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02-091 Warsaw, Poland

* Correspondence: rkgupta@iimcb.gov.pl

Received: 31 May 2020; Accepted: 20 July 2020; Published: 22 July 2020
����������
�������

Abstract: The present review discusses recent progress in single-cell RNA sequencing (scRNA-seq),
which can describe cellular heterogeneity in various organs, bodily fluids, and pathologies (e.g.,
cancer and Alzheimer’s disease). We outline scRNA-seq techniques that are suitable for investigating
cellular heterogeneity that is present in cell populations with very high resolution of the transcriptomic
landscape. We summarize scRNA-seq findings and applications of this technology to identify cell
types, activity, and other features that are important for the function of different bodily organs. We
discuss future directions for scRNA-seq techniques that can link gene expression, protein expression,
cellular function, and their roles in pathology. We speculate on how the field could develop beyond its
present limitations (e.g., performing scRNA-seq in situ and in vivo). Finally, we discuss the integration
of machine learning and artificial intelligence with cutting-edge scRNA-seq technology, which could
provide a strong basis for designing precision medicine and targeted therapy in the future.

Keywords: scRNA-seq; transcriptomics; cell-to-cell heterogeneity; machine learning;
artificial intelligence

1. Introduction

Multicellular organisms contain cell-type-specific combinations to form a whole-body structure.
However, a particular cell type becomes privileged over other cell types because of its distinct tolerance
and exposure to the same environmental challenges. Thus, classifying cell-to-cell heterogeneity is
essential for understanding the ways in which development occurs and the ways in which functions
are defined for specific bodily organs. Nevertheless, cell-to-cell heterogeneity and stochasticity in
gene expression are inherent to all living cells and impose phenotypic and functional variations of
individual cells that facilitate their adaptability to dynamic environmental conditions [1,2]. However,
less is known about how to define molecular heterogeneity that is present in the cell.

Cell-cycle stages and cell types are well-understood dimensions that are routinely applied to
define phenotypic cell-to-cell heterogeneity [3,4]. However, for a given phenotypic state of genetically
homogeneous cells, specific responses to the same stimulus have not been sufficiently defined
to understand the pathological mechanism of disease states because of a lack of understanding
of several other dimensions that contribute to cell-to-cell heterogeneity. Efforts to determine the
extent of cell-to-cell heterogeneity in heterogeneous cell populations in an unbiased manner have
invigorated the emergence of new analytical standards that integrate innovative platforms. Single-cell
transcriptomics is one such approach [5]. Almost a decade has passed since single-cell RNA sequencing
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(scRNA-seq) technology was developed. It has since been applied to various research domains to
answer fundamental biological questions [5–10]. The dynamics of gene expression have changed
significantly over time [11], and scRNA-seq has allowed quantification of the expression of individual
genes across cells [12].

It has been a decade since scRNA-seq technology was developed and evolved to be more advanced.
In this article, we describe the cellular heterogeneities that have been identified in various organs,
body fluids, and pathologies such as cancer and neurological disorders. We outline the heterogeneity
discovered by scRNA-seq techniques, which could be used for the identification of stem cells, the
discovery of new biomarkers, and the state of transcriptomic trajectories in response to treatment within
a cell population over time. In addition, along with scRNA-seq techniques, we highlight the possible
implementation of machine learning and artificial intelligence (AI), which could be evolutionary
in personalized and precision medicine. The present review provides insight for the beginner in
scRNA-seq research.

2. Platforms Presently Used for Single-Cell RNA Sequencing (scRNA-seq)

The development of new effective protocols for scRNA-seq is currently a very active area of
research. The primary steps of scRNA-seq protocol are the following: sample preparation and single
cell isolation by many approaches such as limiting dilution, microscope-guided capillary pipettes, laser
capture microdissection (LCM), and magnet conjugated antibody binding sorting; the digestion of
solid tissue by mechanical or enzymatic methods and single-cell capture by fluorescence-activated cell
sorting (FACS) or a microfluidic device and cell lysis; scRNA-seq (reverse transcription, amplification,
library preparation (based on type of coverage) on 3′- or 5′-based ends or full-length transcripts and
sequencing); data processing (cell-specific reads and alignment with a reference genome); and data
analysis and interpretation (marker identification and cell clustering into potential cell types and states)
(Figure 1). FACS in multiwall plates, microfluidic channels, and a combination of both are frequently
used to isolate the single cell. Moreover, microfluidics comprise the formation of droplets that contain
reagents and beads which are combined with unique molecular identifiers, also known as a tag-based
(also known as unique molecular identifiers (UMIs)) protocol that aids quantification [13]. However,
only ~11 to 65% of the cells from an original sample are captured by a microfluidic platform. Thus,
significant amounts of cell inputs are needed, and this protocol can miss rare cell types. Alternative
approaches for scRNA-seq have been recently described, such as CEL-seq2, Drop-seq, MARS-seq,
SCRBseq, Smart-seq, Smart-seq2, and Patch-seq (combining electrophysiology with transcriptomics
over a large variety of cells) [14–17]. Understanding the significance of each platform gives us the
opportunity to choose the platform based on our aim. CEL-seq2, Drop-seq, MARS-seq, and SCRB-seq
are used to quantify the mRNA levels with less amplification noise. MARS-seq, SCRB-seq, and
Smart-seq2 platforms are efficient when analyzing fewer cells. In addition, it is worth highlighting that
Smart-seq2 detects the most genes per cell, however, across cells, Drop-seq is the most cost-efficient
when the aim is to quantify a large number of cells.
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identify the cell types. We could possibly identify an unprecedented cell cluster, which could be a 
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Figure 1. Overview of single-cell RNA sequencing (scRNA-seq) methodology. Single-cell RNA
sequencing technology is used to explore transcriptomic profiles of single cells that are isolated from
cell lines, organisms, or tissue/blood samples of clinical material. Massive datasets can be generated
and analyzed by a specific algorithm that allows the discernment of cell-to-cell heterogeneity, lineage
tracing, and stochastic gene expression at the single-cell level.

