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SUMMARY 
Antibody responses serve as the primary protection against SARS-CoV-2 infection through 

neutralization of viral entry into cells. We have developed a two-dimensional multiplex bead 

binding assay (2D-MBBA) that quantifies multiple antibody isotypes against multiple antigens 

from a single measurement. Here, we applied our assay to profile IgG, IgM and IgA levels 

against the spike antigen, its receptor-binding domain and natural and designed mutants. 

Machine learning algorithms trained on the 2D-MBBA data substantially improve the prediction 

of neutralization capacity against the authentic SARS-CoV-2 virus of serum samples of 

convalescent patients. The algorithms also helped identify a set of antibody isotype–antigen 

datasets that contributed to the prediction, which included those targeting regions outside the 

receptor-binding interface of the spike protein. We applied the assay to profile samples from 

vaccinated, immune-compromised patients, which revealed differences in the antibody profiles 

between convalescent and vaccinated samples. Our approach can rapidly provide deep 

antibody profiles and neutralization prediction from essentially a drop of blood without the need 

of BSL-3 access and provides insights into the nature of neutralizing antibodies. It may be 

further developed for evaluating neutralizing capacity for new variants and future pathogens. 

 

KEYWORDS: immunity; neutralizing antibody; antibody quantification; flow cytometry; antibody 

profiling; antibody-antigen interaction 

 

 

INTRODUCTION 
 COVID-19 remains a major threat to the entire world. Although multiple effective 

vaccines against SARS-CoV-2 have been deployed (Baden et al., 2021; Polack et al., 2020; 

Voysey et al., 2021), there remains intense interest in characterizing the anti-SARS-CoV-2 

immunity in terms of humoral and cellular immune responses. A number of serology testing 

methods have been deployed for the purposes of determining binary seroconversion as the 

indication of past exposure to the virus and of analyzing antibody responses (Amanat et al., 

2020; den Hartog et al., 2020; Dobano et al., 2021; Dogan et al., 2021; Garcia-Basteiro et al., 

2020; Marien et al., 2021; Pisanic et al., 2020; Weiss et al., 2020; Yates et al., 2021). In parallel, 

a number of assays have been developed to determine the neutralization capacity against the 

virus in cellular entry, the primary protective role of humoral responses. Neutralization assays 

using authentic SARS-CoV-2 viruses, including plaque reduction neutralization test (PRNT) and 

microneutralization assay (MNA), are clearly the gold standard (Bewley et al., 2021), but they 
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are cell-based assays that need to be performed in a BSL-3 environment and are inherently 

low-throughput. Many studies, including those cited above, have demonstrated good correlation 

between antibody levels and neutralization capacity as one would expect. However, the degree 

of correlation from a single measurement is still moderate. Few have reported attempts to 

improve the prediction of neutralization from antibody levels. The ability to accurately predict 

neutralization capacity from antibody profiles, which can be rapidly measured outside a BSL-3 

environment, could enrich the value of antibody profiling and potentially lay a foundation for 

simpler assays, e.g., point-of-care tests, for predicting immunity against SARS-CoV-2. 

 SARS-CoV-2 encodes four structural proteins and additional nonstructural proteins after 

proteolytic processing (Bojkova et al., 2020), and SARS-CoV-2 infection elicits multiple antibody 

isotypes, i.e., IgM, IgA and IgG, binding to many of these viral proteins. Antibodies to the N-

protein (NP) was used as the antigen in clinical tests for past infection. As expected from the 

localization of NP inside the viral particle, antibodies to NP do not neutralize viral entry and their 

levels are poorly correlated to neutralization titers (Noval et al., 2021). 

 Spike is the major surface antigen of SARS-CoV-2 that plays the central role in the 

attachment to and entry into cells (Hoffmann et al., 2020; Walls et al., 2020). Its receptor-binding 

domain (RBD) interacts with the canonical receptor, angiotensin-converting enzyme 2 (ACE2) 

(Hoffmann et al., 2020; Lan et al., 2020; Walls et al., 2020). Consequently, antibodies from 

infected subjects, as well as engineered reagents that interfere with the RBD-ACE2 interaction, 

can inhibit viral infection (Hansen et al., 2020; Hattori et al., 2021; Ju et al., 2020; Robbiani et 

al., 2020; Shi et al., 2020; Wec et al., 2020; Wu et al., 2020). Accordingly, most current vaccines 

utilize the prefusion-stabilized form of spike as the antigen (Baden et al., 2021; Polack et al., 

2020).  

 Because of the importance of the RBD in viral infection, early studies focused on 

antibodies directed to the RBD. Indeed, most of potent neutralizing antibodies, including those 

that have been authorized for clinical use, bind to the RBD and interfere with the interaction of 

the RBD with ACE2. However, Spike is a large protein, and natural infection and vaccination 

elicit antibodies to diverse regions of Spike (Amanat et al., 2021; Voss et al., 2021). Intriguingly, 

there are neutralizing antibodies that bind to the spike protein outside the RBD, e.g. the N-

terminal domain (Brouwer et al., 2020; Voss et al., 2021). Consequently, anti-RBD antibodies 

may not adequately account for all neutralizing antibodies in many cases. 

