human genes were identified as
HDFs (Brass et al., 2008; König et al., 2008; Zhou et al., 2008).
Brass A. L., König R., and Zhou H. along with their colleagues
identified 273, 295 and 230 genes as potential HDFs using
corresponding siRNAs transfected into HeLa-derived TZM-bl,
HEK-293 and HeLa P4-R5 cell lines; however, the percentages
of shared genes between the studies were minimal, ranging
from 3 to 6% (Bushman et al., 2009). A year later, Yeung
et al. (2009) performed the corresponding screening on the
Jurkat cell line using shRNAs and identified 252 potential HDFs,
which also have minimal overlap with genes from three previous
studies (Yeung et al., 2009). These results can be explained by
differences in the cell lines or type of reporter, experimental noise,
and differences between time points and filtering thresholds
(Bushman et al., 2009; Tough and McLaren, 2019). Bushman et al.
(2009) performed a Gene Ontology enrichment analysis for genes
from three first screening studies and found that the overlaps
between the identified cellular processes are higher than they are
at the individual gene level. Thus, the revealed potential HDFs
may represent at least a basis for further research with more
accurate methods and primary human CD4+ cells.

Recently, to identify potential HDFs, Park et al. (2017)
performed genome-wide knockout screening using CRISPR-
Cas9 lentiviral single-guide RNA constructs, which have
higher sensitivity and specificity than screens based on RNA
interference. Their research was conducted on GXRCas9 cells
and allowed for the identification of 5 HDFs, with HIV co-
receptors CD4 and CCR5, which are well-known targets of the
anti-HIV drugs maraviroc and ibalizumab (Kinch and Patridge,
2014; Puhl et al., 2019) as well as TPST2, SLC35B2 and ALCAM,
which are new potential targets. Genes TPST2 and SLC35B2
encode tyrosylprotein sulfotransferase 2 and solute carrier family
35 member B2, functioning in the same pathway as sulfate
CCR5, which facilitates its recognition by the HIV envelope.

The ALCAM gene encodes activated leukocyte cell adhesion
molecule-mediating cell aggregation, which is required for cell-
to-cell HIV transmission. The results were validated in primary
human CD4+ T cells through a Cas9-mediated knockout and an
antibody blockade. These three human proteins can be used in
further research as new potential anti-HIV targets.

NETWORK-BASED INTEGRATION AND
ANALYSIS OF OMICs DATA DESCRIBING
HIV–HOST INTERACTION

The general pipeline of network-based analysis of HIV-related
OMICs data is shown in the Figure 2.