3. Analyze the scRNA-seq Data

Along with the technological advancement to perform the comprehensive scRNA-seq experiment,
analyzing the high throughput data from hundreds of thousands of cells to extract the biologically
relevant information is rather challenging. Demultiplexing; alignment with the reference genome,
barcode, and UMI filtering; marking duplicates; and filtering cells are the series of events to analyze
scRNA-seq data [18]. This allows us to profile the subpopulations or types of cells from a pool of
heterogeneous mixtures of cells. While analyzing the scRNA-seq data, the main focus is to find out
the number of distinct molecules that can be captured from each cell and based on this information
define the cellular heterogeneity. We can cluster a heterogeneous cell population based on the gene
expression patterns, and by identifying the specific gene markers for a cluster, we can identify the cell
types. We could possibly identify an unprecedented cell cluster, which could be a new cell type that
was not identified previously. Currently, scRNA-seq data techniques can identify the phase of the cell
cycle of a specific cell, which provides great details in the case of a tumor biopsy for deciphering the
heterogeneity of the cells and evaluating the tumor microenvironment, understanding metastasis, as
well as monitoring and predicting the response to therapy [19–24]. A new approach called effective
and expressed nucleotide variations (eeSNVs) associated with gene expression has been developed to
identify the features in a tumor subpopulation identification from scRNA-seq data [25,26]. The authors
have suggested that eeSNVs achieve better accuracies for identifying subpopulations. They have also
suggested that their analytical technique was capable of analyzing coupled DNA-seq and RNA-seq
data from the same single cells, demonstrating its value in subpopulation identification and linkage of
genotype–phenotype relationships. Furthermore, advance analysis such as the maximum parsimony
analysis [27,28] and spatial mapping analysis [29–31] provide temporal dynamics and spatial position
of a heterogeneous mixture of cells in various states.
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4. Advantage of scRNA-seq over Regular RNA-seq

A typical RNA-seq experiment informs about the average gene expression across a cell population.
The level of mRNA is estimated across all cells of each subpopulation. However, this approach can
miss the fact that individual cells could have patterns of expression that are very different from the
average expression. In any tissue or organ (e.g., blood, brain, and cancer biopsies), the cell population
is heterogeneous. Such cell-to-cell variability can have important biological implications that can
be deciphered only by using scRNA-seq data. The data provide information about the degree of
significance and meaning of a specific proportion of cells that have a specific gene expression pattern.
This knowledge is essential for a better understanding of the function of tissues and organs and
associated pathologies. Defining cellular heterogeneity in diseased tissue allows the identification
of precise drug targets and possibly the development of new therapeutic approaches. scRNA-seq
data has been widely used across all biological disciplines, including developmental biology [32],
neurobiology [33], cancer biology [7], and autoimmune and infectious diseases [5,9]. For example,
during development, progenitor cells undergo dynamic cellular and molecular changes to generate
diverse populations of different cell types. Such transcriptomic heterogeneity can be effectively
identified by using scRNA-seq data. This technology has also substantially contributed to our
understanding of the development of different mammalian organs and tissues and the development of
multicellular organisms [4,10,11,34–44]. The possible applications of scRNA-seq data are wide-ranging,
including the identification of stem cells, the discovery of new biomarkers, and the detection of
transcriptomic trajectories within the cell population in response to medical treatments over time.
scRNA-seq technology has become promising for successfully developing individually designed
medicinal treatments for cancer and other diseases.

