Received 6 August 2020 Accepted 23 August 2021

ISSN 2053-2296

Edited by W. Lewis, University of Sydney, Australia

‡ Died 6th December 2019

**Keywords:** Schiff base; chromism; polymorphism; phase transition; crystal structure.

CCDC references: 2099385; 2099384; 2099383; 2099382; 2099381; 2099380; 2099379; 2099378; 2099377; 2099376; 2099375; 2099374; 2099373; 2099372

Supporting information: this article has supporting information at journals.iucr.org/c



## Selected solid-state behaviour of three di-*tert*-butylsubstituted *N*-salicylideneaniline derivatives: temperature-induced phase transitions and chromic behaviour

#### Helen E. Mason,<sup>a</sup><sup>‡</sup> Judith A. K. Howard<sup>a</sup> and Hazel A. Sparkes<sup>b</sup>\*

<sup>a</sup>Department of Chemistry, Durham University, South Road, Durham DH1 3LE, UK, and <sup>b</sup>School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK. \*Correspondence e-mail: hazel.sparkes@bristol.ac.uk

The synthesis, single-crystal structures and chromic behaviour of three related Schiff bases, namely, (*E*)-2,4-di-*tert*-butyl-6-{[(4-fluorophenyl)imino]methyl}-phenol,  $C_{21}H_{26}FNO$ , **1**, (*E*)-2,4-di-*tert*-butyl-6-{[(4-chlorophenyl)imino]methyl}-phenol,  $C_{21}H_{26}CINO$ , **2**, and (*E*)-6-{[(4-bromophenyl)imino]methyl}-2,4-di-*tert*-butylphenol,  $C_{21}H_{26}BrNO$ , **3**, are reported. Two polymorphs of **1** were obtained, which were found to have different photochromic properties. Schiff bases **2** and **3** were found to be isostructural and underwent a phase transition upon cooling which was attributed to the dynamic disorder in one of the *tert*-butyl groups resolving at low temperature. All of the structures were found to exist in the enol rather than the keto form based on the C-O(H) and imine C=N bond lengths, and contained an intramolecular O-H···N hydrogen bond alongside weaker intermolecular C-H···O contacts.

#### 1. Introduction

Compounds which display reversible property changes upon some sort of stimulus are of interest due to potential applications, including optical switches (Sliwa et al., 2005), sensors (Sahu et al., 2020) or optical data storage (Wang et al., 2020). Within these are compounds displaying temperature-dependent thermochromic (Seeboth et al., 2014; Suzuki et al., 2019) or light-induced photochromic (Wu et al., 2020) colour changes. One such class of compounds that has been found to exhibit both thermochromism and photochromism in the solid state are N-salicylideneanilines, Schiff bases of salicylaldehyde derivatives with aniline derivatives (Senier & Shepheard, 1909; Cohen & Schmidt, 1962; Cohen et al., 1964). Typically, their thermochromism involves a lightening of colour from red/ orange to orange/yellow upon cooling, while their photochromic colour changes usually result in a darkening of colour from yellow to orange/red upon irradiation with UV light. Initially, the two properties were thought to be mutually exclusive (Cohen & Schmidt, 1962; Cohen et al., 1964); however, now it is believed that most, if not all, of N-salicylideneanilines display thermochromism, with some also showing photochromism (Fujiwara et al., 2004).

The mechanism for the thermochromic colour change is believed to be due to an enol to *cis*-keto tautomerism, while the photochromism involves a *cis* to *trans* isomerism of the keto form (Hadjoudis & Mavridis, 2004; Robert *et al.*, 2009) (Fig. 1). Evidence of the thermoproduct has been observed for N-(5-chlorosalicylidene)-4-hydroxyaniline, where the population of the *cis*-keto form was found to increase upon cooling (Ogawa *et al.*, 1998, 2000), while the photoproduct has been

### research papers

 Table 1

 Experimental details.

|                                                                            | <b>1A</b> at 100 K                                                                | <b>1B</b> at 120 K                                                                | <b>2</b> at 100 K                                                                 | <b>3</b> at 100 K                                                                 |
|----------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| Crystal data                                                               |                                                                                   |                                                                                   |                                                                                   |                                                                                   |
| Chemical formula                                                           | C21H26FNO                                                                         | C21H26FNO                                                                         | C <sub>21</sub> H <sub>26</sub> ClNO                                              | C21H26BrNO                                                                        |
|                                                                            | 327.43                                                                            | 327.43                                                                            | 343.88                                                                            | 388.34                                                                            |
| Crystal system, space group                                                | Triclinic, $P\overline{1}$                                                        | Orthorhombic, $Pna2_1$                                                            | Monoclinic, $P2_1/c$                                                              | Monoclinic, $P2_1/c$                                                              |
| Temperature (K)                                                            | 100                                                                               | 120                                                                               | 100                                                                               | 100                                                                               |
| <i>a</i> , <i>b</i> , <i>c</i> (Å)                                         | 6.5324 (3), 10.6141 (8),<br>14.1675 (9)                                           | 12.2569 (3), 8.9658 (2),<br>16.5739 (4)                                           | 17.3011 (11), 10.6780 (7),<br>10.1200 (6)                                         | 17.4450 (3), 10.69412 (16),<br>10.15010 (17)                                      |
| $lpha,eta,\gamma$ (°)                                                      | 80.364 (5), 81.094 (4),<br>74.507 (5)                                             | 90, 90, 90                                                                        | 90, 90.252 (6), 90                                                                | 90, 90.1557 (16), 90                                                              |
| $V(Å^3)$                                                                   | 926.97 (10)                                                                       | 1821.35 (7)                                                                       | 1869.6 (2)                                                                        | 1893.58 (5)                                                                       |
| Z                                                                          | 2                                                                                 | 4                                                                                 | 4                                                                                 | 4                                                                                 |
| Radiation type                                                             | Μο Κα                                                                             | Μο Κα                                                                             | Μο Κα                                                                             | Μο Κα                                                                             |
| $\mu (\text{mm}^{-1})$                                                     | 0.08                                                                              | 0.08                                                                              | 0.21                                                                              | 2.18                                                                              |
| Crystal size (mm)                                                          | $0.38\times0.36\times0.26$                                                        | $0.46 \times 0.43 \times 0.10$                                                    | $0.35\times0.31\times0.10$                                                        | $0.3 \times 0.05 \times 0.05$                                                     |
| Data collection                                                            |                                                                                   |                                                                                   |                                                                                   |                                                                                   |
| Diffractometer                                                             | Oxford Diffraction<br>Xcalibur Sapphire3<br>Gemini ultra                          | Oxford Diffraction<br>Xcalibur Sapphire3<br>Gemini ultra                          | Oxford Diffraction<br>Xcalibur Sapphire3<br>Gemini ultra                          | Agilent SuperNova Dual<br>Source diffractometer<br>with an Atlas detector         |
| Absorption correction                                                      | Multi-scan ( <i>CrysAlis PRO</i> ;<br>Oxford Diffraction, 2010)                   | Analytical ( <i>CrysAlis PRO</i> ;<br>Oxford Diffraction, 2010)                   | Multi-scan ( <i>CrysAlis PRO</i> ;<br>Rigaku OD, 2018)                            | Multi-scan ( <i>CrysAlis PRO</i> ;<br>Agilent, 2012)                              |
| $T_{\min}, T_{\max}$                                                       | 0.870, 1.000                                                                      | 0.973, 0.992                                                                      | 0.435, 1.000                                                                      | 0.692, 1.000                                                                      |
| No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections   | 7178, 3792, 2765                                                                  | 25510, 3712, 3517                                                                 | 13865, 3830, 2740                                                                 | 28200, 4491, 3799                                                                 |
| R <sub>int</sub>                                                           | 0.038                                                                             | 0.049                                                                             | 0.087                                                                             | 0.036                                                                             |
| $(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$                       | 0.625                                                                             | 0.625                                                                             | 0.625                                                                             | 0.658                                                                             |
| Refinement                                                                 |                                                                                   |                                                                                   |                                                                                   |                                                                                   |
| $R[F^2 > 2\sigma(F^2)], wR(F^2), S$                                        | 0.054, 0.110, 1.04                                                                | 0.034, 0.077, 1.05                                                                | 0.071, 0.176, 1.08                                                                | 0.026, 0.060, 1.04                                                                |
| No. of reflections                                                         | 3792                                                                              | 3712                                                                              | 3830                                                                              | 4491                                                                              |
| No. of parameters                                                          | 227                                                                               | 226                                                                               | 227                                                                               | 227                                                                               |
| No. of restraints                                                          | 0                                                                                 | 1                                                                                 | 0                                                                                 | 22                                                                                |
| H-atom treatment                                                           | H atoms treated by a<br>mixture of independent<br>and constrained refine-<br>ment | H atoms treated by a<br>mixture of independent<br>and constrained refine-<br>ment | H atoms treated by a<br>mixture of independent<br>and constrained refine-<br>ment | H atoms treated by a<br>mixture of independent<br>and constrained refine-<br>ment |
| $\Delta \rho_{\rm max},  \Delta \rho_{\rm min} \ ({ m e} \ { m \AA}^{-3})$ | 0.28, -0.20                                                                       | 0.16, -0.16                                                                       | 0.78, -0.33                                                                       | 0.46, -0.22                                                                       |

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010; Rigaku OD, 2018; Agilent, 2012), SHELXS (Sheldrick, 2008), olex2.solve (Bourhis et al., 2015), SHELXL2018 (Sheldrick, 2015) and OLEX2 (Dolomanov et al., 2009).

seen crystallographically for *N*-3,5-di-*tert*-butylsalicylidene-3nitroaniline using two-photon irradiation (Harada *et al.*, 1999). The enol form is believed to be colourless, while the keto form



