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Marine protected areas do not buffer corals 
from bleaching under global warming
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Abstract 

Background: The rising temperature of the oceans has been identified as the primary driver of mass coral reef 
declines via coral bleaching (expulsion of photosynthetic endosymbionts). Marine protected areas (MPAs) have been 
implemented throughout the oceans with the aim of mitigating the impact of local stressors, enhancing fish biomass, 
and sustaining biodiversity overall. In coral reef regions specifically, protection from local stressors and the enhanced 
ecosystem function contributed by MPAs are expected to increase coral resistance to global‑scale stressors such as 
marine heatwaves. However, MPAs still suffer from limitations in design, or fail to be adequately enforced, potentially 
reducing their intended efficacy. Here, we address the hypothesis that the local‑scale benefits resulting from MPAs 
moderate coral bleaching under global warming related stress.

Results: Bayesian analyses reveal that bleaching is expected to occur in both larger and older MPAs when corals are 
under thermal stress from marine heatwaves (quantified as Degree Heating Weeks, DHW), but this is partially moder‑
ated in comparison to the effects of DHW alone. Further analyses failed to identify differences in bleaching prevalence 
in MPAs relative to non‑MPAs for coral reefs experiencing different levels of thermal stress. Finally, no difference in tem‑
peratures where bleaching occurs between MPA and non‑MPA sites was found.

Conclusions: Our findings suggest that bleaching is likely to occur under global warming regardless of protected 
status. Thus, while protected areas have key roles for maintaining ecosystem function and local livelihoods, combat‑
ting the source of global warming remains the best way to prevent the decline of coral reefs via coral bleaching.
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Introduction
Rising ocean temperatures and increased frequency and 
duration of marine heatwaves [1] are causing the decline 
of coral reefs at alarming rates via coral bleaching [2, 3]—
the process whereby photosynthetic endosymbionts are 
expelled, revealing the coral skeleton [4–8]. Sustained 
ocean heat stress can lead to mass bleaching events which 
may result in mortality of entire coral colonies [3, 9, 10]. 
If lethal bleaching occurs, the loss of coral cover results 
in habitat homogenisation and consequently reduced 

biodiversity [10, 11]. Ultimately, such reductions in coral 
reef biodiversity inhibits the ecosystem function of coral 
reefs, critical for supporting > 25% of marine species [12] 
and for providing ecosystem services to over 100 million 
people circumtropically [13].

While global warming is unequivocally the predomi-
nant driver of mass coral bleaching, a myriad of local 
scale factors can also induce bleaching of corals. Factors 
such as turbidity [14, 15], eutrophication [16, 17], hypoxia 
[16, 18], and sedimentation [14] have been documented 
to independently induce coral bleaching. However, pio-
neering studies identified reduced mortality from coral 
bleaching under higher levels of sedimentation when 
exposed to heat stress, likely as a result of reduced solar 
irradiance [14]. Yet, bleaching is known to occur under 

Open Access

BMC Ecology and Evolution

*Correspondence:  d.pincheira‑donoso@qub.ac.uk
1 Macrobiodiversity Lab, School of Biological Sciences, Queen’s University 
Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12862-022-02011-y&domain=pdf


Page 2 of 8Johnson et al. BMC Ecology and Evolution           (2022) 22:58 

high temperature regimes regardless of irradiance [19]. 
Despite convoluted evidence of these interactions influ-
encing bleaching, a widespread expectation that these 
local stressors interact either additively or synergistically 
with global warming to exacerbate coral bleaching exists, 
with field evidence from Mesoamerican reefs [20, 21], 
and French Polynesia [17].

To mitigate the additive effects of local scale stressors 
on marine biodiversity overall, Marine Protected Areas 
(MPAs) have been implemented across different regions 
of the world, which when effectively designed, are estab-
lished to enhance regional biodiversity and general eco-
system health [22]. Large and long-established MPAs are 
often especially effective for enhancing multiple metrics 
used for monitoring ecosystem health [23, 24], such as 
coral cover [25], fish biomass [26] and biodiversity [22]. 
For corals specifically, the role MPAs perform for reduc-
ing local stressors intend to enhance coral health through 
a variety of physiological mechanisms [27], thereby pro-
moting resistance of reef building corals to disturbance. 
Furthermore, MPAs have the potential to promote resil-
ience to disturbance events, such as marine heatwaves, 
disease outbreaks, and hurricanes, via ecological pro-
cesses [28]. This enhanced resilience intrinsically pro-
motes resistance to future bleaching by facilitating full 
recovery from bleaching before the next disturbance 
event [11]. Given that marine heatwaves and bleaching 
events are increasing in frequency and intensity through 
time [1, 2, 11, 29], the benefits of MPAs for promoting 
resilience in reef building corals are subsequently cru-
cial for also enhancing the resistance of corals to future 
bleaching—i.e. managed resilience [22].