Protein–Protein Interaction
Network-Based Analysis
Creation of Protein–Protein Interaction Networks
Protein–protein interaction networks (PPI networks) are the
most common type of networks used in HIV-related studies.
This is due to the high amount and availability of interaction
data between human proteins (Csermely et al., 2013; Miryala
et al., 2018) as well as human and HIV proteins (see Table 1
and Supplementary Table S1). The nodes of the PPI network
are proteins, whereas the edges represent the direct or physical
interactions between them, which are usually obtained by high-
throughput in vitro experiments (Gillen and Nita-Lazar, 2019).
The network may contain only one type of node representing
human proteins, or two types of nodes representing both human
and HIV proteins. Since PPI networks are derived from in vitro
experiments, they contain proteins, which are not expressed in
CD4+ cells and all the possible interactions that may take place
in all the tissues, cell types, and conditions. To create context-
specific networks representing molecular interactions under
specific HIV-related conditions, the integration of the PPIs with
other types of OMICs data is required (Figure 2). This integration
can be performed in at least three ways. First, all the interactions
can be measured in specific cells, under particular conditions,
e.g., HIV-infected CD4+ T cells (Luo et al., 2016); however,
due to their high cost, this type of interactomics experiment
is not usually performed. Second, subnetworks containing only
human proteins essential for the HIV life cycle can be created.
Human proteins encoded by DEGs, immediate DEPs, HDFs
derived from functional genomic screens or human proteins
that are physically interacting with HIV can be used for this
purpose (van Dijk et al., 2010; Xu et al., 2014; Shityakov et al.,
2015; Gao L. et al., 2018; Saha et al., 2018). Third, the context-
specific PPI network can be created from a global network by
eliminating proteins that are not expressed under particular
experimental conditions (Kotlyar et al., 2016; Basha et al.,
2017), or by changing the edge weights using transcriptomics,
proteomics and epigenomics data (Chen and Li, 2016; Li and
Chen, 2018; Csösz et al., 2019). In addition to pure PPI networks,
which contain only human/HIV proteins, integrated networks
can be created. These networks include various types of nodes
representing proteins, mRNAs, non-coding RNAs, or genes, and
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FIGURE 2 | The general pipeline of network-based analysis of HIV-related OMICs data. Public databases provide access to OMICs data on human and HIV-human
protein-protein interactions (HPIDB, PHISTO, VirHostNet, VirusMentha, and others, see Table 1 and Supplementary Table S1), interactions between human and
viral coding/non-coding RNAs (ViRBase, VmiReg, VIRmiRNA databases, Table 3 and Supplementary Table S2), transcriptomics, proteomics and epigenomics
data (GEO, ArrayExpress, ProteomeXChange, HIVed databases, Supplementary Tables S3–S6) (nodes of purple color in the figure). The HIV-related OMICs data
can be used to create context-specific protein-protein interaction networks, co-expression, gene regulatory and signaling networks (nodes of green color in the
figure). The context-specific networks can be constructed by weighting protein–protein interactions using transcriptomics, proteomics or epigenomics data, or by
taking into account only DEG/proteins (DEGs/DEPs). Co-expression networks can be created using transcriptomics data and weighted gene correlation network
analysis (WGCNA). Gene regulatory networks can be inferred from transcriptomics data using reverse engineering approaches, whereas signaling networks are
usually manually created by experts based on a great deal of information regarding the protein interactions, post-translational modifications, and other data types.
The created networks can be used for different types of analysis (nodes of blue color in the figure): (1) identification of dense communities in human protein-protein
interaction and co-expression networks (clusters or modules), or in HIV-human interaction networks (biclusters). The pathway enrichment analysis applied to clusters
and biclusters allows identifying pathways and cellular processes, which are essential for HIV-human interaction; (2) degree and centrality analysis, gene phenotype
prioritization analysis, as well as dynamic modeling with in silico gene knockout allows identifying proteins, which are the most essential for HIV-human interaction
(host dependency factors), and can be considered as potential targets for new anti-HIV therapeutic approaches.

help in obtaining more accurate results than when only PPIs are
studied (Chen and Li, 2016; Li and Chen, 2018). For example,
Li and Chen (2018) created HIV-1-human interspecies protein–
protein and miRNA interaction networks for different stages
of HIV infection in CD4+ T cells, with reverse transcription,
integration/replication, and the late stages of the HIV life cycle.
The networks differed by edge weights, which were calculated
using the corresponding transcriptomics data and stochastic
dynamic modeling (Li and Chen, 2018).

The purposes of analyzing HIV-related PPI networks include
the identification of human proteins essential for the HIV life

cycle based on the topological characteristics of the networks,
the identification of dense communities of proteins in the
network, which may perform similar functions in the cell,
and predictions of new potential HDFs by gene-phenotype
prioritization algorithms.