Figure 1

Illustration of the proposed mechanism for the thermo- or photochromism in *N*-salicylideneaniline derivatives. is coloured (Ogawa et al., 1998; Fujiwara et al., 2004; Harada et al., 2007). However, the thermochromism cannot be fully explained by the keto-enol tautomerism alone. In order to fully explain the thermochromism, it is necessary to take into account fluorescence (Harada et al., 2007). The impact of fluorescence is particularly significant for thermochromic compounds at lower temperature and can in fact be the dominant cause of colour change, while at higher temperatures, fluorescence is negligible. The presence of fluorescence at lower temperature results in different perceived colours to those observed from the diffuse reflectance spectra, e.g. N-(5chloro-2-hydroxybenzylidene)aniline appears yellowish green at 80 K but diffuse reflectance suggests the colour to be pale vellow since fluorescence was eliminated in the measurement of diffuse reflectance spectra. The extent of the thermochromism of the N-salicylideneanilines has been linked to the dihedral angle ( $\Phi$ ) between the two aromatic rings, with those having  $\Phi < 25^{\circ}$  being generally strongly thermochromic, as a smaller interplanar or dihedral angle results in reduced overlap between the N-atom lone pair and the aromatic aniline moiety. This allows for easier H-atom transfer and creates a

stronger intramolecular hydrogen bond. While a larger dihedral angle increases overlap between the N-atom lone pair and the aromatic aniline moiety giving greater delocalization into the  $\pi$ -system and reducing the basicity of the N atom and thus the thermochromism (Hadjoudis & Mavridis, 2004; Robert et al., 2009). For photochromism, the link to dihedral angle is more complicated and compounds with  $\Phi < 20^{\circ}$  are generally nonphotochromic, those with  $\Phi > 30^\circ$  are more likely to be photochromic and those in between can be either photochromic or nonphotochromic (Johmoto et al., 2012). Other factors have also been found to influence the chromic behaviour of the N-salicylideneanilines, including substituents that weaken the O-H bond or increase the basicity of the N atoms, tending to result in more strongly thermochromic compounds (Hadjoudis & Mavridis, 2004). In addition, crystal packing also affects chromic behaviour, with more closely packed structures tending to be more strongly thermochromic and more open packed structures more likely to be photochromic (Hadjoudis & Mavridis, 2004; Robert et al., 2009). The latter is likely to be due to the large conformational change required for the transition, with tightly packed structures having greater steric restrictions to conformational change. The presence of bulky groups, such as tert-butyl substituents, or creating cavities using hosts can help to increase space in the lattice of a structure and favour photochromism, as more space presumably reduces the steric restraint on the molecule for the significant conformational change required for cis to trans isomerism to occur (Johmoto et al., 2012, Pistolis et al., 1996; Koyama et al., 1994).



The structures of three related *N*-salicylidineanlines, namely, (E)-2,4-di-*tert*-butyl-6-{[(4-fluorophenyl)imino]methyl}phenol, **1**, (E)-2,4-di-*tert*-butyl-6-{[(4-chlorophenyl)imino]methyl}phenol, **2**, and (E)-6-{[(4-bromophenyl)imino]methyl}-2,4-di-*tert*-butylphenol, **3**, are reported alongside a study into their chromic properties (Scheme 1). The structure of **2** has been reported previously at 273 K (Li *et al.*, 2007), but no investigation into the chromic properties or thermal behaviour has been reported. The structure of **3** has also been reported and is known to be photochromic; however, the thermal behaviour was not studied (Johmoto *et al.*, 2012).

#### 2. Experimental

#### 2.1. Synthesis

All reagents were used as supplied by Aldrich. Compounds were synthesized by direct condensation of the appropriate salicylaldehyde and aniline derivatives in ethanol. 1.25 (for 1 and 3) or 2.5 mmoles (for 2) of the salicylaldehyde and aniline were each dissolved in ethanol (25 ml), and the resulting solutions combined and refluxed with stirring for 4 h. Any precipitate was filtered off, rinsed with ethanol and left to dry. The (remaining) solution was then removed under reduced pressure using a rotary evaporator until (further) precipitate formed. Recrystallization was carried out by slow evaporation from ethanol.

#### 2.2. Characterization

Elemental C, H and N content analysis was carried out by the Durham University Analytical service using an Exeter Analytical E-440 Elemental Analyzer.

## 2.3. Single-crystal X-ray diffraction data collection and refinement

Details of the X-ray data collection and refinement are provided in Table 1 and Table S1 in the supporting information. All H atoms, apart from the O-H hydrogen involved in the intramolecular hydrogen bonding with the imine N atom were positioned geometrically and refined using a riding model. The H atoms involved in the intramolecular hydrogen bond were located in the Fourier difference map wherever feasible. In 2 and 3, one of the tert-butyl groups was disordered [apart from at 120 (2) and 100 (2) K for 2, and at 100 (2) K for 3], the sum of the occupancies of the disordered parts was set to equal 1. The data for 2 at 300 (2), 250 (2) and 200 (2) K drop off at high angle, presumably due to the presence of the disorder in the tert-butyl group; as a consequence, the data were cut at resolution limits of 0.95, 0.91 and 0.89 Å, respectively. Likewise the data for 3 were also weak at 300 (2) K and were consequently cut at a resolution limit of 0.86 Å. The interplanar dihedral angle and fold angles were calculated in OLEX2 (Dolomanov et al., 2012) by measuring the angles between planes computed through the six non-H atoms of the two rings. For the acentric structure of 1B at 120 K, the diffraction data did not establish the absolute structure.

#### 2.4. Raman

Irradiation was carried out using two UV LED sources ( $\lambda \sim$  365 nm) in the dark to minimize conversion back to the ground state and measurements were recorded with the 764 nm laser on a Horiba Jobin Yvon LabRAM HR Raman spectrometer.

#### 2.5. Diffuse reflectance spectroscopy

The sample was ground to give uniform particle distribution and placed in a 40  $\times$  10  $\times$  2 mm quartz cuvette to ensure optical thickness. A cuvette sample holder with a white polytetrafluoroethylene (PTFE) block spacer was used to load the sample into an Oxford Instruments Cryostat. The sample was irradiated with an Ocean Optics halogen light source and an Avantes AvaSpec-2048-2 CCD detector (placed at an acute angle to minimize detection of specular reflectance) collected the reflectance spectra, which were recorded using AvaSoft basic software. Cryostat temperature control was performed using an Oxford Intelligent Temperature Controller and each temperature was stabilized for 10 min or until  $\pm 0.1$  K before recording the spectrum. A white PTFE block was used to record a reference spectrum before each data set collection. Irradiation was carried out using a 405 nm laser pointer or UV LEDs after an initial ground-state spectrum was collected. The diffuse reflectance spectra are illustrated as percent reflectance versus wavelength and Kubelka–Munk function, F(R), *versus* wavelength. If S is independent of  $\lambda$ , then F(R) versus  $\lambda$ is equivalent to the absorption spectrum for a diffuse reflector. To allow basic trends to be easily observed, moving averages were applied to data during analysis.

#### 3. Results and discussion

#### 3.1. Structural characterization

Compound 1 was found to produce two different polymorphs upon recrystallization, 1A and 1B, which had different morphologies and structures. Polymorph 1A formed yellow rectangular block-like crystals and crystallized in the triclinic space group  $P\overline{1}$ , while **1B** formed bright-yellow octahedralshaped crystals and crystallized in the orthorhombic space group  $Pna2_1$ . Only one polymorph was identified during these studies for **2** and **3**, both of which were yellow.

The four structures are all similar in that they have the same basic backbone with a phenyl group substituted with a hydroxy and two tert-butyl groups, and joined to a halogensubstituted phenyl group via an imine group (Fig. 2). The structures all exist in the enol form at low temperature rather than the less common keto form, with the C7=N1 bond lengths ranging from 1.279 (3) to 1.286 (2) Å and the C1-O1bond lengths ranging from 1.353 (3) to 1.358 (2) Å, which are consistent with double C=N (typically  $\sim$ 1.279 Å) and single C–O (typically  $\sim$ 1.362 Å) bonds, respectively (Allen *et al.*, 1987). In all cases, the H atom was also located in the Fourier difference map in the vicinity of the O atom, supporting the presence of the enol form of the anil. All the structures contain an intramolecular O1-H1···N1 hydrogen bond with similar parameters, e.g. O1···N1 distances ranging from 2.544 (2) to 2.633 (3) Å (see Table 2). The structures also contain weaker intermolecular C-H···O interactions (see Table 3).

The structure of **1A** consists of molecules oriented such that the plane of the molecules is in approximately the ( $\overline{101}$ ) plane, with short aromatic C-H···O contacts between pairs of adjacent molecules. The *tert*-butyl groups within these pairs are at opposite ends to each other (Fig. 3). Examining the



#### Figure 2

Illustration of the structures of **1A** [at 100 (2) K], **1B** [120 (2) K], **2** [100 (2) K] and **3** [100 (2) K], with the atomic numbering schemes depicted. Displacement ellipsoids are drawn at the 50% probability level.