5. Cellular Heterogeneity Deciphered by scRNA-seq in the Cardiovascular System

According to the WHO, cardiovascular diseases (CVDs) are the most prominent cause of death
globally [45]. The WHO broadly defines CVDs as a group of disorders of the heart and blood vessels,
which include coronary heart disease, cerebrovascular disease, peripheral arterial disease, rheumatic
heart disease, congenital heart disease, and deep vein thrombosis and pulmonary embolism [45].
Various approaches are available to treat heart diseases such as a change in lifestyle, stress management,
certain medications [46], and surgical intervention. However, the remarkable heterogeneity in cell
types and functional states is the major challenge in understanding cardiac biology and disease.
scRNA-seq data provide the prospect of profiling the transcriptional landscape of cardiac cells
and revealing the significant heterogeneity in both healthy and disease states to identify clinically
crucial diagnostic biomarkers and a rich resource for studying cardiac biology. A recent scRNA-seq
study on human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) provided a
powerful understanding of in vitro cellular heterogeneity (Table 1) [47]. From the scRNA-seq data,
the authors identified multiple enriched subpopulations for TBX5, NR2F2, HEY2, ISL1, JARID2, or
HOPX transcription factors in differentiating hiPSC-CMs. In cell lineages forming the heart, the highest
cell-to-cell heterogeneity appears during embryonic development, and multipotent cells undergo
a series of differentiation to reach the ultimate fate. scRNA-seq data on mouse cardiac progenitor
cells (CPCs) from E7.5 to E9.5 have shown eight different cardiac subpopulations and provided
an understanding of transcriptional and epigenetic regulations during cardiac progenitor cell fate
decisions at a single-cell resolution [48]. Another study using scRNA-seq data from mouse E10.5
stage cardiac cells from heart chambers (five anatomic zones, i.e., left ventricle, left septum, right
septum, right ventricle, and atrial ventricular canal) identified 12 subpopulations and revealed that the
cell cycle was a major determinant of expression variation in all cardiac cell types which selectively
regulate cardiac chamber growth during development, and provided a deeper understanding of
the pathogenesis of congenital heart disease [49]. Apart from CMs, many other cell types are there,
which play a role in heart repair, regeneration, and disease. A recent article on scRNA-seq data
from murine hearts on days three and seven post sham or myocardial infarction (MI) for >30,000
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single cells identified >30 populations which broadly represented nine cell lineages and identified
novel myofibroblast subtypes [50]. This analysis provided a deeper analysis of cardiac homeostasis,
inflammation, fibrosis, repair, and regeneration. A scRNA-seq data profile of 21,422 cells (CMs and
NCMs) from healthy, failed, and partially recovered (left ventricular assist device treatment) adult
human hearts revealed an inter- and intra-compartmental CM heterogeneity and provided insights into
the cell-type-targeted intervention of heart diseases [51]. A scRNA-seq study on circulating immune
cells in patients with heart failure has shown three subpopulations of monocytes as compared with
healthy subjects. This study also indicated that scRNA-seq could be useful as a prognostic tool or for
guiding anti-inflammatory therapies associated with cardiovascular disease [52].

Table 1. Summary table of main results from selected scRNA-seq studies classifying cell types in the
cardiovascular system.

Source of Cells Assayed Seq. Method Number of Cells Key Results Ref.

Human induced pluripotent
stem cell-derived

cardiomyocytes (hiPSC-CMs)
ChIP-seq 10,376

Identified multiple subpopulations
enriched for TBX5, NR2F2, HEY2, ISL1,
JARID2, or HOPX transcription factors

[47]

Mouse cardiac progenitor
cells (CPCs) SMART-seq2 - Eight different cardiac subpopulations [48]

Mouse E10.5 stage cardiac
cells from heart chambers Ht-seq 10,000

Identified 12 subpopulations and reviled
that the cell cycle is a major determinant of

expression variation
[49]

Murine hearts cells SMART-Seq >30,000 Identified >30 populations which broadly
represent nine cell lineages [50]

Adult human hearts
cardiomyocytes (CMs) and

non-CMs (NCMs)

Drop-seq 21,422
CMs (atrial and ventricular) each formed

five distinct subclusters. [32]

NCMs (ECs, FBs, MPs and SMCs) into 14
(4, 3, 3, and 4) subclusters

Circulating immune cells - 181,712

Circulating immune cells in patients with
heart failure has shown the three

subpopulations of monocytes as compared
with healthy subjects

[52]

6. Profiling Heterogeneous Cell Populations from Different Tumors

Dissecting cell-to-cell heterogeneity is extremely important for understanding tumor initiation,
progression, metastasis, and therapeutic responses. Many attempts have been made using
next-generation sequencing and microarray technology [53–56]. In cancer, the population of cells
has highly diverse morphology, phenotypic profiles, genetics, metabolism, motility, proliferation,
and metastatic potential, which poses significant challenges for designing effective treatment
strategies [57–59]. A scRNA-seq analysis can discriminate functionally healthy cells from cancer cells
at various developmental stages of tumors to allow more precise prognoses and the determination of
sensitivity to different drugs for developing the most effective treatment strategies [23]. A scRNA-seq
study of syngeneic tumors in a mouse model identified potential ligand–receptor interactions between
cells within the tumor microenvironment, suggesting that specific ligand-receptor pairs could be
potential biomarkers or drug targets [60].