 A number of proxy assays, including those using pseudotyped viruses and engineered 

cell lines, have been developed that do not require the authentic SARS-CoV-2 virus or a BSL-3 

environment (Nie et al., 2020; Riepler et al., 2020; Tan et al., 2020). Although they substantially 
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increase the access and throughput of neutralization evaluation, they show only moderate 

concordance with the gold-standard assay (Noval et al., 2021), possibly because these systems 

do not fully recapitulate molecular interactions during viral entry. Furthermore, because serology 

assays and neutralization assays are based on distinct principles, there is a paucity of simple 

and rapid methods for quantifying both antibody profiles and neutralizing capacity of patient 

samples, although there is strong correlation between antibody levels and neutralization, as 

expected. 

 We envisioned that we can quantitatively predict the viral neutralization capacity by 

examining the antibody profile in patient samples more deeply and quantitatively in terms of 

antigen, epitope and antibody type. Thus, we have developed a multiplex assay for SARS-CoV-

2 serology that enables us to deeply characterize the antibody profile in terms of antibody 

isotypes and epitopes, and applied machine learning to develop predictive algorithms of 

neutralization capacity.  

 

RESULTS 
Assay design and validation 
 To improve on our one-dimensional multiplex bead-based binding assay (MBBA) (Hattori 

et al., 2020), we have developed two-dimensional multiplex bead-based binding assays (2D-

MBBA) combined with flow cytometry detection to profile antibody isotypes for multiple antigens 

that are site-specifically biotinylated (Fig. 1A and 1B). This new method can simultaneously 

detect a total of 15 (5 x 3) antibody-antigen interactions in a single reaction (Fig. 1B). We tested 

commercially available fluorescent microbeads (Qbeads) and also Dynabeads M-280 

streptavidin that were fluorescently labeled in-house using a biotin-dye conjugates (Hattori et al., 

2020). Both beads types allowed us to produce a total of five distinct levels of fluorescence 

intensity for multiplexing. We used commercially available secondary antibodies for human IgG, 

IgM and IgA that are labeled with different dyes. Although both platforms were capable of 

performing the multiplex assays, Qbeads showed significantly lower background binding to 

serum samples, and thus we chose Qbeads for subsequent experiments. Although it is common 

to use dye combinations that require compensation for detecting multiple antibodies, we found it 

difficult to accurately measure the levels of each antibody isotype using such dye combinations 

because many of serum/plasma samples have large signal for one isotype while very small 

signal for other isotypes. Therefore, for simultaneously and accurately detecting antibody 

isotypes, we chose a set of fluorescent dye-labeled secondary antibodies that requires no signal 

compensation on an appropriately equipped flow cytometer (see Methods).  
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 Compared with a standard ELISA, our multi-dimensional approach has a number of 

advantages: (i) viral antigens are presented on microspheres via a flexible linker, which 

minimizes masking of epitopes due to preferential binding to plastic surface (Fig. 1A); (ii) 

multiple antigens are pooled in a single reaction; (iii) multiple antibody isotypes (IgG, IgM and 

IgA) are simultaneously detected; (iv) signals are not dependent on an enzyme reaction and 

thus time-independent; and (v) the sensitivity and dynamic range of flow cytometry far exceed 

those of ELISA, eliminating the need for measuring serially diluted serum samples. 

Consequently, this method requires a few microliters of blood samples. These attributes in 

combination substantially improves the assay throughput using substantially less antigen 

proteins and blood samples compared with ELISA. Validation of this method is shown in Fig. 

S1. 

 Using a series of serum samples and the RBD as an antigen, we compared our method 

with the ELISA endpoint assay with serial dilutions (Fig. 1C), an approved standard assay for 

SARS-CoV-2 serology (Amanat et al., 2020). The single-point signals from our MBBA (i.e., no 

serial dilutions) showed excellent correlation (R2 = 0.81) with the ELISA titer with eight dilutions, 

indicating that our method achieves a large dynamic range without the need to perform serial 

dilutions and reducing labor-intensive steps without compromising data quality. Because of the 

15-plex capability (3 isotypes for 5 antigens), MBBA measurements using a 96-well plate is 

equivalent to 11,520 wells of single-plex ELISA wells. 