Table 2 $O-H\cdots N$  hydrogen-bond geometry (Å, °).

|     | T (K) | $D - H \cdot \cdot \cdot A$        | D-H      | $H \cdot \cdot \cdot A$ | $D \cdot \cdot \cdot A$ | $D - H \cdot \cdot \cdot A$ |
|-----|-------|------------------------------------|----------|-------------------------|-------------------------|-----------------------------|
| 1.4 | 100   | 01 U1 N1                           | 0.04 (2) | 1.72 (2)                | 2,597 (2)               | 151 (2)                     |
| IA  | 100   | OI-HI···NI                         | 0.94 (3) | 1.72 (3)                | 2.587 (2)               | 151 (2)                     |
| 1B  | 120   | $O1 - H1 \cdots N1$                | 0.96 (3) | 1.64 (3)                | 2.544 (2)               | 155 (2)                     |
| 2   | 300   | $O1-H1\cdots N1$                   | 0.84(4)  | 1.84 (4)                | 2.612 (4)               | 151 (4)                     |
|     | 250   | $O1-H1\cdots N1$                   | 0.91 (3) | 1.76 (4)                | 2.615 (4)               | 155 (3)                     |
|     | 200   | $O1 - H1 \cdots N1$                | 0.90(3)  | 1.78 (3)                | 2.611 (3)               | 153 (3)                     |
|     | 150   | $O1-H1\cdots N1$                   | 0.92 (3) | 1.77 (3)                | 2.615 (3)               | 151 (3)                     |
|     | 120   | $O1-H1\cdots N1$                   | 0.86(4)  | 1.82 (4)                | 2.633 (3)               | 157 (4)                     |
|     | 100   | $O1-H1\cdots N1$                   | 0.94 (4) | 1.77 (4)                | 2.626 (3)               | 150 (3)                     |
| 3   | 300   | $O1-H1\cdots N1$                   | 0.83 (5) | 1.84 (5)                | 2.614 (4)               | 154 (5)                     |
|     | 250   | $O1-H1\cdots N1$                   | 0.84 (3) | 1.83 (3)                | 2.612 (3)               | 154 (3)                     |
|     | 200   | $O1-H1\cdots N1$                   | 0.82(3)  | 1.85 (3)                | 2.611 (2)               | 153 (3)                     |
|     | 150   | $O1-H1\cdots N1$                   | 0.86(1)  | 1.83 (2)                | 2.612 (2)               | 152 (3)                     |
|     | 120   | $O1-H1\cdots N1$                   | 0.86(1)  | 1.84 (2)                | 2.622 (2)               | 151 (3)                     |
|     | 100   | $O1\!-\!H1\!\cdot\cdot\!\cdot\!N1$ | 0.85 (1) | 1.84 (1)                | 2.6257 (18)             | 152 (2)                     |

structure of 1B shows that the molecules are packed in a completely different manner to 1A; in 1B, alternate molecules in the c-axis direction are orientated in either the [101] or  $[10\overline{1}]$  direction (Fig. 3). Intermolecular interactions in this case are (i) short  $C-H\cdots O$  contacts involving the H atoms on a methyl group and an aromatic H atom, and (ii)  $C-H\cdots F$ contacts involving methyl-group H atoms (see Fig. 4 and Table 3). The structures of 2 and 3 were found to be isostructural, crystallizing in the monoclinic space group  $P2_1/c$ . All of the molecules are oriented such that the plane of the molecules is in approximately the (101) plane, with short aromatic C-H···O contacts between pairs of adjacent molecules. Within these pairs, the molecules are arranged such that the *tert*-butyl groups are at opposite ends to each other (Fig. S1). Although in a different crystal system and space group, the structures of 2 and 3 are similar to that of 1A in terms of the packing and intermolecular interactions.

#### 3.2. Thermal behaviour

The structures of **2** and **3** are isostructural and upon cooling both undergo a phase transition somewhere between 150 and 120 K, during which the *a*-axis length decreases by  $\sim 0.37$  Å

| Table | 3                                                       |               |            |        |  |
|-------|---------------------------------------------------------|---------------|------------|--------|--|
| С-Н-  | $\cdot {\cdot} O$ and $C{-} H{\cdot} {\cdot} {\cdot} F$ | hydrogen-bond | geometry ( | (Å, °) |  |

|    | T (K) | $D - H \cdots A$          | $D-{\rm H}$ | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|----|-------|---------------------------|-------------|-------------------------|--------------|--------------------------------------|
| 1A | 100   | $C12-H12\cdots O1^{i}$    | 0.95        | 2.62                    | 3.345 (2)    | 133                                  |
| 1B | 120   | $C10-H10\cdots O1^{ii}$   | 0.95        | 2.60                    | 3.523 (3)    | 165                                  |
|    |       | $C19-H19B\cdots O1^{iii}$ | 0.98        | 2.72                    | 3.522 (3)    | 140                                  |
|    |       | $C17-H17A\cdots F1^{iv}$  | 0.98        | 2.57                    | 3.453 (3)    | 150                                  |
| 2  | 300   | $C12-H12\cdots O1^{v}$    | 0.93        | 2.71                    | 3.461 (4)    | 138                                  |
|    | 250   | $C12-H12\cdots O1^{v}$    | 0.94        | 2.68                    | 3.438 (3)    | 138                                  |
|    | 200   | $C12-H12\cdots O1^{v}$    | 0.95        | 2.65                    | 3.415 (2)    | 138                                  |
|    | 150   | $C12-H12\cdots O1^{vi}$   | 0.95        | 2.56                    | 3.359 (3)    | 142                                  |
|    | 100   | $C12-H12\cdots O1^{vi}$   | 0.95        | 2.54                    | 3.343 (4)    | 142                                  |
|    | 150   | $C12-H12\cdots O1^{v}$    | 0.95        | 2.63                    | 3.396 (3)    | 138                                  |
|    | 120   | $C12-H12\cdots O1^{vi}$   | 0.95        | 2.56                    | 3.359 (3)    | 142                                  |
| 3  | 300   | $C12-H12\cdots O1^{vii}$  | 0.93        | 2.76                    | 3.522 (3)    | 140                                  |
|    | 250   | $C12-H12\cdots O1^{vii}$  | 0.94        | 2.73                    | 3.500 (2)    | 140                                  |
|    | 200   | $C12-H12\cdots O1^{vii}$  | 0.94        | 2.71                    | 3.483 (3)    | 140                                  |
|    | 150   | $C12-H12\cdots O1^{vii}$  | 0.95        | 2.67                    | 3.458 (2)    | 140                                  |
|    | 120   | $C12-H12\cdots O1^{vii}$  | 0.95        | 2.62                    | 3.425 (2)    | 142                                  |
|    | 100   | $C12-H12\cdots O1^{vii}$  | 0.95        | 2.61                    | 3.415 (2)    | 143                                  |

Symmetry codes: (i) -x, -y + 2, -z; (ii)  $x + \frac{1}{2}, -y + \frac{3}{2}, z;$  (iii)  $-x + \frac{3}{2}, y + \frac{1}{2}, z + \frac{1}{2};$  (iv)  $-x + 2, -y + 1, z + \frac{1}{2};$  (v) -x + 2, -y + 1, -z + 1; (vi) -x + 2, -y, -z + 1; (vii) -x, -y, -z.

for 2 and by  $\sim 0.27$  Å for 3, while the b axis increases by  $\sim$ 0.20 Å for 2 and by  $\sim$ 0.10 Å for 3. These changes are accompanied by a decrease in the  $\beta$  angle of just over 1° in both cases (see Figs. S2 and S3 in the supporting information). Across the full temperature range measured, the behaviour of the unit-cell parameters is slightly different for the two compounds but shows many similarities. For 2, the *a* axis decreases almost linearly until 150 K and then shows a sharp decrease after the phase transition; the b axis decreases approximately linearly until 200 K, increases slightly to 150 K and then increases sharply by 120 K; the  $\beta$  angle decreases approximately linearly until 150 K, then shows a sharp decrease to 120 K before increasing slightly at 100 K; and the c axis and unit-cell volume decrease almost linearly throughout, with slight inflections at around 175 and 150 K. For 3 overall across the temperature range, upon cooling, the a and c cell-axes lengths,  $\beta$  angle and unit-cell volume decrease approximately linearly prior to the phase transition and continue to decrease



Figure 3 Illustration of the packing of **1A** at 100 (2) K and **1B** at 120 (2) K, looking down the *b* axis. H atoms have been omitted for clarity.



Figure 4 Intermolecular hydrogen bonding (dashed lines) in **1A** at 100 (2) K and **1B** at 120 (2) K.

after the phase transition. In the case of the *b* axis, it initially decreases until  $\sim 200$  K, increases slightly at 150 K and then increases sharply through the phase transition.

Examining the crystal structures above and below the transition, the cause of the phase transition appears to be dynamic disorder in one of the *tert*-butyl groups; at higher temperature, the group is disordered, while at low temperature, the disorder resolves. In the case of **2**, the disordered *tert*-butyl group is modelled over three positions at 150 (2) K, but is fully ordered at 120 (2) K, while for **3** at 150 (2) K, the *tert*-butyl group is also modelled over three positions, at 120 (2) K it was modelled over two positions and it was only at 100 (2) K that it was fully ordered.