Breast cancer in women is the most prevalent tumor worldwide. The results of a scRNA-seq
analysis of 11 triple-negative breast cancer patients showed a high level of intratumoral heterogeneity
in tumor cells (Table 2) [61]. A scRNA-seq analysis of mesenchymal cells from a genetically engineered
mouse model of breast cancer was performed. The authors reported compelling evidence of three
spatially and functionally distinct subpopulations of breast cancer-associated fibroblasts [62,63].
Another study performed scRNA-seq of estrogen receptor α-positive breast cancer cells following
17β-estradiol stimulation and reconstructed the dynamic estrogen-responsive transcriptional network
from discrete-time points into a pseudotemporal continuum [64]. They provided evidence that
estrogen signaling promoted breast cancer cell survival and growth by mediating a metabolic switch.
Hydro-seq, a recent high-throughput parallel scRNA-seq study, captured circulating tumor cells with
high efficiency and low contamination [19]. The authors performed scRNA-seq of 666 circulating
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tumor cells on samples from 21 breast cancer patients and identified drug targets for hormone therapy.
This technology allowed the identification of biomarkers with high fidelity based on the transcriptomic
heterogeneity of rare cells that were present in the blood.

Table 2. Summary table of main results from selected scRNA-seq studies classifying cell types from
different tumors.

Source of Cells Assayed Seq. Method Number of Cells Key Results Ref.

Circulating tumor cells (CTCs) from
breast cancer patient Hydro-seq 666 Identified the cells based on expression of ER, PR, and HER2

which could act as biomarkers [19]

Human renal tumors and normal
tissue from fetal, pediatric, and adult

kidneys
- 72,501 Identified total 110 subtypes of cells [21]

Primary glioblastomas cells from
patients SMART-seq 430

Cells from each tumor patients demonstrate higher overall
intratumoral coherence, and several cells showed positive

correlations with cells from other tumors
[20]

Breast cancer cells from patients Tru-seq 515 Identified 11 clusters, mixture of tumor cells and immune cells [61]

T-cells that were isolated from
peripheral blood, tumor tissue, and

adjacent healthy tissue from
hepatocellular carcinoma patients

Smart-seq2 5063 Eleven subpopulations of T-cells were identified based on their
molecular and functional properties [65]

Primary PDAC tumors and control
pancreases - 57,530

Identified 10 main clusters (type 1 ductal, type 2 ductal, acinar,
endocrine, endothelial, fibroblast, stellate, macrophage, and T

and B cells)
[66]

Neuroblastoma cells from donor
patients and cell lines ChIP-seq -

Three heterogeneous cell types in neuroblastoma cell lines: (i)
sympathetic noradrenergic cells, (ii) neural crest cells, and (iii) a

mixed type
[67]

Bone marrow aspirates from AML
patients and healthy donors Seq-Well 38,410 Differentiated monocyte-like AML cells expressed diverse

immunomodulatory genes [68]

The incidence of liver diseases is rising, but only limited treatment options are available. A recent
scRNA-seq study provided a glimpse of B cell and plasma cell subsets in the human spleen and liver
and revealed the heterogeneity of liver-resident immune cells (LrICs) [69]. From nine human donors,
a single-cell transcriptomic atlas of 10,372 liver cells from healthy liver tissue has been constructed,
revealing cellular heterogeneity [70]. The authors identified cell types that could be defined by the
expression of marker genes, including hepatocytes, bile duct cells (cholangiocytes), liver sinusoidal
endothelial cells, macrovascular endothelial cells, hepatic stellate cells, myofibroblasts, Kupffer cells,
and immune cells. A scRNA-seq study of hepatocellular carcinoma revealed the distinct functional
composition of T-cells. The study performed scRNA-seq of 5063 single T-cells that were isolated from
peripheral blood, tumor tissue, and adjacent healthy tissue which were donated from hepatocellular
carcinoma patients. Eleven subpopulations of T-cells were identified based on their molecular and
functional properties [65].

Pancreatic cancer cell and β-cell degradation leads to multiorgan damage, including nephropathy,
retinopathy, and enteropathy. scRNA-seq analyses of the human pancreas has allowed parallel
identification of cell population subtypes and disease-associated alterations of gene expression. A recent
scRNA-seq study of pancreatic ductal adenocarcinoma (PDAC) patient donor tissue and healthy
pancreatic tissue compiled a transcriptomic atlas of 57,530 pancreatic cells and revealed a connection
between the intrinsic transcriptional state of the tumor and T-cell activation [66]. This suggests the
possibility of identifying biomarkers for anticancer treatment against T-cell activation as targeted
immunotherapy [66,71]. The authors identified heterogeneous malignant subtypes that were composed
of several subpopulations with differential proliferative and migratory potential, including two ductal
subtypes. The ductal subtype (type 2) was associated with an inactive state of tumor infiltration T-cells,
which could be a unique antitumor immune response. Another scRNA-seq analysis generated a
multiscale transcriptomics map that was based on patient donor pancreatic tissue, a pancreatic tumor
mouse model, and a human cell line that originated from the tumor [72]. This study found that the
nuclear hormone receptor retinoic-acid-receptor-related orphan receptor γ was upregulated during
pancreatic cancer progression. This could be another therapeutic target for reducing tumor burden
and improving survival.
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Neuroblastoma is the third most common cancer in children [73]. A scRNA-seq analysis revealed the
following three heterogeneous cell types in the neuroblastoma cell lines: (i) sympathetic noradrenergic
cells (expressing PHOX2B, HAND2, and GATA3 transcription factors); (ii) neural crest cells (expressing
the AP-1 transcription factor); and (iii) a mixed type [67]. This study revealed neuroblastoma cell
heterogeneity and provided insights into developing novel neuroblastoma treatment strategies.