Identification of Essential Proteins in a
Protein–Protein Interaction Network
The degree of protein found in a network is simply the number of
direct interactions with other proteins. The distribution of degree
in real PPI networks follows power low, so most proteins have
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a low number of interactions, but a small number of proteins
have a high number of interactions (Csermely et al., 2013; Miryala
et al., 2018). The last type of proteins is called “hubs,” and they
are critical for cell viability (see Figure 3A). The disturbance
of their function can lead to cell death or carcinogenesis
(Csermely et al., 2013; Miryala et al., 2018). In addition to “hubs,”
the PPI networks contain proteins, called “bottlenecks,” which
have few interactions but exclusively connect distinct modules
and are therefore critical for cell survival (Figure 3A). These
proteins have high centrality measures (Csermely et al., 2013;
Miryala et al., 2018; Li et al., 2020). Two types of centrality
are usually used, closeness centrality and betweenness centrality.
The closeness centrality is the average length of the shortest
paths between the protein and all the other proteins in the
network. The betweenness centrality quantifies the number
of times a protein acts as a bridge along the shortest path
between two other proteins in the network (Figure 3B). The
degree and centrality measures can be used to identify the
essential human proteins influencing HIV–human interactions
(Dickerson et al., 2010; van Dijk et al., 2010; Huang et al., 2011;
Li et al., 2013; Ma et al., 2013; Bandyopadhyay et al., 2015; Xie
et al., 2015). For example, Huang et al. (2011) compared gene
expression profiles from CD4+ T cells between HIV-1-resistant
and susceptible subjects using Minimum Redundancy-Maximum
Relevance and Incremental Feature Selection algorithms. They
identified 185 genes for which the expression levels distinguished
between HIV-resistant and susceptible individuals with 85.2%
accuracy. The authors identified 29 proteins from the 185 total
based on the calculation of modified betweenness centrality in
the HIV-1-human PPI network. This network included both
interactions between human proteins as well as interactions
between human and HIV-1 proteins. The modified betweenness
centrality reflects the number of times a human protein acts as
a bridge along the shortest path between two HIV-1 proteins
(Figure 3B). Twenty-nine identified human proteins may be
considered as targets for the disruption of communication
between virus-targeted proteins and the prevention of viral
infection (Huang et al., 2011). Shityakov et al. (2015) compared
transcription profiles in frontal cortex between samples from
AIDS patients with and without apparent features of HIV-
associated encephalitis and dementia. They identified 1528
DEGs, which are mainly involved in the immune response,
regulation of cell proliferation, cellular response to inflammation,
signal transduction, and viral replication cycle. The authors
created human PPI network containing only proteins encoded
by DEGs, and identified hubs, e.g., heat-shock protein alpha,
class A member 1, and fibronectin 1, which seem to play
essential roles in the pathogenesis of HIV-associated encephalitis
(Shityakov et al., 2015).

Identification of Clusters (Modules) and Biclusters in
a Protein–Protein Interaction Network
At the higher level of network organization, modular structures
can be found. The network module (cluster) is a dense
community of nodes, which are highly interconnected with one
another but weakly connected to other nodes in the network
(Csermely et al., 2013; Miryala et al., 2018; Wu et al., 2019) (see

Figure 3A). The proteins from the module tend to perform the
same biological functions, e.g., a module may represent the dense
part of the signaling pathway or complex cellular machinery such
as one related to the DNA polymerase protein complex. The
identification of modules in human PPI networks integrated with
HIV-related OMICs data with subsequent functional annotation
using pathway enrichment analysis allows researchers to reveal
the particular mechanisms of HIV-host interactions (Xu et al.,
2014; Amberkar and Kaderali, 2015; Yang et al., 2019). For
example, Amberkar and Kaderali (2015) identified modules
in the human PPI network using the ClusterONE algorithm
and found that they are enriched by potential HDFs and
HRFs from functional genomic screens (see above). Modules
were then filtered based on network topology and semantic
similarity measures, and the remaining two modules were finally
interpreted for their biological significance using Gene Ontology
and pathway enrichment analysis. As a result, the authors
revealed that proteins from the first module were involved in
gene transcription, whereas proteins from the second module
participated in mRNA processing and splicing. Interestingly,
the transcriptional regulation was not revealed in enrichment
analyses of the individual screens, which may indicate the
importance of module identification before enrichment because
the inclusion of protein neighborhoods from corresponding
clusters in the analysis may increase its power and sensitivity
(Amberkar and Kaderali, 2015).

Interactions between human and HIV proteins can be
presented as a bipartite graph, which contains two types of
nodes (corresponding to HIV and human proteins) and edges
connecting only nodes of different types, but not the same type
(see Figure 3C). The corresponding data can be used to identify
biclusters (Figure 3C), containing human proteins that interact
with a common set of HIV proteins (MacPherson et al., 2010;
Maulik et al., 2011, 2013). These topological structures are called
“biclusters” because they contain two types of nodes, human and
HIV proteins. The human proteins from biclusters represent the
gateway proteins that are most affected by the HIV infection.
Maulik et al. (2011) identified 14 overlapping biclusters using the
original algorithm and bipartite network with two types of nodes
corresponding to human and HIV-1 proteins. These biclusters
formed a strongly connected subnetwork containing 7 HIV-1 and
19 human proteins. The list of corresponding human proteins is
enriched with kinases and other proteins from signaling pathways
(Maulik et al., 2011).