The majority of the *N*-salicylideneanilines show thermochromism upon cooling, with compounds that are red/orange at room temperature becoming paler or yellow and those that are yellow at room temperature becoming paler. However, it was interesting to note that upon cooling, the crystals of 2 and 3 showed an apparent 'reverse thermochromism' around the phase-transition temperature, with the crystals becoming more red (Fig. 5 and Fig. S4 in the supporting information). Diffuse reflectance spectra were also collected for all of the compounds and are available in the supporting information (Figs. S5 and S6). No account was taken of the potential effect of fluorescence, which can affect the observed colour upon cooling (Harada et al., 2007); however, the spectra are presented to support the visually observed trends. In the case of the reflectance spectra for 1, which is likely to be a mixture of both polymorphs, the shoulder shifts to lower wavelengths upon cooling suggesting a lightening in colour. In the cases of 2 and 3, there is also a shift in the position of the main shoulder to lower wavelengths upon cooling, but this is also accompanied by additional changes in the spectra. The spectrum for 2 shows additional changes in the  $\sim$ 500–580 nm region with additional shoulders appearing. These appear to start by around 200 K and become more pronounced upon further cooling, which is consistent with results observed visually in Fig. 5. A similar situation, although less pronounced, is observed for 3, where additional shoulders appear in the range  $\sim$ 500–580 nm for the spectra at 200 K and below. The apparent 'reverse thermochromism' is believed to be related to the phase transition that has occurred rather than the



 Table 4

 Dihedral angles (°) between planes calculated through the six atoms of the two rings.

|    | <i>T</i> (K) | Dihedral angle (°) | Fold angle (°) |
|----|--------------|--------------------|----------------|
| 1A | 100          | 39.03 (5)          | 8.68 (5)       |
| 1B | 120          | 20.61 (7)          | 3.24 (7)       |
| 2  | 300          | 26.75 (7)          | 9.01 (9)       |
|    | 250          | 26.56 (8)          | 8.87 (8)       |
|    | 200          | 26.33 (6)          | 9.09 (6)       |
|    | 150          | 25.80 (9)          | 9.28 (9)       |
|    | 120          | 24.96 (10)         | 11.84 (10)     |
|    | 100          | 24.83 (9)          | 12.05 (9)      |
| 3  | 300          | 25.83 (8)          | 9.29 (9)       |
|    | 250          | 25.49 (6)          | 9.45 (6)       |
|    | 200          | 25.33 (8)          | 9.69 (7)       |
|    | 150          | 24.88 (7)          | 10.16 (7)      |
|    | 120          | 24.70 (7)          | 12.49 (7)      |
|    | 100          | 24.63 (5)          | 13.20 (5)      |
|    |              |                    |                |

normal thermochromism seen in N-salicylideneanilines. It was noted that the dihedral angle between the two six-membered rings decreases by around 1.2-1.9° as the temperature is reduced and in the case of 2, there is a noticeably larger step around the phase transition between 150 (2) and 120 (2) K. In both cases, the fold angle increases as the temperature is reduced and there is a large step increase of  $\sim 2.3-2.5^{\circ}$ between 150 (2) and 120 (2) K (see Table 4). Although relatively small, it is possible that these structural changes may be related to the observed colour change, as structures with smaller dihedral angles have reduced overlap between the N-atom lone pair and the aromatic aniline, allowing for a stronger  $O-H \cdots N$  hydrogen bond favoured by the strongly thermochromic compounds (Hadjoudis & Mavridis, 2004; Robert et al., 2009). In the case of N-salicylideneaniline, a similar reverse thermochromism has been seen, whereupon heating above 306 K the colour changes from red to yellow. This was associated with the planar  $\beta$ -form transitioning to the nonplanar disordered  $\alpha_1$ -form; however, the change in structure in this case was much more significant, with a change in

 Table 5

 Position of main peaks that appear in Raman upon irradiation.

| Compound | New peaks $(cm^{-1})$           |
|----------|---------------------------------|
| 1A       | 1651, 1525, 1373, 1302 and 1143 |
| 1B       | _                               |
| 2        | 1528, 1423, 1311 and 1152       |
| 3        | 1518, 1418, 1301 and 1134       |

the dihedral angle from  $(\beta) \sim 2^{\circ}$  to  $(\alpha_1) \sim 49^{\circ}$  (Arod *et al.*, 2007). More examples and further studies would be required to confirm a correlation between the colour change observed here and the phase transition having occurred.

#### 3.3. Photochromism

Upon irradiation, three of the crystals (1A, 2 and 3) were found to display photochromism, becoming much darker in colour when irradiated with UV light. On the other hand, polymorph **1B** did not show a colour change even upon prolonged irradiation (Fig. 6). The occurrence of photochromism for **3** had been reported previously (Johmoto *et al.*, 2012).

Raman data were collected before irradiation and after irradiation with a UV LED (Fig. 7). The three crystals displaying photochromism (1A, 2 and 3) all showed the appearance of new peaks upon irradiation; the main peak positions are given in Table 5. As expected, the spectrum of 1B showed no change in the Raman spectra upon irradiation. It is clear that only a small amount of the photoproduct has been formed, which is not uncommon as photoyield is often low, particularly without two-photon excitation, and the change is often restricted to the surface of the crystal (Harada et al., 2008). Therefore, it is unsurprising that even after irradiation with a UV laser, no changes were observed in the singlecrystal X-ray structures. Diffuse reflectance spectra before and after irradiation for samples of 2 and 3 are presented in the supporting information (Fig. S7); these support the observation by eye and from the Raman with significant changes in the



Figure 6

Illustration of the behaviour of each of the crystal structures at room temperature upon irradiation with a UV LED ( $\lambda \sim 365$  nm) for (a) unirradiated and (b) irradiated.

### research papers



Figure 7

Raman spectra of 1A, 1B, 2 and 3 before irradiation (red) and after irradiation (blue) with UV LEDs.

spectra upon irradiation. In both cases, the position of the shoulder in the reflectance spectra shifts to higher wavelengths upon irradiation. No diffuse reflectance spectra upon irradiation are presented for **1** due to the sample likely being a mixture of polymoprhs.

It has also been found that compounds with more 'space' in the crystal lattice are more likely to show photochromism as it is easier for the compound to undergo the necessary cis to trans isomerism. The presence of bulky tert-butyl groups can help create space and potentially enable photochromism to be displayed (Johmoto et al., 2012). However, only three of the structures reported herein (1A, 2 and 3) display photochromism. The packing and intermolecular interactions in 1A, 2 and 3 are relatively similar, as discussed earlier; however, 1B has significantly different packing and intermolecular interactions. It seems reasonable to suggest that these differences may well link to the different photochromic behaviour of the compounds. A link has been proposed between the interplanar or dihedral angle between the two aromatic rings and the likelihood of this type of compound showing photochromism with the observation that photochromic compounds tend to have a larger dihedral angle, typically dihedral angles below 20° are associated with nonphotochromic compounds, those above  $30^{\circ}$  are more likely to be photochromic and those between 20 and 30° can display photochromism (Johmoto et al., 2012). The structures reported here fit in with these general observations and those with the larger dihedral angles between the two aromatic rings are the ones displaying photochromism (see Table 4). It is possible that in order to form the aromatic  $C-H\cdots O$  interaction present in **1A**, **2** and **3**, a larger dihedral angle is required between the two rings, while the  $C-H\cdots O$  interactions in **1B** do not require this twisting, hence photochromism may be favoured for **1A**, **2** and **3** with the larger dihedral angle but is not seen for **1B** due to the smaller dihedral angle.

#### 4. Conclusions

The structures of three related Schiff base compounds are reported; for one, (E)-2,4-di-tert-butyl-6-{[(4-fluorophenyl)imino]methyl]phenol, 1, two polymorphic structures are reported. The basic structures of the compounds are very similar, all existing in the enol form and showing an intermolecular  $O{-}H{\cdots}N$  hydrogen bond and short  $C{-}H{\cdots}O$ contacts. However, the packing of the two polymorphs of 1 were found to be significantly different. Compounds 2 and 3 were found to be isostructural with each other and displayed a temperature-induced phase transition upon cooling, this was attributed to the disorder in one of the tert-butyl groups resolving at low temperature, which was linked to a colour change from yellow to red around the phase transition. Three of the structures, i.e. 1A, 2 and 3, were found to show photochromism upon irradiation with UV LEDs, while 1B did not; this was linked with differences in the packing and to the

interplanar or dihedral angle between the two aromatic rings being greater than  $25^{\circ}$  for the photochromic structures and being less than  $25^{\circ}$  for **1B**. The presence of photochromism was identified both by eye and Raman spectroscopy.

#### Acknowledgements

HEM is grateful to the EPSRC and Durham University for funding, and Professor Jonathan Steed, Durham University, for useful discussions.

#### References

- Agilent (2012). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, Oxfordshire, England.
- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.
- Arod, F., Pattison, P., Schenk, K. J. & Chapuis, G. (2007). Cryst. Growth Des. 7, 1679–1685.
- Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). *Acta Cryst.* A**71**, 59–75.
- Cohen, M. D. & Schmidt, G. M. J. (1962). J. Phys. Chem. 66, 2442–2446.
- Cohen, M. D., Schmidt, G. M. J. & Flavian, S. (1964). J. Chem. Soc. pp. 2041–2051.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Fujiwara, T., Harada, J. & Ogawa, K. (2004). J. Phys. Chem. B, 108, 4035–4038.
- Hadjoudis, E. & Mavridis, I. M. (2004). Chem. Soc. Rev. 33, 579-588.
- Harada, J., Fujiwara, T. & Ogawa, K. (2007). J. Am. Chem. Soc. 129, 16216–16221.
- Harada, J., Nakajima, R. & Ogawa, K. (2008). J. Am. Chem. Soc. 130, 7085–7091.

- Harada, J., Uekusa, H. & Ohashi, Y. (1999). J. Am. Chem. Soc. 121, 5809–5810.
- Johmoto, K., Ishida, T., Sekine, A., Uekusa, H. & Ohashi, Y. (2012). Acta Cryst. B68, 297–304.
- Koyama, H., Kawato, T., Kanatomi, H., Matsushita, H. & Yonetani, K. (1994). J. Chem. Soc. Chem. Commun. pp. 579–580.
- Li, J., Zhao, R. & Ma, C. (2007). Acta Cryst. E63, 04923.
- Ogawa, K., Harada, J., Tamura, I. & Noda, Y. (2000). *Chem. Lett.* **29**, 528–529.
- Ogawa, K., Kasahara, Y., Ohtani, Y. & Harada, J. (1998). J. Am. Chem. Soc. 120, 7107–7108.
- Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.
- Pistolis, G., Gegiou, D. & Hadjoudis, E. (1996). J. Photochem. Photobiol. Chem. 93, 179–184.
- Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.
- Robert, F., Naik, A. D., Tinant, B., Robiette, R. & Garcia, Y. (2009). *Chem. Eur. J.* **15**, 4327–4342.
- Sahu, M., Manna, A. K., Rout, K., Mondal, J. & Patra, G. K. (2020). *Inorg. Chim. Acta*, **508**, 119633.
- Seeboth, A., Lötzsch, D., Ruhmann, R. & Muehling, O. (2014). *Chem. Rev.* **114**, 3037–3068.
- Senier, A. & Shepheard, F. G. (1909). J. Chem. Soc. Trans. 95, 1943– 1955.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Sliwa, M., Létard, S., Malfant, I., Nierlich, M., Lacroix, P. G., Asahi, T., Masuhara, H., Yu, P. & Nakatani, K. (2005). *Chem. Mater.* 17, 4727– 4735.
- Suzuki, Y., Kato, T., Huang, H. Y., Yoshikawa, I., Mutai, T. & Houjou, H. (2019). J. Photochem. Photobiol. Chem. 385, 112096.
- Wang, H., Ji, X. F., Page, Z. A. & Sessler, J. L. (2020). Mater. Chem. Front. 4, 1024–1039.
- Wu, L., Chen, R. J., Luo, Z. W. & Wang, P. (2020). J. Mater. Sci. 55, 12826–12835.