 To quantify antibodies binding to distinct regions of Spike, we designed and produced a 

series of SARS-CoV-2 antigens, including Spike, the RBD of Spike, and natural and designed 

RBD mutants (Fig. 1D, Supplementary Fig. 2). Because neutralizing antibodies should 

recognize the folded, prefusion conformation of Spike, we did not include short, unstructured 

fragments, although it is possible that some neutralizing antibodies may cross-react with such 

fragments. Natural RBD mutants included RBD-V483A, RBD-V367F and RBD-G476S that were 

in circulation in the U.S. in 2020, and a designed triple mutant that disrupts the RBD-ACE2 

interaction, N487K, Q493K and N501K in Spike (termed Spike-T hereafter) and RBD (termed 

RBD-T hereafter; Fig. 1D) (Hattori et al., 2021). These designed mutations disrupt the 

interaction of RBD with neutralizing antibodies that target the ACE2-interaction surface. We also 

produced RBD of SARS-CoV1 (referred to as RBD-CoV1), which has 74.5 % identity with 

SARS-CoV-2 RBD. These antigens are all site-specifically biotinylated using the Avi-tag located 

in a C-terminal extension and immobilized on the beads via the strong interaction between biotin 

and streptavidin. The presentation of full-length spike using a C-terminal biotin coupled to 

streptavidin-coated beads approximate its orientation on the viral surface (Fig. 1A and 1D).  
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 We next applied 2D-MBBA to measure antibody profiles of samples from 101 

convalescent hospital workers and 34 negative control samples, the same sample set that we 

previously characterized using RBD and NP ELISA as well as a neutralization assay with the 

authentic virus (Noval et al., 2021). We characterized the binding of IgG, IgM and IgA to a total 

of eight antigens plus a no-antigen control (Fig. 2). Binding signals of the same antibody isotype 

(IgG, IgM or IgA) to SARS-CoV-2 antigens, i.e., Spike, RBD and RBD mutants, were well 

correlated (Fig. 2A), as one might expect from the fact that these antigens are all derived from 

the spike protein. In contrast, binding signals of different isotypes to a given antigen were not 

highly correlated, confirming diverse isotype profiles among these patients (Noval et al., 2021). 

Consistent with other studies (Long et al., 2020; Okba et al., 2020), these results establish that 

antibody profiling provides sensitive and specific diagnosis for seroconversion after SARS-CoV-

2 infection (Fig. 2A). Specificities are over 0.95 for all the samples. Sensitivities for IgG for all 

the RBD variants of SARS-CoV-2 antigens and IgM for Spike are extremely high with values of 

1.00 and 0.99, respectively. 

 We examined the correlation of individual isotype–antigen datasets with neutralization 

titers of these samples that we previously reported (Noval et al., 2021) (Fig. 2B). We 

intentionally excluded negative control samples in this analysis, in order to more critically 

evaluate the predictive power of these datasets. Still, most of individual datasets exhibit 

significant positive correlation with neutralization MIC. R2 values for the IgG and IgM datasets 

analyzed with the simple linear regression model after logarithmic transformation were above 

0.5. Although the signal strengths to RBD-CoV1 were substantially lower than those to RBD 

(Fig. 2A), the IgG–RBD-CoV1 dataset showed good correlation (R2 = 0.446) (Fig. 2B), which 

may reflect weak cross-reactivity of anti-RBD IgG to RBD-CoV1. 

 Interestingly, the correlations between neutralization titers and the IgG and IgM datasets 

to Spike-T and RBD-T, the designed mutant antigens harboring the triple mutants that disrupt 

the RBD-ACE2 interaction, were among the highest of all isotype-antigen pairs. These results 

are consistent with our previous results that revealed that the ACE2-interacting surface is not 

highly immunogenic (Hattori et al., 2021) and with other reports showing that a small fraction of 

antibodies target this surface of the spike protein (Voss et al., 2021). 

 The correlations of IgG and IgM datasets from 2D-MBBA and from our previous ELISA-

based analysis (Noval et al., 2021) are consistent. In contrast, the IgA data from 2D-MBBA 

showed substantially weaker correlation than the ELISA data. We speculate that the MBBA 

format with low antibody density and more stringent washing removed a subset of IgA with low 

affinity, whereas ELISA with high antigen density tends not to discriminate low and high-affinity 
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antibodies. IgA in the blood mostly does not have the J chain and thus it has an IgG-like bivalent 

architecture, unlike the tetravalent IgA in the mucosal tissues (Woof and Russell, 2011), and 

thus low-affinity IgA species in serum may be particularly sensitive to stringent binding 

conditions. One may be able to exploit this sensitivity to quantify high-affinity and low-affinity 

antibody species in future applications. 

 
Developing machine learning algorithms to predict neutralization capacity from serology 
data 

 We then tested whether we can more accurately predict neutralization by utilizing the 

entire 2D-MBBA datasets with machine learning algorithms. To this end, we subjected the 

dataset, consisting of 27 assays as input, to multiple well-known machine learning algorithms: 

stepwise linear regression (Miller, 2002), elastic net regression (Zou and Hastie, 2005), 

multivariate adaptive regression splines (MARS) (Friedman, 1991), classification and regression 

tree (CART) (Lewis, 2000), and Bayesian regularized neural networks (BRANNs) (Burden and 

Winkler, 2008). The predictive performance of these algorithms was evaluated by three metrics: 

root mean square error (RMSE), R2, and mean absolute error (MAE) with 10-fold cross-

validation (CV). The elastic net regression and BRANNs methods had equivalently best results 

with the smallest RMSE and MAE and the largest R2 (=0.73) (Table 1), substantially improving 

the prediction accuracy when they are compared with the predictions based on a single assay 

(Fig. 2). 