However, the effects of MPAs for mitigating coral reef 
decline remain contested. For example, decline in coral 
cover attributed to thermal stress is not mitigated by 
MPAs [30], suggesting that the preservation of coral reefs 
does not depend significantly on MPAs, but on actions 
that mitigate the degree of climate warming [22, 31]. 
Furthermore, multiple stressors on coral reefs tend to be 
antagonistic rather than synergistic, especially interac-
tions between local stressors, and global warming [22, 
32–35]. This is likely owing to co-sensitivity and co-tol-
erance of coral species exposed to stressors, along with 
the frightening prospect that climate warming eclipses 
the potential advantages that could be expected to result 
from the mitigation of local stressors [31].

Given both the convoluted relationship between 
global and local stressors exerted on coral reefs, along 
with the diversity of primary objectives different MPA’s 
aim to achieve, it is crucial to discern whether MPA’s 
have any moderation effect on bleaching under global 
warming. However, an explicit global scale test to 
examine the prevalence of bleaching in relation to their 

protected status remains lacking. To test this hypoth-
esis for coral bleaching specifically, we examine (1) 
the probability of coral bleaching under thermal stress 
(quantified as Degree Heating Weeks, DHW) for key 
MPA attributes—the size and age of MPAs, using a 
Bayesian Generalised Linear Mixed Model; (2) imple-
ment quantitative comparisons of bleaching prevalence 
on coral reefs within and outside protected regions 
under different levels of thermal stress; and (3) com-
pare thermal thresholds where the onset of bleaching 
occurs between protected and non-protected coral 
reefs based on the gamma distributions of DHWs. To 
address this hypothesis we utilise a global scale data set 
containing 8,766 coral bleaching surveys (Fig. 1) over a 
16 year period.

Results
Bleaching within MPAs
Our Bayesian model from 3391 reef check surveys reveals 
that older MPAs reduce the probability of coral bleach-
ing, while the size of a MPA shows little evidence for pre-
dicting bleaching (Fig. 2).

However, the interaction between DHW and MPA age 
shows evidence for predicting an increased probability in 
bleaching based on the 80% credible interval (CI), which 
becomes weaker when interpreting the 95% CI. Mean-
while, the interaction between DHW and MPA size show 
little evidence for predicting bleaching as both the 80% 
and 95% credible intervals cross zero (Fig. 2). These inter-
actions suggest bleaching is likely to occur when under 
heat stress, but do show a partial moderation in compari-
son to the sole predictor of DHW.

Bleaching comparisons between MPA and non‑MPA coral 
reefs
When comparing the average bleaching prevalence for 
reef check surveys across different DHW categories 
(none 0, low < 1.5, medium 1.5–4, and high > 4) with a 
likelihood ratio test there were no statistically significant 
differences between MPA and non-MPA sites (Fig.  3; 
Table  1), suggesting that the sites protected status had 
negligible effect on bleaching prevalence.

Finally, when comparing the DHW values where the 
onset of coral bleaching has occurred (i.e. the mean 
DHW value associated with coral bleaching) with a likeli-
hood ratio test, there is no significant difference between 
MPA and non-MPA sites (Fig.  4) (Likelihood ratio test, 
Pr(>χ2) = 0.998). Thus, protected status appears to have 
little, if any, moderation effect on coral bleaching preva-
lence under thermal stress from climate change when 
comparing protected reefs to non-protected reefs.
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Discussion
Our analyses reveal that MPAs play a negligible role in 
mitigating the onset of coral bleaching when under cli-
mate change related thermal stress. However, weak 

evidence for moderation under the interaction of DHW 
with MPA size, and MPA age, in comparison to the sole 
predictor of DHW does exist (Fig. 2). Crucially, however, 
bleaching is still predicted to occur under these interac-
tions. Given our findings, with no discernible difference 
in temperatures where the onset of bleaching occurs, we 
expect that coral resistance to thermally induced bleach-
ing is unlikely enhanced by the implementation of pro-
tected status. These findings are in accordance with 
previous studies investigating loss of coral cover within 
MPAs under climate change [30], and further challenge 
the assumed benefits of managed resilience for promot-
ing resistance in corals to guide reefs through the gaunt-
let of climate change [22, 31].