Gene-Phenotype Prioritization Algorithms for
Identifying Potential HDFs
The proteins from the dense clusters in the PPI network tend
to perform the same biological functions. This finding underlies
many gene-phenotype prioritization algorithms, which are used
to predict gene participation in cellular processes as well as to
predict new associations between genes and human diseases (Lan
et al., 2015; Fiscon et al., 2018). The corresponding methods
can be divided into the following two groups: (1) local methods,
which are based on the search for direct interactions between
candidate genes and genes with a known phenotype; and (2)
global methods, which model how the information flow in the
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FIGURE 3 | Main topological characteristics of human and HIV–human protein–protein interaction networks. (A) Example of a network with modular structures.
Modules are dense communities of nodes that are highly interconnected but weakly connected to other nodes in the network. Red nodes represent “hubs,” which
are proteins with a high number of interactions. Green node is an example of “bottleneck,” which exclusively connects distinct modules. (B) Principle of centralities
calculation. Both closeness and betweenness centralities rely on the shortest paths between pairs of nodes in the network. The closeness centrality is the average
length of the shortest paths between the protein and all the other proteins in the network (the shortest paths between red-colored node and nodes 3 and 4 are
marked by red arrows). The betweenness centrality quantifies the number of times a protein acts as a bridge along the shortest path between two other proteins in
the network (the shortest path between node 1 and node 2 passing through the red-colored node is marked by blue arrows). If the network includes both
interactions between human proteins (blue nodes) as well as interactions between human and HIV proteins (gray nodes), then the modified betweenness centrality
can be calculated. It reflects the number of times a human protein acts as a bridge along the shortest path between two HIV proteins (the shortest paths between
node 5 and node 6 or node 7 passing through green-colored node are marked by green arrows). (C) Illustration of bipartite graph and biclusters. The bipartite graph
contains two types of nodes (corresponding to HIV and human proteins) and edges connecting only nodes of different types, but not the same type. The
corresponding data can be used to identify biclusters, which contain human proteins that interact with a common set of HIV proteins.

PPI network is used to assess the proximity and connectivity
between genes with the established phenotype and candidate
genes. The general principle of algorithms is “the closer candidate
genes to known phenotype genes in the network, e.g., they
are in the same module, the higher score of the algorithm
will be obtained.” Gene-phenotype prioritization algorithms and
PPI networks were used to predict new HDFs essential for
HIV-host interaction (Murali et al., 2011; Emig-Agius et al.,
2014). For example, Murali T. M. used the original SinkSource
algorithm and human PPI network to predict new potential
HDFs that influenced HIV–host interactions (Murali et al., 2011).
They used 545 genes from the three earliest genomic functional
screens (Brass et al., 2008; König et al., 2008; Zhou et al.,
2008) (see above) that were present in the PPI network as
known HDFs. The Gene Ontology enrichment analysis, which
was performed for the top 1000 predicted proteins, revealed
that the obtained cellular processes are HIV-related, e.g., in
RNA splicing, translation initiation, oxidative phosphorylation,
and others. The authors also found that a significant number

of the obtained potential HDFs interacted with HIV proteins.
The predicted HDFs, along with those derived from genomic
screens, may represent potential pharmacological targets for
treating HIV infections.

Co-expression Network-Based Analysis
Co-expression is the simultaneous expression of two or more
genes so that the transcription of two genes changed similarly
under different conditions (Figure 4). The co-expression of
two genes may reflect the transcription regulation by the
same transcription factors. To determine co-expression, various
measures can be employed, e.g., Pearson or Spearman correlation
coefficients, mutual information, or Euclidean distance (van
Dam et al., 2018). The unweighted co-expression network can
be constructed by selecting a threshold on a co-expression
measure so that the edge between the two genes exists when the
corresponding value is higher than the threshold. The weighted
co-expression networks contain all the possible edges between
all the genes for which the weights are calculated using several
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FIGURE 4 | Co-expression analysis framework. To determine co-expression, the correlation between expression values for all gene pairs must be calculated. The
weighted or unweighted co-expression networks can be created based on these values. A cluster analysis, which is based on co-expression values, allows
identifying modules (clusters) of co-expressed genes. The co-expression module contains genes that could be regulated by the same transcription factors and have
similar biological functions. The genes from each module can be used for pathway and Gene Ontology enrichment analysis to identify corresponding biological
functions. Weighted gene correlation network analysis (WGCNA) is the most popular framework for the creation of co-expression networks. Along with the
identification of modules, it can be used to estimate module preservation between two networks created for different conditions, reveal modules associated with a
clinical trait of interest and find intermodular “hubs,” which could be the essential genes regulating the expression of the other genes in the module.