 Next, we determined the importance of the 27 MBBA datasets by the regression 

coefficients in the elastic net regression and connection weights (Olden et al., 2004) in the 

BRANNs predictive models respectively. Because both regression coefficients and connection 

weights have the magnitude of importance (the absolute value) and also the direction of 

correction (the sign; positive or negative), we rank the importance by their absolute values. For 

BRANN, IgG–Spike-T, IgM–Spike-T and IgM–RBD-V483A were ranked as the top three (Fig. 

S4B). For Elastic Net, IgG–RBD-T, IgM–Spike-T and IgM–RBD-V483A were the top three. The 

selection of both RBD-T and Spike-T, which have mutations to eliminate antibody binding to the 

ACE2-interaction surface of the RBD (Hattori et al., 2021), may be rationalized based on our 

previous observation that a small fraction of RBD-binding antibodies target the ACE2-interaction 

surface, as discussed above, and by the notion that IgM binding to this surface should be 

captured in the data with RBD-V483A.  

 We then tested the effectiveness of algorithms using a reduced set of input data with the 

goal of establishing an assay that can be performed in a single well per sample (i.e., ≤5 
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antigens; Fig. 1A). We chose four antigens that included isotype–antigen datasets that are least 

correlated (Fig. S4A) and scored high in the importance analysis (Fig. S4B): Spike-T, RBD, 

RBD-V483A, RBD-T, plus a no-antigen control. We chose Spike-T over Spike from a practical 

reason. Although datasets for these two antigens are nearly perfectly correlated (Fig. S4A), the 

purified Spike-T protein was less prone to aggregation and had higher production yield than 

Spike, and thus the use of Spike-T may lead to more robust assay.  

 For the reduced datasets, we evaluated the predictive performance of the six machine 

learning algorithms in the same manner as for the full datasets. The reduction of the input 

datasets did not affect the prediction performance. BRANNs performed the best in terms of all 

three metrics (Table 1). These results confirm the redundancy of the input datasets and the 

ability of machine learning algorithms to achieve accurate prediction from a smaller number of 

input MBBA datasets. 

 

Testing the trained algorithms with data from vaccinated subjects 
 We next tested how well the algorithms trained with the convalescent samples predict 

the neutralization capacity of plasma samples from vaccinated cancer patients. Healthy people 

usually mount strong immune responses to the mRNA vaccines (Jackson et al., 2020; Walsh et 

al., 2020) and therefore neutralization prediction may have limited values. However, we and 

others have found that immune compromised patients tend to have limited immune responses 

to the vaccines (Agha et al., 2021; Boyarsky et al., 2021; Deepak et al., 2021; Diefenbach et al., 

2021; Herishanu et al., 2021), and therefore accurate assessment of their antibody profiles and 

neutralization capacity may be particularly important for the protection of this vulnerable 

population. 

 Since the evaluation of the convalescent samples in mid 2020, we have modified our 

neutralization assay. Instead of a cell death-based assay, we used a fluorescent reporter 

protein-based assay for new samples (Muruato et al., 2020; Xie et al., 2020). We used a subset 

of the convalescent samples and confirmed that two assays are highly correlated and 

comparable (Supplementary Figure 2E). 

 We analyzed a total of 23 samples from vaccinated lymphoma patients (Diefenbach et 

al., 2021) with the reduced set antigens. The IgG–RBD and IgG–mutant RBD datasets showed 

good correlation with neutralization with R2 up to 0.57 (Fig. 3A). Note, however, that these R2 

values cannot be directly compared with R2 values for the convalescent data, because the two 

sets of analyses are based on distinct datasets. In contrast, the IgM datasets exhibited much 

poorer correlation than the IgG datasets (Fig. 3A), unlike what we observed for the convalescent 
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data (Fig. 2). Prediction with machine learning algorithms trained on the convalescent data still 

gave higher correlations, with elastic net yielding R2 of 0.66 and BRANNs 0.59, than the R2 

values with individual isotype-antigen datasets, although these improvements are smaller than 

those observed with the convalescent data. These results suggest that the algorithms are 

effective in predicting neutralization capacity of samples that are substantially different from the 

training set. 

 

DISCUSSION 
 We have developed a high-throughput assay to deeply characterize antibody profiles for 

SARS-CoV-2 Spike and effective predictive algorithms linking antibody profiles and 

neutralization capacity. Our assay extends one-dimensional multiplex bead binding assays that 

have been developed by several groups in binding to multiple antigens is measured for one 

antibody type at a time (den Hartog et al., 2020; Dobano et al., 2021; Dogan et al., 2021; 

Garcia-Basteiro et al., 2020; Marien et al., 2021; Pisanic et al., 2020; Weiss et al., 2020; Yates 

et al., 2021). It is notable that the machine learning algorithms achieved high levels of accuracy 

from data with a limited set of distinct antigens. Of the final four antigens, RBD and RBD-V483A 

are similar, and thus we essentially had only three distinct antigens. Still, machine learning 

algorithms extracted “hidden” information.  