Acta Cryst. (2021). C77, 659-667 [https://doi.org/10.1107/S2053229621008780]

Selected solid-state behaviour of three di-*tert*-butyl-substituted *N*salicylideneaniline derivatives: temperature-induced phase transitions and chromic behaviour

### Helen E. Mason, Judith A. K. Howard and Hazel A. Sparkes

#### **Computing details**

Data collection: *CrysAlis PRO* (Oxford Diffraction, 2010) for 1A\_100K, 1B\_120K, 2\_300K, 2\_250K, 2\_200K; *CrysAlis PRO* (Agilent, 2011) for 2\_150K; *CrysAlis PRO* (Rigaku OD, 2018) for 2\_120K, 2\_100K; *CrysAlis PRO* (Agilent, 2013) for 3\_300K, 3\_250K, 3\_200K, 3\_150K, 3\_120K; *CrysAlis PRO* (Agilent, 2012) for 3\_100K. Cell refinement: *CrysAlis PRO* (Oxford Diffraction, 2010) for 1A\_100K, 1B\_120K, 2\_300K, 2\_250K, 2\_200K; *CrysAlis PRO* (Agilent, 2011) for 2\_150K; *CrysAlis PRO* (Rigaku OD, 2018) for 2\_120K, 2\_100K; *CrysAlis PRO* (Agilent, 2013) for 3\_300K, 3\_250K, 3\_200K, 3\_150K, 3\_120K; *CrysAlis PRO* (Agilent, 2012) for 3\_100K. Data reduction: *CrysAlis PRO* (Oxford Diffraction, 2010) for 1A\_100K, 1B\_120K, 2\_250K, 2\_200K; *CrysAlis PRO* (Agilent, 2011) for 2\_150K; *CrysAlis PRO* (Rigaku OD, 2018) for 2\_120K, 2\_250K, 2\_200K; *CrysAlis PRO* (Agilent, 2011) for 2\_150K; *CrysAlis PRO* (Rigaku OD, 2018) for 2\_120K, 2\_100K; *CrysAlis PRO* (Agilent, 2011) for 2\_150K; *CrysAlis PRO* (Rigaku OD, 2018) for 2\_120K, 2\_100K; *CrysAlis PRO* (Agilent, 2011) for 2\_150K; *CrysAlis PRO* (Rigaku OD, 2018) for 2\_120K, 2\_200K; *CrysAlis PRO* (Agilent, 2011) for 2\_150K; *CrysAlis PRO* (Rigaku OD, 2018) for 2\_120K, 2\_100K; *CrysAlis PRO* (Agilent, 2013) for 3\_300K, 3\_250K, 3\_200K, 3\_150K, 3\_120K; *CrysAlis PRO* (Rigaku OD, 2018) for 2\_120K, 2\_100K; *CrysAlis PRO* (Agilent, 2013) for 3\_300K, 3\_250K, 3\_200K, 3\_150K, 3\_120K; *CrysAlis PRO* (Rigaku OD, 2018) for 2\_120K, 2\_100K; *CrysAlis PRO* (Agilent, 2013) for 3\_300K, 3\_250K, 3\_100K, 3\_200K, 3\_150K, 3\_120K; olex2.solve 1.3 (Bourhis *et al.*, 2015) for 3\_300K, 3\_250K, 3\_100K. For all structures, program(s) used to refine structure: *SHELXL2018* (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov *et al.*, 2009); software used to prepare material for publication: OLEX2 (Dolomanov *et al.*, 2009).

(*E*)-2,4-Di-*tert*-butyl-6-{[(4-fluorophenyl)imino]methyl}phenol (1A\_100K)

| Crystal data                                          |                                                                     |
|-------------------------------------------------------|---------------------------------------------------------------------|
| C <sub>21</sub> H <sub>26</sub> FNO                   | Z = 2                                                               |
| $M_r = 327.43$                                        | F(000) = 352                                                        |
| Triclinic, $P\overline{1}$                            | $D_{\rm x} = 1.173 {\rm Mg} {\rm m}^{-3}$                           |
| a = 6.5324 (3) Å                                      | Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å                       |
| b = 10.6141 (8) Å                                     | Cell parameters from 2473 reflections                               |
| c = 14.1675 (9) Å                                     | $\theta = 2.6 - 32.5^{\circ}$                                       |
| $\alpha = 80.364 \ (5)^{\circ}$                       | $\mu=0.08~\mathrm{mm}^{-1}$                                         |
| $\beta = 81.094 \ (4)^{\circ}$                        | T = 100  K                                                          |
| $\gamma = 74.507 \ (5)^{\circ}$                       | Block, yellow                                                       |
| $V = 926.97 (10) Å^3$                                 | $0.38 \times 0.36 \times 0.26 \text{ mm}$                           |
| Data collection                                       |                                                                     |
| Oxford Diffraction Xcalibur Sapphire3 Gemini<br>ultra | Detector resolution: 16.1511 pixels mm <sup>-1</sup> $\omega$ scans |
| diffractometer                                        | Absorption correction: multi-scan                                   |
| Radiation source: Enhance (Mo) X-ray Source           | (CrysAlis PRO; Oxford Diffraction, 2010)                            |
| Graphite monochromator                                | $T_{\min} = 0.870, \ T_{\max} = 1.000$                              |
|                                                       |                                                                     |

| 7178 measured reflections              | $\theta_{\rm max} = 26.4^\circ, \ \theta_{\rm min} = 2.6^\circ$ |
|----------------------------------------|-----------------------------------------------------------------|
| 3792 independent reflections           | $h = -7 \rightarrow 8$                                          |
| 2765 reflections with $I > 2\sigma(I)$ | $k = -13 \rightarrow 13$                                        |
| $R_{\rm int} = 0.038$                  | $l = -15 \rightarrow 17$                                        |
| Refinement                             |                                                                 |
| Refinement on $F^2$                    | Primary atom site location: structure-invariant                 |
| Least-squares matrix: full             | direct methods                                                  |
| $R[F^2 > 2\sigma(F^2)] = 0.054$        | Hydrogen site location: mixed                                   |
| $wR(F^2) = 0.110$                      | H atoms treated by a mixture of independent                     |
| S = 1.04                               | and constrained refinement                                      |
| 3792 reflections                       | $w = 1/[\sigma^2(F_o^2) + (0.0375P)^2 + 0.0587P]$               |
| 227 parameters                         | where $P = (F_o^2 + 2F_c^2)/3$                                  |
| 0 restraints                           | $(\Delta/\sigma)_{\rm max} < 0.001$                             |
|                                        | $\Delta  ho_{ m max} = 0.28 \ { m e} \ { m \AA}^{-3}$           |
|                                        | $\Delta  ho_{ m min} = -0.20 \  m e \  m \AA^{-3}$              |

#### Special details

**Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

|      | x             | У            | Ζ            | $U_{\rm iso}$ */ $U_{\rm eq}$ |
|------|---------------|--------------|--------------|-------------------------------|
| F1   | -0.43318 (16) | 0.71941 (11) | -0.13456 (8) | 0.0341 (3)                    |
| N1   | 0.1460 (2)    | 0.73505 (14) | 0.10716 (10) | 0.0193 (3)                    |
| C6   | 0.4004 (2)    | 0.63436 (17) | 0.22077 (12) | 0.0166 (4)                    |
| C5   | 0.5210(2)     | 0.51460 (17) | 0.26395 (12) | 0.0177 (4)                    |
| Н5   | 0.496704      | 0.434037     | 0.253266     | 0.021*                        |
| C2   | 0.5864 (2)    | 0.75621 (17) | 0.29626 (12) | 0.0170 (4)                    |
| C3   | 0.7022 (2)    | 0.63411 (17) | 0.33586 (12) | 0.0169 (4)                    |
| Н3   | 0.807813      | 0.633280     | 0.375301     | 0.020*                        |
| C4   | 0.6751 (2)    | 0.51175 (16) | 0.32204 (12) | 0.0157 (4)                    |
| C1   | 0.4334 (2)    | 0.75440 (17) | 0.23617 (12) | 0.0173 (4)                    |
| C8   | -0.0021 (2)   | 0.72584 (17) | 0.04634 (12) | 0.0189 (4)                    |
| C7   | 0.2494 (2)    | 0.63086 (17) | 0.15637 (12) | 0.0178 (4)                    |
| H7   | 0.226130      | 0.548061     | 0.150415     | 0.021*                        |
| C18  | 0.8113 (3)    | 0.38311 (17) | 0.37083 (13) | 0.0195 (4)                    |
| C9   | -0.1292 (3)   | 0.63623 (18) | 0.06969 (13) | 0.0218 (4)                    |
| Н9   | -0.117031     | 0.576535     | 0.127715     | 0.026*                        |
| C16  | 0.6915 (3)    | 0.96656 (17) | 0.22125 (13) | 0.0220 (4)                    |
| H16A | 0.582832      | 0.984284     | 0.176938     | 0.033*                        |
| H16B | 0.827729      | 0.916033     | 0.191653     | 0.033*                        |
| H16C | 0.709342      | 1.050248     | 0.234961     | 0.033*                        |
| C10  | -0.2737 (3)   | 0.63413 (19) | 0.00811 (13) | 0.0235 (4)                    |
| H10  | -0.360534     | 0.572898     | 0.023102     | 0.028*                        |
| C17  | 0.7940 (3)    | 0.86411 (18) | 0.38272 (14) | 0.0263 (4)                    |
| H17A | 0.929421      | 0.812771     | 0.353077     | 0.039*                        |
| H17B | 0.751724      | 0.815744     | 0.444701     | 0.039*                        |