Acute myeloid leukemia (AML) is a cancer of the myeloid line of blood cells, which most commonly
occurs in older adults, and males are affected more often than females [74]. It is well known that
AML is a very heterogeneous disease, as different cell types contribute to AML progression. However,
it remains elusive with respect to what the sources are to raise the heterogeneity and how to classify
the microenvironmental cellular heterogeneity in the case of AML. A recent scRNA-seq analytical
technique called PhenoGraph has been developed to simultaneously profile both surface and signaling
features from millions of pediatric leukemic cells. This method provides a framework to discover
other features of molecular cell biology to find out the associated mechanistic or clinical outcomes [75].
Additionally, a recent scRNA-seq analysis of 38,410 cells from 40 bone marrow aspirates, provided an
atlas of AML cell states, regulators, and markers at single-cell resolution [68]. The data showed that
differentiated monocyte-like AML cells expressed diverse immunomodulatory genes. The authors
were able to identify six types of malignant cells and concluded that these findings could be useful in
implications for precision medicine and immune therapies. Another very recent research article has
identified that in AML samples, transcriptional heterogeneity arises from multiple sources, including
the differentiation states of normal and tumor cells, cell cycle states, and mutations [76]. The authors
also claimed that nongenetic heterogeneity arose as a consequence of stochastic gene expression or
other external and internal perturbations.

In recent years, scRNA-seq has been extensively used to understand the intratumoral genetic
landscape in glioblastoma, medulloblastomas, kidney cancer, colorectal cancer, and other types of
cancers [20,21,24,59,77–88]. A recent scRNA-seq study provided a blueprint for glioblastoma and found
that malignant cells exist in four primary cellular states, and the relative frequency of cells in each state
varied according to the tumor microenvironment [89]. A scRNA-seq study of approximately 2400 cells
from human blood identified six new dendritic cells (DC), four monocytes, and one progenitor cell
subtype [90]. The authors also found a new DC subpopulation that shared properties with plasmacytoid
DCs (pDCs) and activated T-cells. This revised taxonomy enabled more accurate functional and
developmental analyses and immune monitoring in health and disease.

7. Heterogeneity in Neurons under Normal and Pathological Conditions

scRNA-seq has been used to identify genes that are involved in neural communication, which
broadens our knowledge about brain function and could provide new strategies to understand
the mechanisms of neurological disorders. Microglia play a vital role in neurodevelopment and
neurodegeneration, such as Alzheimer’s disease [91] and Parkinson’s disease [92], and have been
extensively studied with regard to their role in demyelination and the induction of different cellular
kinetics [93]. The heterogeneity of microglia from healthy and neuropathologic tissues has been
explored using scRNA-seq (Table 3) [94]. This study found 13 distinct, time- and region-dependent
clusters of microglia in healthy human brains and brains from patients with multiple sclerosis. Ten of
these 13 clusters were present during development, two were present during demyelination and
remyelination, and one was present during neurodegeneration. Disease-associated subtypes differed
between toxic demyelination and neurodegeneration. The transcriptional profiles of subtypes of
microglia depended on the context, which could be significant for identifying new drug targets.

Alzheimer’s disease is one of the most challenging neurological disorders. A recent scRNA-seq
study of 80,660 cells from the prefrontal cortex in 48 individuals with varying degrees of Alzheimer’s
disease pathology found six known major brain cell types and 40 transcriptionally distinct cell
subpopulations [95]. The authors also found that each major cell type exhibited a different gene
expression pattern in Alzheimer’s disease pathology and demonstrated links between this response
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and Alzheimer’s disease risk genes that were identified by genome-wide association studies. Such a
response was also shown to be sex-specific, especially in neurons and oligodendrocytes.

Parkinson’s disease results from the death of dopaminergic neurons in the substantia nigra and is
the second most common neurodegenerative disorder after Alzheimer’s disease [96]. To understand
the genetic complexity of dopaminergic neurons in Parkinson’s disease, a scRNA-seq analysis was
performed in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson’s
disease [97]. The authors identified multiple distinct dopamine neuron subtypes, each with a
heterogeneous expression pattern of marker transcription factors, channels, receptors, dopamine-related
genes, neuropeptides, and secretory factors. Another recent scRNA-seq study on the iPSC-derived
motor neurons (MN) showed 14 cell clusters where a significant proportion of iPSCs-MNs were
identified as a heterogeneous population of neural progenitor cells (NPCs), interneuron (Ins), MNs,
and glial cells based on the expression of the specific genes. This elegant scRNA-seq study of
iPSCs-MNs provided potential evidence to improve our understanding and lead to improved
iPSC-based applications to study motor neurons related to disease in humans [98].

Table 3. Summary of main results from selected scRNA-seq studies in neurons under normal and
pathological conditions.

Source of Cells Assayed Seq. Method Number of Cells Key Results Ref.