functions from co-expression measures. A co-expression network
can be created for particular cell types and conditions using
microarray or RNA sequencing-based data (van Dam et al.,
2018). The most common type of co-expression analysis is
related to the identification of network modules (Figure 4). The
co-expression module contains genes that could be regulated
by the same transcription factors and have similar biological
functions as in modules from the PPI networks. The most popular
framework for the creation of co-expression networks and the
analysis of modules is the weighted gene correlation network
analysis (WGCNA) (Zhang and Horvath, 2005; Langfelder and
Horvath, 2008; van Dam et al., 2018). The WGCNA can be
used to create co-expression networks, identify modules, estimate
module preservation between two networks created for different
conditions, reveal modules associated with a clinical trait of
interest and find intermodular “hubs,” which could be the
essential genes regulating the expression of the other genes in
the module. To date, several studies have been focused on the
creation and analysis of co-expression networks for HIV-related
conditions (Ma et al., 2011; Levine et al., 2013a,b; Xu et al., 2013;
Ray and Bandyopadhyay, 2016; Mosaddek Hossain et al., 2017;
Ray and Maulik, 2017; Quach et al., 2018; Ding et al., 2019;

Nguyen et al., 2019). Most of them were based on transcriptomics
data from CD4+ and CD8+ cells, which reflect different stages
of HIV infection or progression types, e.g., chronic progressors,
viremic controllers, elite controllers or subjects who were utterly
resistant to the virus (Ma et al., 2011; Xu et al., 2013; Ray
and Bandyopadhyay, 2016; Mosaddek Hossain et al., 2017; Ray
and Maulik, 2017; Ding et al., 2019). Some other studies were
focused on conditions related to HAND (Levine et al., 2013a,b;
Quach et al., 2018). Almost all of the studies applied WGCNA
to identify co-expression modules, which are preserved between
different conditions, or modules related to a particular state, with
subsequent Gene Ontology and pathway enrichment analysis of
the modular genes.

Ray and Bandyopadhyay (2016) created a co-expression
network for the acute phase of HIV infection with the
subsequent identification of modules using WGCNA algorithm
and transcription data from CD4+ and CD8+ T cells. The
analysis on the preservation of modules across chronic and
non-progressor stages was performed using the original rank
aggregation algorithm, which is based on the comparison
of module ranks and determined from multiple module
characteristics, between HIV stages. The authors found 30
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modules in the network for the acute phase of HIV infection,
but not all of them were preserved in other stages. The
genes from modules, according to the pathway enrichment
analysis, participate in processes related to the immune system,
the regulation of transcription, RNA processing, splicing and
translation, cell cycle and apoptosis, and energy derivation as
well as cytoskeleton regulation. The authors also performed
a transcription factor enrichment analysis and found some
novel factors such as “FOXO1,” “GATA3,” “GFI1,” “IRF1,”
“IRF7,” “MAX,” “STAT1,” “STAT3,” “XBP1,” and “YY1,” which
emerged from the modules that showed significant changes
in expression patterns over the HIV progression stages
(Ray and Bandyopadhyay, 2016).

Ding et al. (2019) created several co-expression networks
based on transcription data from the CD4+ and CD8+ T
cells as well as whole blood obtained from subjects with
different viremic control statuses, e.g., viremic controllers and
elite controllers. They found significant positive associations
between several modules and clinical parameters describing
HIV progression and the loss of viremic control. The genes
from these modules participate in immune-related pathways
and cellular processes such as type I interferon signaling
pathway, complement activation, the positive regulation of B cell
activation, cellular responses to stress, leukocyte migration, and
responses to cytokines (Ding et al., 2019).