 The use of a multiple antigen panel is effective in advancing our understanding of the 

nature of neutralizing antibodies. The effectiveness of the predictive algorithms is in agreement 

with our current knowledge of the diverse nature of neutralizing antibodies, beyond those 

targeting the ACE2-interacting surface of the RBD (Amanat et al., 2021; Chi et al., 2020; Liu et 

al., 2020; Voss et al., 2021). Consistent with this view, the correlation achieved with the 

predictive algorithms (R2 = 0.74) were substantially higher than the results on the same serum 

sample set for pseudotype virus neutralization assay focusing on the RBD-ACE2 interaction (R2 

= 0.46) (PMID 33692390). 

 Although the primary goal of this study has been technology development, we have 

uncovered interesting differences between the convalescent samples and vaccinated lymphoma 

patient samples. Whereas the ranges of the IgG levels are generally similar between the two 

sample sets, the vaccinated lymphoma samples had substantially lower IgM levels than the 

convalescent samples and these IgM datasets showed poor correlation with neutralization. 

Further studies are needed to pinpoint factors contributing to this difference, such as the 

underlying disease and treatment and the length of exposure to the infection or vaccination. 
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 There are clear pathways to further improve the 2D-MBBA for SARS-CoV-2 from the 

version that is described here. New antigens can be added to the panel based on rapidly 

advancing knowledge of the spike structure and function, e.g., the N-terminal domain and 

designed mutations that block a particular area of interest, equivalent to the triple mutant 

antigens. Adding antigens from viral variants of concern (VOCs) would be particularly interesting 

and probably informative in evaluating the neutralization capacity against such variants. It will be 

interesting to test how much modification is needed to accurately predict neutralization against 

VOCs from 2D-MBBA data recorded with antigens containing VOC mutations. Similarly, the 

assay can be modified to detect different types of antibodies, such as IgG subtypes and Fc 

receptors (Yates et al., 2021). The potential to accurately predict the neutralization capacity by 

machine learning of antibody profiling data may contribute to evaluation of vaccines and 

assessment of high-risk vaccinated populations, particularly in light of recent reports suggesting 

that the neutralization capacity is a good correlate of protection against SARS-CoV-2 (Earle et 

al., 2021; Khoury et al., 2021). 

 The approach employed here can be readily applied to other viruses. Iterative processes 

of antibody profiling, machine learning prediction of neutralization and updating the antigen 

panel may be effective in establishing an accurate prediction method for neutralization and in 

advancing a mechanistic understanding of the nature of viral neutralization and virus-host 

interactions. 
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FIGURE LEGENDS 
Figure 1. Design of 2D-MBBA for SARS-CoV-2 antibody profiling. 

(A) Scheme showing the design of an Avi-tagged antigen and site-specific immobilization on a 

streptavidin-coated bead. 

(B) Scheme showing the 2D-MBBA principle. Five types of microbeads each presenting a 

different antigen are mixed and reacted with a serum sample. After washing, bound antibodies 

are detected with isotype-specific secondary antibodies on a four-color flow cytometry that 

separately quantify the beads and three isotypes. 

(C) Comparison of MBBA with conventional ELISA using serum samples and RBD. ELISA end 

point titers were determined using the cutoff shown as the red horizontal line. The R2 values 

were determined after log10 transformation of the ELISA endpoint titers and MBBA signals. 

(D) Antigen design. Schematic drawings of the spike protein (PDB ID: 6VSB) and of RBD in 

complex with ACE2 (PDB ID: 6VW1) denoting mutations used in this study. 

 

Figure 2. 2D-MBBA data for convalescent (positive) and pre-COVID (negative) samples and the 

diagnostic performance of individual datasets.  

(A) Raw 2D-MBBA readouts of IgG, IgA and IgM levels for the indicated antigens of 

convalescent (“Pos”) and pre-COVID (“Neg”) samples. For each isotype-antigen pair, sensitivity 

and specificity for detecting positivity were calculated with cut-off values set at the mean + 3 x 

s.d. of the pre-COVID data. The ROC values denote the area under the curve for the ROC 

curves (ROC curves are included in Supplementary Data Table 1). 

(B) 2D-MBBA data for the convalescent sera plotted versus neutralization titer after log2 

transformation. Note that the negative control data are not included, in order to critically 

evaluate the correlation of each isotype-antigen pair with neutralization. 

 
Figure 3. 2D-MBBA data for vaccinated lymphoma patients and machine learning predictions of 

their neutralization capacity. (A) 2D-MBBA data plotted versus neutralization titers. Correlation 

coefficients are also shown. (B) Neutralization titers predicted from machine learning algorithms 

plotted versus experimental titers. 
  