Given the similar bleaching responses between coral 
reefs residing within and outside MPAs, our findings add 
to the growing complexity of the relationship between 
local and global scale stressors for degrading coral reefs. 
Comparable levels of bleaching where no temperature 
stress is present (0 DHW category) indicates no differ-
ence in bleaching under ambient conditions, which is 
likely a result of localised conditions [29], survey error 
[37], and perhaps lack of recovery from a previous dis-
turbance event - i.e. non-branching corals which are able 
to survive longer while bleached [38]. Furthermore, an 
identical thermal threshold where the onset of bleaching 
occurs suggests there is a not a synergistic relationship 
between local and global factors which exert stress onto 

Fig. 1 The richness and global scale distribution of Reef Check surveys used to examine the effects of MPAs on coral bleaching. a Represents 5393 
surveys which do not fall within an MPA. b Are the 3391 surveys which do fall within the jurisdiction of an MPA

Fig. 2 Model coefficients of predictions from the Bayesian 
Generalized Mixed Effect Model. DHW are degree heating weeks, 
MPA attributes are size and age. Blue dot represents mean coefficient, 
thick dark blue bars are 80% credible intervals (CI), while the whiskers 
(thin grey bars) are 95% CIs. Data are from 3391 coral bleaching 
surveys which fell within the jurisdiction of an MPA as categorized by 
the IUCNs World Database of Protected Areas
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coral reefs. Non-synergistic and antagonistic relation-
ships have been widely reported on coral reefs over the 
last 10 years [32–34] challenging the previous supposi-
tion that stressors exerted onto coral reefs act synergis-
tically [39]. Our findings could indicate that bleaching is 
unlikely to be synergistically exacerbated by local stress-
ors [35], which are assumed to be moderated by MPAs, 
given the identical bleaching responses between MPA 
and non-MPA environments (Fig. 4). It is likely that the 
effects of climate change are far eclipsing the role of 

localised stressors and thus localised mitigation [11, 22, 
40]. It should be noted, however, that many MPAs are not 
adequately managed in many marine regions [41], and 
have aims focused on social-economic and biodiversity 
benefits [42], thus our findings may also reflect this. Fur-
thermore, owing to the spatial variability of coral bleach-
ing [29], which is often specific to a wide range of factors 
such as turbidity [43, 44], internal waves [45, 46], evolu-
tionary history [47], and ecological memory [48], excep-
tions to the global scale pattern will exist [20, 21].

Fig. 3 Density plots of average bleaching for each degree heating week (DHW) category; none (zero DHW), low (0–1.5 DHW), medium (1.5–4 
DHW) and high (> 4 DHW). Average bleaching were log transformed for visual display purposes only. The top panel represents the distribution 
density of bleaching between MPA and non‑MPA sites at high, medium, low, and none DHW categories. The bottom panel show the stacked 
proportional densities for MPA (left) and non‑MPA sites (right) for each DHW category
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Our findings also identify insufficient evidence to sup-
port the managed resilience hypothesis for reef corals, 
because bleaching responses are similar between MPA 
and non-MPA sites (Figs.  3, 4). Consequently, our find-
ings suggests that the resistance of reef building cor-
als will not be enhanced through the implementation of 
MPAs, which aim to mitigate local stressors and amelio-
rate physiological performance of corals [27]. However, it 
is critical to note there are many other benefits of MPAs 
which ensure food provision, vital for human livelihood, 
and maintain biodiversity which is critical for ecosystem 
function around the globe [23, 24, 42]. Yet, the assump-
tion that MPAs will help support coral reefs by prevent-
ing impacts of warming (i.e. bleaching) on corals is likely 

incorrect based on these findings. Rather, continued 
warming linked to anthropogenic activity will incessantly 
bleach corals more often through the Anthropocene [2] 
regardless of protected status.