| H17C | 0.811646     | 0.949405     | 0.393113      | 0.039*     |
|------|--------------|--------------|---------------|------------|
| C14  | 0.6201 (3)   | 0.88670 (17) | 0.31578 (12)  | 0.0188 (4) |
| C13  | -0.0239 (3)  | 0.81493 (18) | -0.03769 (13) | 0.0251 (4) |
| H13  | 0.060152     | 0.877703     | -0.052792     | 0.030*     |
| C11  | -0.2889 (3)  | 0.72204 (18) | -0.07475 (13) | 0.0238 (4) |
| C12  | -0.1674 (3)  | 0.81263 (19) | -0.09945 (14) | 0.0289 (5) |
| H12  | -0.181486    | 0.872258     | -0.157455     | 0.035*     |
| C20  | 1.0496 (3)   | 0.37493 (18) | 0.33704 (13)  | 0.0242 (4) |
| H20A | 1.087653     | 0.450900     | 0.354014      | 0.036*     |
| H20B | 1.075966     | 0.375376     | 0.266994      | 0.036*     |
| H20C | 1.136794     | 0.293325     | 0.368600      | 0.036*     |
| C15  | 0.4108 (3)   | 0.96707 (19) | 0.36626 (14)  | 0.0268 (4) |
| H15A | 0.370138     | 0.916171     | 0.427347      | 0.040*     |
| H15B | 0.296854     | 0.985761     | 0.324589      | 0.040*     |
| H15C | 0.432778     | 1.050248     | 0.378886      | 0.040*     |
| C21  | 0.7722 (3)   | 0.38104 (19) | 0.48069 (13)  | 0.0273 (5) |
| H21A | 0.621169     | 0.385042     | 0.502833      | 0.041*     |
| H21B | 0.809360     | 0.457200     | 0.497878      | 0.041*     |
| H21C | 0.861308     | 0.299554     | 0.511497      | 0.041*     |
| C19  | 0.7593 (3)   | 0.26188 (18) | 0.34583 (16)  | 0.0322 (5) |
| H19A | 0.783536     | 0.262049     | 0.275802      | 0.048*     |
| H19B | 0.609189     | 0.263528     | 0.368646      | 0.048*     |
| H19C | 0.851584     | 0.182059     | 0.376970      | 0.048*     |
| 01   | 0.31911 (19) | 0.87039 (12) | 0.19288 (9)   | 0.0222 (3) |
| H1   | 0.230 (4)    | 0.850 (2)    | 0.1544 (18)   | 0.067 (8)* |
|      |              |              |               |            |

Atomic displacement parameters  $(\mathring{A}^2)$ 

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$    | $U^{13}$    | $U^{23}$    |
|-----|-------------|-------------|-------------|-------------|-------------|-------------|
| F1  | 0.0347 (6)  | 0.0368 (7)  | 0.0347 (7)  | -0.0015 (5) | -0.0196 (5) | -0.0129 (6) |
| N1  | 0.0183 (7)  | 0.0203 (8)  | 0.0199 (8)  | -0.0047 (6) | -0.0044 (6) | -0.0024 (7) |
| C6  | 0.0153 (8)  | 0.0192 (9)  | 0.0160 (9)  | -0.0062 (7) | -0.0007 (6) | -0.0021 (8) |
| C5  | 0.0200 (9)  | 0.0141 (9)  | 0.0199 (10) | -0.0069 (7) | -0.0002 (7) | -0.0024 (8) |
| C2  | 0.0184 (9)  | 0.0160 (9)  | 0.0167 (9)  | -0.0061 (7) | 0.0008 (7)  | -0.0021 (8) |
| C3  | 0.0163 (8)  | 0.0197 (9)  | 0.0158 (9)  | -0.0062 (7) | -0.0023 (6) | -0.0025 (8) |
| C4  | 0.0168 (8)  | 0.0152 (9)  | 0.0150 (9)  | -0.0058 (7) | 0.0005 (6)  | -0.0006 (7) |
| C1  | 0.0151 (8)  | 0.0161 (9)  | 0.0188 (10) | -0.0018 (7) | -0.0017 (7) | -0.0007 (8) |
| C8  | 0.0171 (9)  | 0.0199 (9)  | 0.0189 (10) | -0.0008(7)  | -0.0027 (7) | -0.0064 (8) |
| C7  | 0.0174 (9)  | 0.0171 (9)  | 0.0204 (10) | -0.0073 (7) | 0.0017 (7)  | -0.0056 (8) |
| C18 | 0.0198 (9)  | 0.0158 (9)  | 0.0218 (10) | -0.0042 (7) | -0.0029 (7) | 0.0001 (8)  |
| C9  | 0.0185 (9)  | 0.0287 (11) | 0.0170 (10) | -0.0036 (8) | -0.0017 (7) | -0.0033 (8) |
| C16 | 0.0230 (9)  | 0.0160 (9)  | 0.0281 (11) | -0.0067 (7) | -0.0039 (7) | -0.0022 (8) |
| C10 | 0.0184 (9)  | 0.0297 (11) | 0.0247 (10) | -0.0072 (8) | 0.0014 (7)  | -0.0113 (9) |
| C17 | 0.0343 (11) | 0.0176 (10) | 0.0314 (11) | -0.0076 (8) | -0.0126 (8) | -0.0057 (9) |
| C14 | 0.0235 (9)  | 0.0138 (9)  | 0.0210 (10) | -0.0053 (7) | -0.0062 (7) | -0.0033 (8) |
| C13 | 0.0300 (10) | 0.0189 (10) | 0.0275 (11) | -0.0059 (8) | -0.0091 (8) | -0.0012 (9) |
| C11 | 0.0194 (9)  | 0.0271 (11) | 0.0248 (11) | 0.0036 (8)  | -0.0099 (7) | -0.0119 (9) |
| C12 | 0.0345 (11) | 0.0232 (11) | 0.0287 (11) | -0.0021 (9) | -0.0141 (8) | -0.0008 (9) |
|     |             |             |             |             |             |             |

| C20 | 0.0227 (9)  | 0.0191 (10) | 0.0289 (11) | -0.0033 (7) | -0.0020 (7) | -0.0016 (8) |
|-----|-------------|-------------|-------------|-------------|-------------|-------------|
| C15 | 0.0326 (10) | 0.0214 (10) | 0.0276 (11) | -0.0054 (8) | -0.0037 (8) | -0.0087 (9) |
| C21 | 0.0269 (10) | 0.0256 (11) | 0.0220 (11) | 0.0008 (8)  | -0.0026 (7) | 0.0053 (9)  |
| C19 | 0.0347 (11) | 0.0157 (10) | 0.0480 (14) | -0.0057 (8) | -0.0176 (9) | 0.0022 (10) |
| 01  | 0.0244 (7)  | 0.0138 (6)  | 0.0289 (8)  | -0.0028 (5) | -0.0114 (5) | -0.0003 (6) |

Geometric parameters (Å, °)

| F1—C11    | 1.370 (2)   | C16—C14       | 1.539 (2)   |
|-----------|-------------|---------------|-------------|
| N1—C8     | 1.423 (2)   | C10—H10       | 0.9500      |
| N1—C7     | 1.286 (2)   | C10-C11       | 1.371 (3)   |
| C6—C5     | 1.402 (2)   | C17—H17A      | 0.9800      |
| C6—C1     | 1.404 (2)   | C17—H17B      | 0.9800      |
| C6—C7     | 1.455 (2)   | C17—H17C      | 0.9800      |
| С5—Н5     | 0.9500      | C17—C14       | 1.536 (2)   |
| C5—C4     | 1.387 (2)   | C14—C15       | 1.545 (2)   |
| C2—C3     | 1.390 (2)   | C13—H13       | 0.9500      |
| C2—C1     | 1.415 (2)   | C13—C12       | 1.385 (2)   |
| C2—C14    | 1.534 (2)   | C11—C12       | 1.373 (3)   |
| С3—Н3     | 0.9500      | C12—H12       | 0.9500      |
| C3—C4     | 1.406 (2)   | C20—H20A      | 0.9800      |
| C4—C18    | 1.536 (2)   | C20—H20B      | 0.9800      |
| C1—O1     | 1.3592 (19) | C20—H20C      | 0.9800      |
| C8—C9     | 1.391 (3)   | C15—H15A      | 0.9800      |
| C8—C13    | 1.391 (2)   | C15—H15B      | 0.9800      |
| С7—Н7     | 0.9500      | C15—H15C      | 0.9800      |
| C18—C20   | 1.540 (2)   | C21—H21A      | 0.9800      |
| C18—C21   | 1.535 (2)   | C21—H21B      | 0.9800      |
| C18—C19   | 1.523 (3)   | C21—H21C      | 0.9800      |
| С9—Н9     | 0.9500      | C19—H19A      | 0.9800      |
| C9—C10    | 1.388 (2)   | C19—H19B      | 0.9800      |
| C16—H16A  | 0.9800      | C19—H19C      | 0.9800      |
| C16—H16B  | 0.9800      | O1—H1         | 0.94 (3)    |
| C16—H16C  | 0.9800      |               |             |
| C7—N1—C8  | 120.33 (16) | H17B—C17—H17C | 109.5       |
| C5—C6—C1  | 120.21 (15) | C14—C17—H17A  | 109.5       |
| C5—C6—C7  | 118.57 (16) | C14—C17—H17B  | 109.5       |
| C1—C6—C7  | 121.15 (15) | C14—C17—H17C  | 109.5       |
| С6—С5—Н5  | 119.4       | C2—C14—C16    | 110.64 (14) |
| C4—C5—C6  | 121.10 (17) | C2C14C17      | 111.82 (14) |
| C4—C5—H5  | 119.4       | C2-C14-C15    | 109.58 (14) |
| C3—C2—C1  | 116.26 (16) | C16—C14—C15   | 110.44 (14) |
| C3—C2—C14 | 122.59 (15) | C17—C14—C16   | 107.11 (15) |
| C1—C2—C14 | 121.15 (14) | C17—C14—C15   | 107.17 (15) |
| С2—С3—Н3  | 117.5       | C8—C13—H13    | 119.8       |
| C2—C3—C4  | 125.01 (16) | C12—C13—C8    | 120.38 (18) |
| С4—С3—Н3  | 117.5       | C12—C13—H13   | 119.8       |