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 4, 2021. ; https://doi.org/10.1101/2021.08.03.454782doi: bioRxiv preprint 

https://doi.org/10.1101/2021.08.03.454782
http://creativecommons.org/licenses/by-nd/4.0/


 12 

TABLES 
Table 1. Performance of different machine learning algorithms in predicting the neutralization 

titer from 2D-MBBA data. The mean and standard deviation (in the parentheses) of the 

considered three metrics based on 100 independent replicates are reported. 

All data (27 pairs) Method 

Group Metric Stepwise Elastic net MARS CART BRANNs 

Test* RMSE 0.86 ( 0.21 ) 0.81 ( 0.19 ) 0.92 ( 0.23 ) 1.07 ( 0.3 ) 0.8 ( 0.2 ) 

R2 0.69 ( 0.15 ) 0.73 ( 0.14 ) 0.65 ( 0.18 ) 0.56 ( 0.2 ) 0.73 ( 0.15 ) 

MAE 0.69 ( 0.18 ) 0.66 ( 0.16 ) 0.74 ( 0.19 ) 0.87 ( 0.24 ) 0.66 ( 0.17 ) 

Training# RMSE 0.82 ( 0.04 ) 0.8 ( 0.03 ) 0.89 ( 0.04 ) 1.03 ( 0.05 ) 0.79 ( 0.02 ) 

R2 0.73 ( 0.02 ) 0.75 ( 0.02 ) 0.67 ( 0.04 ) 0.59 ( 0.04 ) 0.75 ( 0.02 ) 

MAE 0.67 ( 0.03 ) 0.66 ( 0.02 ) 0.72 ( 0.03 ) 0.84 ( 0.04 ) 0.65 ( 0.02 ) 

 

Reduced data (15 pairs) Method 

Group Metric Stepwise Elastic net MARS CART BRANNs 

Test RMSE 0.85 ( 0.19 ) 0.88 ( 0.19 ) 0.9 ( 0.23 ) 1.02 ( 0.25 ) 0.8 ( 0.16 ) 

R2 0.72 ( 0.16 ) 0.72 ( 0.18 ) 0.64 ( 0.22 ) 0.57 ( 0.21 ) 0.73 ( 0.17 ) 

MAE 0.69 ( 0.17 ) 0.73 ( 0.16 ) 0.72 ( 0.17 ) 0.83 ( 0.2 ) 0.66 ( 0.14 ) 

Training RMSE 0.83 ( 0.03 ) 0.82 ( 0.02 ) 0.87 ( 0.04 ) 1.02 ( 0.06 ) 0.78 ( 0.02 ) 

R2 0.73 ( 0.02 ) 0.75 ( 0.02 ) 0.69 ( 0.03 ) 0.61 ( 0.04 ) 0.76 ( 0.02 ) 

MAE 0.67 ( 0.03 ) 0.67 ( 0.02 ) 0.7 ( 0.03 ) 0.82 ( 0.05 ) 0.64 ( 0.02 ) 

*We first trained the model using the training set, then calculated the predictive metrics with the 

trained model using the test set 
#We trained the model and calculated the metrics based on the trained model using the same 

training set.  
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METHODS 
Serum samples 
 The convalescent serum samples and healthy control samples were previously 

described (Noval et al., 2021). The vaccinate lymphoma patient samples were described 

previously (Diefenbach et al., 2021). All patients gave written informed consent and all samples 

were deidentified for this study under IRB #i20-00595 (SARS-CoV-2 infected), IRB #s18-02037 

(healthy pre-SARS-CoV-2 controls), and IRB #S20-02069 (vaccinated lymphoma patients). 

 

Antigen design, protein expression and purification 
 The mutations in the RBD were identified from mining the Global Initiative on Sharing All 

Influenza Data (GISAID) resources. The analysis was based on full genome DNA sequences 

downloaded on April 13, 2020 (8,086 entries) and May 13, 2020 (24,681 entries). Vector 

construction has been described previously (Hattori et al., 2021).  

 The expression vector for the prefusion-stabilized form of the ectodomain of the spike 

protein (resides 16–1213), SARS-CoV-2 spike RBD (residues 328-531) and SARS-CoV spike 

RBD (residues 315–517) were described previously (Hattori et al., 2020). The vectors for the 

mutant RBDs were produced by modifying the vector for wild-type RBD. 