Brain tissue from healthy human and
patients with multiple sclerosis Cel-seq2 - Found 13 distinct and time- and

region-dependent clusters of microglia [94]

Brain tissues from patients with
Alzheimer’s disease pathology Drop-seq 80,660

Six known major brain cell types and 40
transcriptionally distinct cell

subpopulations
[95]

Dopaminergic neurons from MPTP
mouse model Smart-seq2 - Multiple distinct dopamine neuron

subtypes [97]

Human iPSC-derived spinal motor
neurons - 5900

14 cell-clusters a heterogeneous population
of neural progenitor cells (NPCs),

interneuron (Ins), MNs and glial cells
[98]

Mice brain tissue Drop-seq 6232 Diverse hippocampal cell types plays a
specific role in the pathology of mild TBI [99]

Mouse striatum cells Smart-seq2 1208 10 heterogeneous striatal cell types [100]

Mouse hypothalamic cells - 31,000 70 different neuronal clusters [31]

Mouse visual cortex cells nDrop-seq 114,601

Eight different cell types: excitatory
neurons, inhibitory neurons,

oligodendrocytes, and oligodendrocyte
precursor cells, astrocytes, endothelial and
smooth muscle cells, pericytes, microglia,

and macrophages

[101]

Olfactory epithelial tissue - 51,246 38 heterogeneous cellular clusters [102]

Zebrafish larvae brain cells Smart-seq2 4365 18 distinct habenular neuronal types [103]

Drosophila brain cells Cel-seq2 and
SMART-seq2 157,000 87 initial cell subclusters from different

transcriptional states [104]

A recent scRNA-seq study further revealed how traumatic brain injury (TBI) could impact
diverse hippocampal cell types, changes in the proportion of cells, and shifts in global transcriptome
patterns [99]. In a mouse model of mild TBI, significantly more ependymal cells were found as
compared with sham samples. Mild TBI resulted in significant changes in the transcriptome of many
hippocampal cell types, especially in the dentate gyrus granule cells. This indicated that each cell type
played a specific role in the pathology of mild TBI. Two previously undefined cell populations in the
hippocampus were also identified by scRNA-seq [99].

The striatum is a cluster of neurons in the subcortical basal ganglia of the forebrain medium
spiny neurons (MSNs) (~95% of the total neuronal population of the human striatum), cholinergic
interneurons, and many types of GABAergic interneurons. In the healthy brain, the striatum receives
glutamatergic and dopaminergic inputs from different sources and coordinates multiple aspects of
motor action, intellectual ability, and cognition [105–108]. Any damage to the striatal cells leads
to many neuropsychiatric disorders such as Parkinson’s and Huntington’s disease, schizophrenia,
obsessive-compulsive disorder, addiction, and autism [109–111]. A scRNA-seq study of the mouse
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striatum found 10 heterogeneous striatal cell types among 1208 cells that were analyzed [100].
The authors also found that two discrete types of medium spiny neurons could be further divided into
different subtypes based on specific transcriptomes. They also identified cell type-specific transcription
factors that could mechanistically explain the maintenance of discrete cell type identities, which gave a
clue of the emergence of functional diversity within a complex tissue from a small number of discrete
cell types. Another scRNA-seq study in combination with patch-clamp techniques of striatal cells
found the following seven distinct interneuron types: six γ-aminobutyric acid (GABA)ergic and one
cholinergic [17]. Using patch-clamp techniques, the authors identified the neuronal circuit integration
based on their spiking pattern, which showed considerable electrophysiological heterogeneity within
these groups of neurons. These findings widen our knowledge of the physiological properties and
synaptic connectivity to understand how synaptic connections are formed and maintained in the brain.

The hypothalamic preoptic region in humans is a delicate and complex neurovascular structure
that controls essential social behaviors and homeostatic functions. A scRNA-seq atlas of the mouse
hypothalamic preoptic region showed approximately 70 different neuronal clusters based on molecular
annotation and spatial resolution [31]. Some of these cells were not previously known. In the
adult mouse hypothalamus, 45 transcriptionally distinct cell subtypes were identified, including 11
non-neuronal types and 34 neuronal types. Among the latter type, 15 were glutamatergic, 18 were
GABAergic, and one was histaminergic, with distinct transcriptional signatures [112]. The authors
found that food deprivation affected the transcriptome of neuronal cells differently. The differentially
expressed genes were mostly observed in a few specific glutamate and GABA clusters.

The visual cortex in the brain processes visual information and shapes neuronal plasticity
through an activity-dependent transcriptional response. scRNA-seq of the mouse visual cortex was
applied to provide a comprehensive understanding of transcriptional changes that occur across
cell types [101]. The authors analyzed 114,601 cells and identified the following eight different cell
types: excitatory neurons, inhibitory neurons, oligodendrocytes, and oligodendrocyte precursor cells,
astrocytes, endothelial and smooth muscle cells, pericytes, microglia, and macrophages. Surprisingly,
light-responsive genes were detected in both neuronal and non-neuronal cell types. Among 611
stimulus-sensitive genes, 362 represented the early response.