| C5—C4—C3                         | 116.80 (15)         | F1-C11-C10                                           | 118.13 (17)  |
|----------------------------------|---------------------|------------------------------------------------------|--------------|
| C5—C4—C18                        | 123.02 (16)         | F1—C11—C12                                           | 119.07 (16)  |
| C3—C4—C18                        | 120.17 (15)         | C10—C11—C12                                          | 122.80 (17)  |
| C6—C1—C2                         | 120.59 (14)         | C13—C12—H12                                          | 120.8        |
| O1—C1—C6                         | 120.16 (15)         | C11—C12—C13                                          | 118.35 (17)  |
| O1—C1—C2                         | 119.24 (16)         | C11—C12—H12                                          | 120.8        |
| C9—C8—N1                         | 122.77 (15)         | C18—C20—H20A                                         | 109.5        |
| C9—C8—C13                        | 119.78 (16)         | C18—C20—H20B                                         | 109.5        |
| C13—C8—N1                        | 117.39 (16)         | C18—C20—H20C                                         | 109.5        |
| N1—C7—C6                         | 122.81 (17)         | H20A—C20—H20B                                        | 109.5        |
| N1—C7—H7                         | 118.6               | H20A—C20—H20C                                        | 109.5        |
| С6—С7—Н7                         | 118.6               | H20B—C20—H20C                                        | 109.5        |
| C4—C18—C20                       | 109.36 (14)         | С14—С15—Н15А                                         | 109.5        |
| $C_{21} - C_{18} - C_{4}$        | 109.72 (14)         | C14—C15—H15B                                         | 109.5        |
| $C_{21}$ $C_{18}$ $C_{20}$       | 109.01 (14)         | C14—C15—H15C                                         | 109.5        |
| C19 - C18 - C4                   | 111 96 (14)         | H15A—C15—H15B                                        | 109.5        |
| C19 - C18 - C20                  | 108.05 (15)         | H15A - C15 - H15C                                    | 109.5        |
| C19 - C18 - C21                  | 108.67(15)          | H15B-C15-H15C                                        | 109.5        |
| C8-C9-H9                         | 120.0               | C18 - C21 - H21A                                     | 109.5        |
| C10-C9-C8                        | 119.91 (17)         | C18 - C21 - H21R                                     | 109.5        |
| $C_{10} - C_{9} - H_{9}$         | 120.0               | C18 - C21 - H21C                                     | 109.5        |
| $H_{164} - C_{16} - H_{16B}$     | 109.5               | $H_{21} = C_{21} = H_{21} B$                         | 109.5        |
| $H_{16A} - C_{16} - H_{16C}$     | 109.5               | $H_{21}A = C_{21} = H_{21}C$                         | 109.5        |
| HIGH CIG HIGC                    | 109.5               | $H_{21R} = C_{21} = H_{21C}$                         | 109.5        |
| $C_{14} = C_{16} = H_{164}$      | 109.5               | 11210 - 021 - 11210                                  | 109.5        |
| C14 = C16 = H16R                 | 109.5               | $C_{10}$ $C_{10}$ $H_{10R}$                          | 109.5        |
| $C_{14} = C_{16} = H_{16}C_{16}$ | 109.5               | $C_{10} = C_{10} = H_{10}C_{10}$                     | 109.5        |
| $C_{14}$ $C_{10}$ $H_{10}$       | 109.5               | нал сто нтор                                         | 109.5        |
| $C_{j} = C_{10} = 110$           | 120.0<br>119.76(19) | H10A C10 H10C                                        | 109.5        |
| $C_{11} = C_{10} = C_{9}$        | 110.70 (10)         | HI9A - C19 - H19C                                    | 109.5        |
|                                  | 120.0               | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 109.5        |
| HI/A - CI/-HI/B                  | 109.5               | CI-OI-HI                                             | 107.1 (15)   |
| HI/A—CI/—HI/C                    | 109.5               |                                                      |              |
| F1—C11—C12—C13                   | 179.32 (15)         | C1—C6—C7—N1                                          | 3.2 (3)      |
| N1-C8-C9-C10                     | 178.67 (15)         | C1—C2—C3—C4                                          | -1.3 (2)     |
| N1-C8-C13-C12                    | -179.09 (16)        | C1—C2—C14—C16                                        | -60.64 (19)  |
| C6—C5—C4—C3                      | 0.6 (2)             | C1—C2—C14—C17                                        | -179.95 (15) |
| C6—C5—C4—C18                     | -179.95 (15)        | C1—C2—C14—C15                                        | 61.4 (2)     |
| C5-C6-C1-C2                      | -0.8 (2)            | C8—N1—C7—C6                                          | -179.10 (15) |
| C5-C6-C1-O1                      | 178.83 (14)         | C8—C9—C10—C11                                        | -0.5 (2)     |
| C5-C6-C7-N1                      | -173.76 (15)        | C8—C13—C12—C11                                       | 1.0 (3)      |
| C5-C4-C18-C20                    | 120.93 (18)         | C7—N1—C8—C9                                          | 35.5 (2)     |
| C5-C4-C18-C21                    | -119.54 (18)        | C7—N1—C8—C13                                         | -147.21 (16) |
| C5-C4-C18-C19                    | 1.2 (2)             | C7—C6—C5—C4                                          | 176.67 (15)  |
| C2—C3—C4—C5                      | 0.3 (3)             | C7—C6—C1—C2                                          | -177.70 (15) |
| C2—C3—C4—C18                     | -179.23 (15)        | C7—C6—C1—O1                                          | 1.9 (2)      |
| C3—C2—C1—C6                      | 1.5 (2)             | C9—C8—C13—C12                                        | -1.7 (3)     |
| C3—C2—C1—O1                      | -178.09 (15)        | C9—C10—C11—F1                                        | -179.59 (15) |
|                                  |                     |                                                      |              |

| $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 119.41 (17)<br>0.1 (2)<br>-118.58 (17)<br>-59.6 (2)<br>59.9 (2)<br>-179.34 (15)<br>-0.3 (2) | C9—C10—C11—C12<br>C10—C11—C12—C13<br>C14—C2—C3—C4<br>C14—C2—C1—C6<br>C14—C2—C1—O1<br>C13—C8—C9—C10 | -0.2 (3)<br>-0.1 (3)<br>178.65 (15)<br>-178.43 (15)<br>2.0 (2)<br>1.4 (2) |
|------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
|------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|

#### Hydrogen-bond geometry (Å, °)

| D—H···A  | D—H      | H····A   | D····A    | D—H···A |
|----------|----------|----------|-----------|---------|
| 01—H1…N1 | 0.94 (3) | 1.72 (3) | 2.587 (2) | 151 (2) |

(E)-2,4-Di-tert-butyl-6-{[(4-fluorophenyl)imino]methyl}phenol (1B\_120K)

#### Crystal data

#### Data collection

Oxford Diffraction Xcalibur Sapphire3 Gemini ultra diffractometer Radiation source: Enhance (Mo) X-ray Source Graphite monochromator Detector resolution: 16.1511 pixels mm<sup>-1</sup> ω scans Absorption correction: analytical (CrysAlis PRO; Oxford Diffraction, 2010)

#### Refinement

Refinement on  $F^2$ Least-squares matrix: full  $R[F^2 > 2\sigma(F^2)] = 0.034$  $wR(F^2) = 0.077$ S = 1.053712 reflections 226 parameters 1 restraint  $D_x = 1.194 \text{ Mg m}^{-3}$ Mo  $K\alpha$  radiation,  $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9836 reflections  $\theta = 2.6-30.7^{\circ}$  $\mu = 0.08 \text{ mm}^{-1}$ T = 120 KBlock, yellow  $0.46 \times 0.43 \times 0.10 \text{ mm}$ 

 $T_{\min} = 0.973, T_{\max} = 0.992$ 25510 measured reflections 3712 independent reflections 3517 reflections with  $I > 2\sigma(I)$   $R_{\text{int}} = 0.049$   $\theta_{\text{max}} = 26.4^{\circ}, \theta_{\text{min}} = 2.6^{\circ}$   $h = -15 \rightarrow 15$   $k = -11 \rightarrow 11$  $l = -20 \rightarrow 20$ 