 All proteins were expressed in Expi293F cells using the recommended transfection kit 

and the Expi293 Expression Medium (all from ThermoFisher). Briefly, the cells were expanded 

to 2x106 cells/ml and transfected with 1 ug of DNA per 1 ml of culture volume. The SARS-CoV-2 

Spike protein was expressed at 32 °C with 5% CO2 for 4 days. The SARS-COV-2 RBD proteins 

were expressed at 37 °C with 8% CO2 for 7 days. The culture supernatants were harvested by 

centrifugation, supplemented with protease inhibitors and clarified by further centrifugation at 

8000 rpm for 20 mins as well as filtration through a 0.22 µm filter. The supernatants were 

dialyzed into 20 mM sodium phosphate pH 7.4 with 500 mM sodium chloride and purified using 

HisTrap Excel affinity column (GE). After HisTrap Excel purification, the proteins were 

biotinylated using an in-house purified BirA enzyme. To remove residual BirA enzyme, the RBD 

proteins were subjected to an additional HisTrap Excel purification step and dialyzed into 1x 

PBS. The residual BirA enzyme was removed from the spike protein samples by size exclusion 

chromatography using a Superdex200 Increase column in 20 mM sodium phosphate pH 6.3 

with 500 mM sodium choloride. All proteins were snap frozen and stored at -80 °C. 

 
Multiplex Bead Binding Assay 
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 QBeads DevScreen: SAv (Streptavidin) (Sartorius 90792) were used to immobilize 

biotinylated Spike, RBD domains and the associated mutants. The Qbeads kit is composed of 

five polystyrene bead types that differ in the amount of internal fluorescence they contain but 

otherwise identical. Bead preparation started with appropriate volumes of stock beads that give 

500 Qbeads of each type per reaction. For each bead type, the beads were washed twice with 

1x PBS containing 0.5% (w/v) BSA (PBS-BSA) and resuspended in the starting bead volume by 

following the vendor’s instructions. A biotinylated antigen protein at 25 nM in the volume equal 

to that of the suspended beads was added to the washed beads and incubated for 30 min at 

4oC, then 10 µM biotin in PBS-BSA in the volume equal to that of the antigen solution was 

added and incubated for 10 min at 4°C to block unoccupied biotin-binding sites of streptavidin. 

The beads were then washed twice by spinning down at 8000 x g for 5 minutes and 

resuspending in PBS-BSA containing 10 µM biotin.  

 Different bead types loaded with antigens were then combined and diluted in enough 

buffer to allow the distribution of 5 µl of bead mixture per well of a 96 well HTS filter plate 

(Thermo Fisher, catalog number MSHVN4550) using a MANTIS dispensing robot (Formulatrix). 

The beads were dispensed into HTS 96 well filter plates that have been pre-washed and pre-

loaded with 7.5 µl of filtered 1% non-fat dry milk solution in PBS containing 0.1% Tween20 

(PBST).  

 Serum samples were heat-inactivated by incubating at 58 °C for 1 hr, centrifuged to 

eliminate debris, diluted five-fold in PBS, aliquoted and flash-frozen in liquid nitrogen and kept at 

-80°C until the day of the assay. The frozen samples were thawed, diluted 5:79 in PBST 

containing 1% milk. Then 12.5 µl of serum were added to each well. For reference standards, a 

commercially available anti-COVID-19 and SARS-CoV S glycoprotein antibody clone CR3022 in 

the IgG, IgA and IgM formats (Absolute Antibody, Human IgG1, Kappa, catalog number 

Ab01680-10.0, Human IgA, Kappa, catalog number Ab01680-16.0, Human IgM, Kappa, catalog 

number Ab01680-15.0) were included in triplicates in each measurement. The plates were 

incubated at room temperature for 30 min, washed three times with 1x PBST containing 0.1% 

BSA using a vacuum chamber, and stained with 50 µl of secondary antibody mixture for 30 

minutes. Anti-human IgG FITC (Jackson 109-545-098 diluted 1:800), anti-human IgA PE 

(Jackson 109-115-011 diluted 1:100) and anti-human IgM DyLight405 (Jackson 709-475-073 

diluted 1:200) were used as secondary antibodies. After the secondary antibody incubation, the 

plates were washed twice with PBST containing 0.1% BSA and resuspended in 80 µl wash 

buffer, measured using a Yeti ZE5 Cell Analyzer (Bio-Rad). Data were analyzed using FlowJo 

(BD, version 10.7.1). 
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 In order to standardize MBBA data across different measurements, they were 

referenced to the MFI values of the control antibodies, CR3022, as described above. All MFI 

values in each measurement set, i.e., on a single 96-well plate, were scaled so that the mean 

MFI values 6 nM CR3022-IgG1, 2 nM CR3022-IgA and 4 nM CR3022-IgM are 37653, 17152 

and 1144, respectively, for Spike and that the mean MFI values of these antibodies for RBD 

were  106436, 37076 and 3576, respectively. 