Zak et al. (2012) used the time-serial measurement of
gene expression profiles in peripheral blood mononuclear cells,
which were derived from subjects who were provided with
MRKAd5/HIV vaccination. These researchers used modular
analysis framework to deconvolute complex transcriptional
profiles into functionally interpretable patterns. They performed
pathway enrichment analysis of genes from revealed modules
and found increased expression of genes associated with
inflammation, interferon response, and myeloid cell trafficking,
and decreases in lymphocyte-specific transcripts, which leads
to the hypothesis that the vaccine was stimulating an influx
of myeloid cells and an efflux of lymphoid cells from the
circulation. The authors also compared the gene expression
profiles between subjects who have different magnitudes of HIV-
specific CD8+ T-cell responses to the vaccine, and they identified
209 DEGs that were associated with cytotoxic responses,
including inhibitory killer cell Ig-like receptor KIR2DL1, the
NK-cell activating receptor CLEC2D, and the NK-cell signaling
adaptor EWS-FLI1-activated transcript 2 (EAT-2). This finding is
important because the adenoviral expression of EAT-2 enhanced
vaccine-induced T-cell responses as part of a vaccine strategy
(Zak et al., 2012).

Signed Network-Based Analysis
The signed network is a type of molecular network in which
(1) all edges have a direction representing a signal flow from
the source to the target node; and (2) all edges are either
positive (standing for activation) or negative (representing
inhibition). Signaling and gene regulatory networks are the most
commonly used networks of this type (Csermely et al., 2013). The
signaling network consists of signed direct interactions between
proteins, RNAs, and secondary messengers, and it represents the

signal flow from receptors to transcriptional factors or other
effector molecules. The gene regulatory network consists of
signed, mostly indirect interactions between genes, where edges
represent how one gene can change the transcription of another
gene, either up- or down-regulation (Csermely et al., 2013).
The signaling pathways are usually manually created by experts
based on a great deal of information regarding the PPIs, post-
translational modifications, siRNA-based genetic knockdowns,
and data types. Information about signaling pathways can be
obtained from various databases such as KEGG24, Reactome25,
NetPath26, SPIKE27, and Signor 2.028. A gene regulatory network
can be created using reverse engineering methods that are
applied to gene transcription data perturbed multiple times,
e.g., by siRNA to different genes or small molecule inhibitors
(Csermely et al., 2013).

Signed networks can be used in HIV-related research for (1)
identifying the motifs of directed interactions between HIV and
human proteins (van Dijk et al., 2010; Biswas et al., 2019); and
(2) creating dynamic models of HIV interaction with human cells
(Oyeyemi et al., 2015; Bensussen et al., 2018).

Motifs are chains or contours of 3–6 vertices in a
directed network that are much more common than they
are in a random network. These building blocks have
been used to study the structure and dynamic behavior of
networks. van Dijk et al. (2010) identified several motifs
consisting of human and HIV proteins, e.g., positive
feedback, positive and negative co-regulation, co-activation
motifs, activation, and inhibition cliques. These motifs
may have an essential role in HIV-human interactions.
For example, the three-node feedback loop motif, which
was identified as indirect self-regulation, is a pattern
in which an HIV protein regulates or signals a human
protein that regulates/signals another HIV protein in turn
(van Dijk et al., 2010).

The dynamic of HIV–host interactions can be simulated
by creating discrete and continuous models. Oyeyemi et al.
(2015) applied Boolean discrete modeling to the T-cell
activation signaling pathway containing both HIV and
human proteins. They found that the model reproduced
the expected patterns of T-cell activation, co-stimulation,
and co-inhibition. Through in silico knockouts, the model
identified an additional nine HDFs, including members
of the PI3K signaling pathway that are essential for viral
replication. The revealed potential HDFs were retrospectively
confirmed by comparison with the results of three functional
genomic screens (Oyeyemi et al., 2015). Bensussen et al. (2018)
created a gene regulatory network of latent proviruses in
resting CD4+ T cells containing human and HIV proteins as
well as HIV non-coding RNAs. They applied both Boolean
and continuous mathematical models, which were based
on ordinary differential equations, to simulate the latency

24https://www.genome.jp/kegg
25https://reactome.org
26http://www.netpath.org
27https://www.cs.tau.ac.il/~spike
28https://signor.uniroma2.it
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reversion. The authors found that viral non-coding RNAs
can counteract the activity of latency reversing agents, which
may explain the failure of these compounds to reactivate the
latent reservoirs of HIV. They also found that inhibitors of
histone methyltransferases, together with releasers of the positive
transcription elongation factor (P-TEFb), may increase proviral
reactivation despite the self-repressive effects of viral non-coding
RNAs (Bensussen et al., 2018).