In the mouse olfactory bulb, scRNA-seq uncovered markers of cell types in adult-born neurons.
The authors identified 38 heterogeneous cellular clusters (sixteen neuronal cell clusters, three
astrocytic cell clusters, five olfactory ensheathing cell-based clusters, six hematopoietic cell clusters,
four blood vessel-based cluster, one oligodendrocyte precursor-based cluster, one myelinating
oligodendrocyte-based cluster, and two mesenchymal clusters) [102]. Adult-born neurons were
shown to use at least two different molecular pathways to mature, and they differentially respond to
olfactory experience. These findings provided a framework for studying cell type-specific functions
and circuit integration in the mammalian brain.

Mice, rats, and other vertebrate animals have been used to elucidate the mechanisms of human
diseases. One notable study established a scRNA-seq protocol for neurons in larval and adult-stage
zebrafish and identified 18 distinct habenular neuronal types, although the cell types retained the
same identity from the larval-stage to adult-stage habenula, despite brain growth and functional
maturation [103]. However, neuronal types in the zebrafish habenula have high diversity with regard
to neuronal excitability, neurotransmission, and peptidergic signaling [103]. A recent scRNA-seq study
of an adult zebrafish model of the Alzheimer’s disease brain showed the existence of heterogeneous
and spatially organized neural stem cells in the telencephalon. They found that different stem cell
populations reacted differently to amyloid β-42 toxicity [113].

Changes in the transcriptomic profiles of brain cells during aging were analyzed in Drosophila
using scRNA-seq [104]. The authors created a scRNA-seq atlas of all adult D. melanogaster brain cells
across the lifespan and identified 87 initial cell subclusters. They concluded that aging mechanisms
are cell type-specific, and cell state changes can be identified by gene expression markers, gene
signatures, transcription factor expression, or regulons. Moreover, glial cells showed a clear aging
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trajectory in their transcriptional profile, while an exponential decline in gene expression correlated
with neuronal shrinking. Another scRNA-seq study on drosophila olfactory projection neurons
classified neuronal subtypes defined by transcriptomic identity, corresponding with the anatomical
location and physiological activity [114]. This study concluded that transcription factors and cell
surface molecules could be used as key determinants of cell fate.

8. Cell-to-Cell Heterogeneity during Development

Hans Driesch’s sea urchin experiment in 1892 provided many insights into the fact that any
single cell in the early embryo was capable of forming developed larva, concluding that the fate
of a cell was not predetermined but rather reflected the progressive emergence of complexity [115].
Driesch also suggested that the emergence and diversification of cell types actively lead to animal
evolution. Cell-to-cell heterogeneity is an inherent property that determines phenotypic differences
within species and among individuals. Therefore, cell-to-cell heterogeneity cannot be ignored when
interpreting and analyzing the process of animal development. A scRNA-seq study of Caenorhabditis
elegans nematode larva development identified 18 non-neuronal cell types and many neuronal cell
types that could be grouped into either ten broad classes or 40 fine-grained clusters [41]. A scRNA-seq
gene expression analysis of Schmidtea mediterranea (flatworms) molecularly characterized 37 cell
types, including 23 terminally differentiated cell types, progenitor cells, and stem cell clusters [4].
An integrative whole-organism scRNA-seq analysis of Nematostella vectensis cnidarian larvae and adult
cell type revealed cell type complexity [42]. The authors uncovered eight broad classes of cells, each
class comprising different subtypes that were defined by the expression of multiple specific markers.
This study provided insights into the evolution of animal cell-specific genomic regulation. However,
to reveal the dynamic features of cell differentiation pathways, a time-series scRNA-seq analysis
approach was applied in embryos of the western clawed frog Xenopus tropicalis [11]. The authors
created developmental cell trajectories and identified 259 cell states that were composed of 136,966
cells and spread over 10 time points, identifying conserved and divergent features of vertebrates
in early developmental stages. Another scRNA-seq study of more than 90,000 cells from the onset
of gastrulation of the swimming tadpole Ciona intestinalis defined comprehensive transcriptome
trajectories, regulatory cascades, and gene networks for over 60 cell types (including nearly 40 neuronal
subtypes) [44]. On the basis of the dual properties of the Ciona notochord and expansion of the
vertebrate forebrain, this study also provided an understanding of the evolutionary transition between
invertebrates and vertebrates. It also offered an unprecedented opportunity to trace the evolutionary
origins of every cell, tissue, and organ.