Conclusions
Collectively, our findings add to the growing evidence 
that protected status will have little impact for alleviat-
ing the effects global stressors such as marine heatwaves 
which will continue to be exerted on coral reefs. While 
the implementation of effectively designed MPAs can be 
beneficial for coral cover and maintaining functional spe-
cies [22, 25], and most critically support communities 
dependent on coral reefs [49], they will not mitigate the 
effects of coral bleaching induced by global warming [22, 
30]. Consequently, actions targeting the source of ris-
ing global temperatures (i.e. greenhouse gas emissions) 
remains the most effective way to moderate future coral 
bleaching caused by global warming, and thus mitigating 
continued global coral reef decline [11, 22, 39, 50].

Materials and methods
Bleaching data
Bleaching data were collated from reefcheck.org, com-
bining 8798 surveys from 3,067 sites across 73 countries 
(Fig.  1), from the years 2002–2018. Validity of the Reef 
Check data are well established with less than 7% sam-
pling error for identifying components of benthic cover 
[37]. These data have also been used in previous macro-
ecological coral bleaching studies [29, 44, 51]. From Reef 
Check data, the percentage of bleached coral popula-
tions within each reef check survey (i.e. % reef bleached) 
were extracted (i.e. site wide bleaching), along with the 
date of the survey and their geographic coordinates. This 
allowed for each survey to be spatially and temporally 
associated with environmental data. The global scale of 
these data, along with the long term time frame and high 
sample size provide a robust basis for elucidating rela-
tionships between environmental drivers associated with 
bleaching.

MPA data
Each Reef Check survey was temporally and spatially 
associated as being inside or outside an MPA as desig-
nated by the IUCNs world data base of protected areas 
[52] at the time of survey. The reef check survey data 
were spatially associated by overlaying the MPA shape 
file with the reef check coordinates using the ‘sp’ package 
[53] in R studio 4.0 [54]. From the MPA shape file, all data 
attributes were extracted for sites which fell within the 
MPA polygons, summarised in Additional file 1: Table S1. 
A survey was considered to be in a protected area if it 
fell within a designated protected region as specified 

Table 1 Summarised average bleaching prevalence for coral 
reef sites and their likelihood of being statistically different 
between MPA and non‑MPA sites based on their thermal stress 
(DHW category)

From the likelihood ratio test, Pr(>χ2) indicates the likelihood of distributions 
between groups being significantly different (assuming an α level of 0.05) based 
on a Chi-square (χ2) test

Average bleaching (%) Likelihood 
ratio test

DHW category MPA Non‑MPA Pr (>χ2)

None 2.069 1.122 1

Low 2.573 1.859 0.985

Medium 2.369 2.347 0.999

High 6.336 3.052 1

Fig. 4 Probability densities for the degree heating week (DHW) 
values where the onset of coral bleaching occurred based on gamma 
distributions between MPA and non‑MPA Reef Check survey sites. A 
constant of 1 was added to DHW values to meet gamma distribution 
assumptions where values are required to be greater than zero [36]
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by the IUCN protected area categories [55], shown in 
Table  2. These protected status categories represent the 
global definition of a protected area, however all will vary 
with their level of enforcement, and type of protection 
incurred. For example, this study has 877 surveys which 
fell within a protected region that is also a no-take zone, 
while 1876 surveys within MPAs were not reported (i.e., 
are unknown) to have a no-take zone. Therefore, for sim-
plicity, we are using the simple definition of whether a 
survey fell within a protected area to determine how any 
level of protected status interacts with global warming 
for influencing coral bleaching.

Environmental data
To determine whether bleaching differs between MPAs 
and non-MPAs under thermal stress, we used the degree 
heating weeks (DHWs) metric to quantify thermal anom-
alies. DHWs represent the global standard for predict-
ing bleaching from thermal stress and are highly robust 
in their predictions [56]. These data were extracted on 
a weekly time series from the Coral Reef Temperature 
Anomaly database (CoRTAD version 6), supplied from 
the National Oceanic and Atmospheric Administration 
[57] at a resolution of ~ 4.6 km at the equator. The DHW 
values were temporally and spatially associated with each 
coral bleaching survey on a weekly time series using the 
‘ncdf4’ [58] package in R. DHW are the global stand-
ard for determining bleaching likelihood under thermal 
stress, where one DHW represents 1  °C increase in the 
local mean climatic temperature for one week over the 
last 12 weeks.