CONCLUSION

HIV/AIDS remains one of the most significant dangers for
humankind. Although the existing antiretroviral therapy allows
for the control of the virus and prevents transmission,
HIV infection remains a global health problem due to
the impossibility of eliminating the virus from the human
body and problems with creation of anti-HIV vaccine. To
overcome the limitations of the existing anti-HIV therapy, to
improve its efficacy and safety, and to develop new therapeutic
approaches, such as therapeutic and preventive vaccines as well
as approaches to cure latent infection, a deeper understanding
of the mechanisms of HIV-human interaction is required.
A network-based analysis of OMICs data may shed light on
the corresponding mechanisms and allows for the identification
of new points in therapeutic interventions. To date, more
than 2900 interactions between human and HIV-1 proteins
belonging to different viral groups and subtypes have been
added to public databases. Most of these interactions belong
to HIV-1 group M subtype B, whereas other groups and
subtypes are associated with very few or no interactions,
which results in difficulties in the network-based analysis of
other HIV variants. We found 232 HIV-related transcriptomics
experiments in which the expression profiles of human and
HIV coding and non-coding RNAs were measured in various
cell types, in vivo and in vitro, under different conditions.
Different individuals may have different levels of susceptibility
to HIV, disease progression rates, and different responses
to drug and vaccine treatments. The identification of DEGs
between various conditions with the pathway enrichment
analysis allows researchers to explain the differences in these
conditions. Particularly, the comparison of transcriptional
profiles in various immune cells from individuals treated
with more or less effective vaccines, with stronger or weaker
immune response to particular vaccine allows identifying genes
and pathways, which modulation by adjuvants may increase
vaccine efficacy. Similarly, comparison of transcriptional profiles
between uninfected and latently infected cells allows identifying
unknown mechanisms of latency, which may help to develop
new more effective latency reversing agents or agents causing
transcriptional silencing of integrated HIV genome (“shock and
kill,” “block and lock” strategies). Comparison of transcriptional
profiles between chronically infected individuals, viremic and
elite controllers allows identifying mechanisms of decreased
susceptibility to HIV infection. Mimicking the corresponding
transcriptional profiles of viremic and elite controllers by
various chemical and biological agents may increase the efficacy

of antiretroviral therapy and vaccines. The creation of co-
expression networks with the subsequent identification of
dense gene clusters allows for the identification of new HIV-
related pathway and cellular processes that cannot be obtained
through a simple analysis of DEGs. In addition to protein-
protein interactions and transcriptomics data, a few datasets
on the interactions between human and viral RNAs, genomics,
proteomics, epigenomics data as well as data from functional
genomic screenings are currently available. The integration
of human and human-HIV protein-protein interactions with
other types of OMICs data allows for the creation of
context-specific networks reflecting particular experimental and
clinical conditions. Networks reflecting different degree of
susceptibility to HIV infection (chronically infected patients,
viremic and elite controllers), productive or latent HIV infection
can be created. The identification of modules in human
context-specific protein–protein interaction networks, as in
co-expression network, allows for the identification of more
HIV-related pathways and cellular processes than through
simple comparison of transcriptomic and proteomic profiles.
The analysis of the topology of context-specific human or
human–HIV protein–protein interaction networks may assists
in identifying the proteins with high degree or centrality,
which are essential for HIV–human interaction, and may
represent the most perspective human targets to prevent
infection of human CD4+ cells, reactivate or silent latent
HIV infection, and model the efficacy of immune response
induced by vaccines.

Since there are hundreds of publicly available transcriptomic
experiments that were performed under many conditions
as well as thousands of known human and HIV-human
protein-protein interactions, whereas only a small portion of
them have been used in network-based analyses, this gap
provides an opportunity to create many novel network-based
models and potentially obtain new knowledge on HIV-human
interaction mechanisms.
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