9. Application of Machine Learning to Assess Cellular Heterogeneity from scRNA-seq Data

Artificial intelligence and machine learning are making their way into almost every domain of
research. These technologies refer to the use of data by machines to simulate human intelligence
processes, including reasoning, learning, and self-correction. The rapid development of computation
and machine learning, combined with the generation of massive datasets, has fueled the development
of new technologies in machine intelligence for the scRNA-seq data analysis and prediction of cell
fate. These techniques can identify appropriately supervised deep learning architectures and training
algorithms for scRNA-seq data and be used to explore generative adversarial network methods for the
estimation of high-dimensional data distribution in the single-cell gene expression space [116]. These
approaches can be used to develop new technologies and address unresolved issues of single-cell
genomics, such as the pseudotemporal ordering of single-cell data, the clustering of data, investigations
of representations, transfer learning, and unsupervised feature discovery. A recent study reported
the unbiased identification of genes that were able to distinguish subtypes using a machine-learning
algorithm called iterative clustering for identifying markers [114]. This algorithm works recursively,
examines finer-grained subpopulations, and is capable of detecting the transcriptomics landscape that
can distinguish small subpopulations. scRNA-seq technology produces an immense amount of data,
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and biased analysis, technical noise, and stochastic behavior of the data could lead to conjecture instead
of finding out the correct conclusion. AI and machine learning could provide the most promising
solution to overcome these problems. It is worth mentioning that the integration of scRNA-seq
technology with AI and machine learning would provide a better understanding and could be timely
and much more efficient. Single-cell variational inference (scVI) is a recent development in this
direction, which is a ready-to-use scalable framework to analyze scRNA-seq data [117]. scVI takes
raw count data as input, uses stochastic optimization, and deep neural networks learn a cell-specific
scaling factor as a hidden variable, intending to maximize the likelihood of the data, and then perform
fundamental analysis with high accuracy, such as batch correction, visualization, clustering, and
differential expression; however, this algorithm does not provide an analysis of lineage inference
and cell-state annotation. Another machine learning-based model has been developed, called scGen,
combining variational autoencoders and latent space vector arithmetic which has the capacity to model
perturbation and infection response accurately in cells across cell types, studies, and species which
would increase our understanding in the screening of perturbation response in the context of disease
and drug treatment [118]. Moreover, recently, by combining deep autoencoders with a Bayesian model,
SAVER-X, a more robust framework, has been developed which trains a deep neural network across a
range of study designs and applies this model to new data to obtain the shared biological information
across different data [119].

10. Frontiers in scRNA-seq Application

scRNA-seq generates transcriptomic profiles of individual cells and unlocks their identity. Thus,
defining heterogeneous gene expression at the single-cell level can provide a better understanding of
the specificity of any specific disease to discover new genes as drug targets. More knowledge of gene
expression patterns opens a significant window for the application of scRNA-seq to personalized and
precision medicine and targeted therapy. Together with scRNA-seq, the implementation of machine
learning and artificial intelligence, referred to as intelligent single-cell RNA sequencing (iscRNA-seq),
could be more evolutionary in personalized and precision medicine (Figure 2). iscRNA-seq is a machine
intelligence technology that performs real-time intelligent on-demand scRNA-seq with high throughput.
It enables the identification of high-content cell clusters with unique spatial gene expression traits.
iscRNA-seq serves as an integral part of holistic cell type-specific transcriptome analysis. iscRNA-seq
is based on the seamless integration of high-throughput scRNA-seq and deep learning on a hybrid
software-hardware data management infrastructure, enabling real-time automated operations for data
acquisition, data processing, and intelligent decision making, and accelerating more precise molecular
network pathway construction. This provides future opportunities for machine learning to enable the
discovery of unknown gene functions and uncover the relationships between gene expression patterns
and associated phenotypes. One recent advance is called single-cell, thiol (SH)-linked alkylation of
RNA for metabolic labeling sequencing (scSLAM-seq), which can differentiate between new and old
RNA for thousands of genes per single cell and can explain differences in transcriptional stochasticity at
the single-cell level [120]. This kind of advancement will help identify the dynamics of gene expression
at the single-cell level.

The present technology allows the identification of epigenetic modifications of RNA in single cells
and the proteome in specific organelles, such as mitochondria [121]. Future technologies will likely
draw a link between gene expression patterns that are established by scRNA-seq and proteins in each
cell and its components. The application of machine learning should help further our understanding
of the relationships among the regulation of gene expression by non-coding RNA, the level of coding
mRNA, and their involvement in the development of pathologies. One can also expect that the field will
progress beyond its present limitations and allow scRNA-seq and single-cell proteome analyses [122]
in situ and in vivo, as described in recent developments of DNA microscopy [123]. In this technique,
the use of DNA “bar codes” can pinpoint a molecule’s relative spatial positions within a sample and
offers an entirely new way to build a picture of the cell [29,123]. The next advance in scRNA-seq could



Cells 2020, 9, 1751 12 of 19

be “RNA microscopy,” which would reveal the real-time dynamics of gene expression in a living cell.
The integration of RNA microscopy with artificial intelligence would open a new era in precision
medicine. These new developments would significantly increase our knowledge about the function of
cells, tissues, and organs, resulting in better diagnoses, drug designs, and treatments that are tailored
to the needs of individual patients.Cells 2020, 9, x 12 of 19 
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11. Future Directions for Single-Cell Technologies

Reports on scRNA-seq technology are growing at an extraordinary rate, but substantial work still
needs to be done to validate genes that are relevant to disease. To achieve this goal, the application
of scRNA-seq for a particular disease to define a gene-expression profile at the single-cell level is
essential. Non-coding RNA and epigenetic modifications play a major role in altering a cell’s state,
which needs to be considered when analyzing scRNA-seq data. Because diseases are associated with
many secondary pathologies, cellular heterogeneity at the protein level also needs to be considered to
clarify the interplay between cell type and functional state.
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