We included turbidity within our model to account 
for other environmental drivers which influence coral 
physiology, and thus bleaching responses [15, 44]. The 
diffuse attenuation coefficient of light at the 490  nm 
wavelength is positively related to turbidity, and has been 

ubiquitously utilised for deriving turbidity measure-
ments in coral reef studies [44, 59, 60]. The kd490 values 
were extracted from the Modis-Aqua satellite database 
(https:// ocean data. sci. gsfc. nasa. gov/ MODIS- Aqua/ 
Mapped/ Month ly/ 4km/ Kd_ 490/) maintained by NASA’s 
Earth Observation System Data and Information Sys-
tem (EOSDIS). These data were spatially and temporally 
matched up with each coral bleaching survey on a weekly 
time series, at a 4 km resolution.

Statistical analyses
We developed a collinearity matrix using a Pearson’s cor-
relation coefficient on the log transformed MPA attrib-
utes (Additional file  1: Fig. S1). We excluded highly 
collinear data using a conservative 0.65 cut off to pre-
vent collinearity inhibiting convergence of the Bayesian 
model. If MPA attributes for a survey were missing, the 
survey was also excluded from the analysis. In total, 3391 
Reef Check surveys fell within MPAs at the time of sur-
vey which were used in the Bayesian model.

We used a Generalised Linear Model with group spe-
cific terms in ‘rstanarm’ [61], which uses the STAN lan-
guage [62] in R 4.0 [54]. The response variable, average 
bleaching prevalence, was modelled with a Negative 
Binomial distribution as data were dominated by zeros, 
and is a distribution which has been successfully used on 
these bleaching data in the past [29]. Coral ecoregions 
were run as a random effect to account for spatial varia-
tion in bleaching patterns (Additional file 1: Fig S4). Coral 
ecoregions were extracted from Veron et al. [63], Corals 
Ecoregions of The World (COTW). Any survey which fell 
outside the ecoregion polygons was excluded from analy-
sis. These coral ecoregions represent consistent patterns 
of taxonomic configuration, dispersal and isolation pro-
cesses, and patterns of evolutionary history [63, 64], uti-
lised in multiple global scale coral reef studies to account 
for spatial variation [29, 44, 59]. The default weakly 
informative priors which internally adjust in scale based 
on regression coefficients were used in the model [61]. 
Predictors were standardised to aid convergence. Poste-
rior predictive checks from the ‘Bayesplot’ package [65] 
in R were used to assess for model fit (Additional file 1: 
Fig S2). Convergence was visually assessed through trace 
plots (Additional file  1: Fig. S3) and achieved when the 
rhat value (Gelman-Rubin statistic) reached 1.0 [61]. The 
model ran with 4 chains, for 5,000 iterations with 2500 
warmups.

Differences in bleaching prevalence between MPA and 
non-MPA sites were statistically analysed by transforma-
tion of bleaching prevalence data into negative binomial 
distributions using the ‘fitdist’ function in the ‘MASS’ 
package [36]. The average bleaching prevalence data 
were split into 4 groupings of thermal stress thresholds of 

Table 2 IUCN Protected Area Management Category as defined 
in the IUCN Manual of World Database on Protected Areas User 
Manual [55]

Code Protected status category Number 
of surveys

Ia Strict Nature Reserve 67

Ib Wilderness Area 0

II National Park 1342

III National Monument 6

IV Habitat/Species Management 399

V Protected Landscape/Seascape 423

VI Managed Resource Protected Area 368

N/A Not applicable 675

N/R Not reported 111

https://oceandata.sci.gsfc.nasa.gov/MODIS-Aqua/Mapped/Monthly/4km/Kd_490/
https://oceandata.sci.gsfc.nasa.gov/MODIS-Aqua/Mapped/Monthly/4km/Kd_490/


Page 7 of 8Johnson et al. BMC Ecology and Evolution           (2022) 22:58  

none (0), low (0–1.49), medium (1.5–3.9), and high (> 4) 
DHW. Bleaching prevalence distributions for each DHW 
category were then analysed with a likelihood ratio test 
with 2 degrees of freedom and a true lower tail [29, 44]. 
Finally, differences in the DHW values associated with 
bleaching at MPA and non-MPA sites were also statisti-
cally analysed with a Likelihood ratio test. The DHW val-
ues were fit into a gamma distribution from the ‘MASS’ 
package. The DHW values > 12 were removed from anal-
ysis here, with a constant of 1 also added so data could fit 
the gamma distribution [36]. The degrees of freedom of 
the likelihood ratio test were again 2, with the lower tail 
specified as true.
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