 

Neutralization assay 
 Neutralization values for the convalescent serum samples were taken from a previous 

publication (Noval et al., 2021). For neutralization of cancer patient serum, 20,000 Vero E6 

(ATCC CRL-1586) cells/well were seeded in 96 well plates the day before infection. Patient 

serum was 2-fold serially diluted (ranging from 1:20 to 1:10,240) in DMEM supplemented with 

1% nonessential amino acids, 10 mM HEPES, and 2% fetal bovine serum. Each serum dilution 

was mixed 1:1 (vol/vol) with 5000 PFU of icSARS-CoV-2-mNG (a gift from the UTMB World 

Reference Center for Emerging Viruses and Arboviruses (PDMI: 32289263)) and incubated at 

37°C for 1 hr. The virus:serum mix was then added to the Vero E6 cell containing plates and 

incubated at 37°C for 24 hrs. After incubation, cells were fixed with 10% formalin, stained with 

DAPI, and virus positive cells were quantified using a CellInsight CX7 High-content microscope 

using a cut-off of three standard deviations from negative to be scored as an infected cell. All 

neutralization assays were performed in duplicate. Samples were compared to an untreated 

virus control.  
 

Machine learning prediction of neutralization capacity 
 Neutralization and assay parameters were first log2-transformed. We employed multiple 

well-known machine learning algorithms: stepwise linear regression, elastic net regression, 

multivariate adaptive regression splines, classification and regression tree, and Bayesian 

regularized neural networks, to establish an accurate predictive model for neutralization 

capacity from serology data. Repeated 10-fold CV was employed to evaluate the predictive 

performance of these algorithms. Specifically, the sample set was randomly split into a training 

set with 90% observations and a test set with 10% observations. The training set was employed 

to build the final predictive model and the test set was employed to calculate the predictive 

metrics RMSE, 𝑅!, and MAE with the trained model, for each algorithm. For the algorithms 

consisting of tuning parameters, 10-fold CV was employed to identify the best tuning 

parameters with the lowest RMSE. The above procedure was replicated 100 times to robustly 
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determine the best predictive model for neutralization (less dependent on the split in training 

and test sets).  

 In terms of the three evaluation metrics above, BRANNs and elastic net regression have 

the best performance on predicting neutralization among all predictive algorithms. We further 

identify crucial serology parameters that have important roles in predicting neutralization 

capacity in these two methods, respectively. Specifically, for BRANNs, we employ the 

connection weights method (Olden et al., 2004) to determine the variable importance, which is a 

more flexible approach to evaluate variable importance in neural networks. This method 

calculates importance as the sum of the product of the input-hidden and hidden-output 

connection weights across all hidden neurons, which can be capable of evaluating neural 

networks with multiple hidden layers and response variables. On the other hand, we employed 

the regression coefficients to determine the variable importance for elastic net regression. Both 

methods maintain in terms of both magnitude and sign. The sign indicates the direction of 

correlation (negative or positive), and the absolute value indicates the magnitude of importance. 

The importance rank (relative importance) is calculated according to the absolute connection 

weights in BARNNs or the absolute estimated coefficients in elastic net regression. 

 

 

SUPPLEMENTARY INFORMATION 
Figure S1. Preparation of antigen samples. 

Figure S2. Validation of 2D-MBBA method. 

Figure S3. The receiver operating characteristic (ROC) curves of individual datasets. 

Figure S4. Correlation among 2D-MBBA datasets and their rankings in neutralization prediction. 
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Figure 1. Design of 2D-MBBA for SARS-CoV-2 antibody profiling. 
(A) Scheme showing the design of an Avi-tagged antigen and site-specific immobilization on a 
streptavidin-coated bead. 
(B) Scheme showing the 2D-MBBA principle. Five types of microbeads each presenting a 
different antigen are mixed and reacted with a serum sample. After washing, bound antibodies 
are detected with isotype-specific secondary antibodies on a four-color flow cytometry that 
separately quantify the beads and three isotypes. 
(C) Comparison of MBBA with conventional ELISA using serum samples and RBD. ELISA end 
point titers were determined using the cutoff shown as the red horizontal line. The R2 values 
were determined after log10 transformation of the ELISA endpoint titers and MBBA signals. 
(D) Antigen design. Schematic drawings of the spike protein (PDB ID: 6VSB) and of RBD in 
complex with ACE2 (PDB ID: 6VW1) denoting mutations used in this study. 
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Figure 2. 2D-MBBA data for convalescent (positive) and pre-COVID (negative) samples and the 
diagnostic performance of individual datasets.  
(A) Raw 2D-MBBA readouts of IgG, IgA and IgM levels for the indicated antigens of 
convalescent (“Pos”) and pre-COVID (“Neg”) samples. For each isotype-antigen pair, sensitivity 
and specificity for detecting positivity were calculated with cut-off values set at the mean + 3 x 
s.d. of the pre-COVID data. The ROC values denote the area under the curve for the ROC 
curves (ROC curves are included in Fig. S3). 
(B) 2D-MBBA data for the convalescent sera plotted versus neutralization titer after log2 
transformation. Note that the negative control data are not included, in order to critically 
evaluate the correlation of each isotype-antigen pair with neutralization. 
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Figure 3. 2D-MBBA data for vaccinated lymphoma patients and machine learning predictions of 
their neutralization capacity. (A) 2D-MBBA data plotted versus neutralization titers. Correlation 
coefficients are also shown. (B) Neutralization titers predicted from machine learning algorithms 
plotted versus experimental titers. 
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