Primary atom site location: structure-invariant direct methods Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement  $w = 1/[\sigma^2(F_o^2) + (0.0343P)^2 + 0.3311P]$ where  $P = (F_o^2 + 2F_c^2)/3$  $(\Delta/\sigma)_{max} < 0.001$  $\Delta\rho_{max} = 0.16 \text{ e } \text{Å}^{-3}$  $\Delta\rho_{min} = -0.16 \text{ e } \text{Å}^{-3}$ 

#### Special details

**Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

|      | x            | У            | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ |  |
|------|--------------|--------------|--------------|-----------------------------|--|
| 01   | 0.83391 (12) | 0.36730 (17) | 0.43826 (9)  | 0.0179 (3)                  |  |
| H1   | 0.882 (2)    | 0.444 (3)    | 0.4185 (15)  | 0.021*                      |  |
| F1   | 1.24654 (12) | 0.88292 (16) | 0.22645 (8)  | 0.0315 (4)                  |  |
| N1   | 0.93534 (14) | 0.61161 (19) | 0.41684 (10) | 0.0158 (4)                  |  |
| C2   | 0.70056 (17) | 0.3514 (2)   | 0.54254 (12) | 0.0145 (4)                  |  |
| C5   | 0.75575 (17) | 0.6436 (2)   | 0.59100 (12) | 0.0155 (4)                  |  |
| Н5   | 0.774023     | 0.742442     | 0.606537     | 0.019*                      |  |
| C3   | 0.65163 (17) | 0.4218 (2)   | 0.60789 (13) | 0.0153 (4)                  |  |
| Н3   | 0.596886     | 0.368751     | 0.636573     | 0.018*                      |  |
| C4   | 0.67783 (16) | 0.5664 (2)   | 0.63433 (12) | 0.0146 (4)                  |  |
| C1   | 0.78248 (17) | 0.4315 (2)   | 0.50160 (12) | 0.0142 (4)                  |  |
| C8   | 1.01342 (17) | 0.6906 (2)   | 0.37055 (13) | 0.0155 (4)                  |  |
| C18  | 0.61916 (18) | 0.6314 (2)   | 0.70838 (12) | 0.0175 (5)                  |  |
| C6   | 0.80852 (17) | 0.5789 (2)   | 0.52448 (13) | 0.0152 (4)                  |  |
| C7   | 0.88583 (17) | 0.6668 (2)   | 0.47806 (12) | 0.0163 (5)                  |  |
| H7   | 0.899927     | 0.767122     | 0.493360     | 0.020*                      |  |
| C12  | 1.11018 (18) | 0.7010(2)    | 0.24320 (13) | 0.0197 (5)                  |  |
| H12  | 1.123058     | 0.664221     | 0.190304     | 0.024*                      |  |
| C9   | 1.07431 (18) | 0.8109 (3)   | 0.39872 (14) | 0.0192 (5)                  |  |
| H9   | 1.062722     | 0.847815     | 0.451764     | 0.023*                      |  |
| C17  | 0.5735 (2)   | 0.1317 (3)   | 0.56633 (14) | 0.0220 (5)                  |  |
| H17A | 0.598115     | 0.126224     | 0.622515     | 0.033*                      |  |
| H17B | 0.554491     | 0.031596     | 0.547268     | 0.033*                      |  |
| H17C | 0.509338     | 0.196592     | 0.562816     | 0.033*                      |  |
| C10  | 1.15182 (19) | 0.8770 (3)   | 0.34937 (13) | 0.0207 (5)                  |  |
| H10  | 1.192878     | 0.960147     | 0.367779     | 0.025*                      |  |
| C14  | 0.66538 (17) | 0.1957 (2)   | 0.51368 (13) | 0.0170 (5)                  |  |
| C11  | 1.16826 (18) | 0.8199 (3)   | 0.27322 (14) | 0.0201 (5)                  |  |
| C13  | 1.03219 (18) | 0.6367 (2)   | 0.29277 (13) | 0.0182 (5)                  |  |
| H13  | 0.990796     | 0.554569     | 0.273465     | 0.022*                      |  |
| C19  | 0.6631 (2)   | 0.7856 (2)   | 0.73042 (14) | 0.0236 (5)                  |  |
| H19A | 0.741662     | 0.778955     | 0.740718     | 0.035*                      |  |
| H19B | 0.625960     | 0.821884     | 0.778961     | 0.035*                      |  |
| H19C | 0.649793     | 0.854751     | 0.685706     | 0.035*                      |  |
| C21  | 0.4968 (2)   | 0.6469 (3)   | 0.68953 (16) | 0.0294 (6)                  |  |
| H21A | 0.486801     | 0.716706     | 0.644634     | 0.044*                      |  |
| H21B | 0.458545     | 0.684626     | 0.737292     | 0.044*                      |  |
| H21C | 0.467005     | 0.549245     | 0.674676     | 0.044*                      |  |
| C15  | 0.6215 (2)   | 0.2072 (3)   | 0.42655 (13) | 0.0228 (5)                  |  |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(\hat{A}^2)$ 

| H15A | 0.599473   | 0.108066   | 0.407705     | 0.034*     |  |
|------|------------|------------|--------------|------------|--|
| H15B | 0.678804   | 0.246519   | 0.391215     | 0.034*     |  |
| H15C | 0.558419   | 0.274304   | 0.425441     | 0.034*     |  |
| C20  | 0.6349 (2) | 0.5281 (3) | 0.78124 (14) | 0.0245 (5) |  |
| H20A | 0.605052   | 0.429291   | 0.768805     | 0.037*     |  |
| H20B | 0.596803   | 0.569737   | 0.828083     | 0.037*     |  |
| H20C | 0.712876   | 0.519130   | 0.793363     | 0.037*     |  |
| C16  | 0.7618 (2) | 0.0853 (2) | 0.51666 (15) | 0.0245 (5) |  |
| H16A | 0.788001   | 0.076477   | 0.572321     | 0.037*     |  |
| H16B | 0.820968   | 0.121976   | 0.482192     | 0.037*     |  |
| H16C | 0.737691   | -0.012602  | 0.497374     | 0.037*     |  |
|      |            |            |              |            |  |

Atomic displacement parameters  $(\mathring{A}^2)$ 

|     | $U^{11}$    | U <sup>22</sup> | U <sup>33</sup> | $U^{12}$     | U <sup>13</sup> | <i>U</i> <sup>23</sup> |
|-----|-------------|-----------------|-----------------|--------------|-----------------|------------------------|
| 01  | 0.0187 (8)  | 0.0178 (8)      | 0.0172 (8)      | -0.0018 (6)  | 0.0048 (6)      | -0.0023 (6)            |
| F1  | 0.0307 (8)  | 0.0376 (8)      | 0.0262 (8)      | -0.0148(7)   | 0.0106 (6)      | 0.0024 (6)             |
| N1  | 0.0140 (9)  | 0.0167 (9)      | 0.0166 (9)      | 0.0000 (7)   | -0.0001 (7)     | 0.0014 (7)             |
| C2  | 0.0144 (10) | 0.0157 (10)     | 0.0135 (10)     | 0.0007 (8)   | -0.0029 (8)     | -0.0006 (8)            |
| C5  | 0.0175 (11) | 0.0136 (10)     | 0.0154 (11)     | 0.0000 (9)   | -0.0036 (8)     | -0.0016 (8)            |
| C3  | 0.0140 (10) | 0.0186 (11)     | 0.0133 (10)     | -0.0024 (8)  | 0.0009 (8)      | 0.0018 (8)             |
| C4  | 0.0136 (10) | 0.0168 (10)     | 0.0133 (10)     | 0.0012 (8)   | -0.0013 (8)     | -0.0013 (8)            |
| C1  | 0.0141 (10) | 0.0175 (10)     | 0.0109 (10)     | 0.0021 (8)   | -0.0019 (8)     | -0.0008 (8)            |
| C8  | 0.0123 (10) | 0.0172 (10)     | 0.0172 (11)     | 0.0013 (8)   | -0.0008(8)      | 0.0051 (9)             |
| C18 | 0.0177 (11) | 0.0205 (11)     | 0.0142 (11)     | 0.0013 (9)   | 0.0019 (9)      | -0.0039 (9)            |
| C6  | 0.0124 (10) | 0.0174 (10)     | 0.0158 (11)     | 0.0004 (8)   | -0.0021 (8)     | 0.0014 (8)             |
| C7  | 0.0166 (11) | 0.0155 (10)     | 0.0168 (11)     | -0.0013 (8)  | -0.0026 (9)     | 0.0005 (8)             |
| C12 | 0.0238 (12) | 0.0210 (11)     | 0.0142 (10)     | -0.0001 (9)  | 0.0020 (9)      | -0.0011 (9)            |
| C9  | 0.0201 (11) | 0.0232 (12)     | 0.0142 (10)     | -0.0015 (9)  | -0.0005 (8)     | -0.0003 (9)            |
| C17 | 0.0265 (13) | 0.0206 (11)     | 0.0188 (11)     | -0.0080 (10) | 0.0012 (9)      | -0.0026 (9)            |
| C10 | 0.0191 (11) | 0.0226 (12)     | 0.0202 (12)     | -0.0073 (10) | -0.0025 (9)     | 0.0005 (9)             |
| C14 | 0.0209 (11) | 0.0154 (10)     | 0.0147 (11)     | -0.0034 (9)  | 0.0013 (9)      | -0.0010 (9)            |
| C11 | 0.0168 (11) | 0.0241 (12)     | 0.0193 (12)     | -0.0033 (9)  | 0.0030 (9)      | 0.0054 (10)            |
| C13 | 0.0185 (11) | 0.0168 (10)     | 0.0195 (12)     | -0.0019 (9)  | -0.0013 (9)     | -0.0005 (9)            |
| C19 | 0.0299 (13) | 0.0223 (12)     | 0.0186 (12)     | 0.0020 (10)  | 0.0035 (10)     | -0.0057 (9)            |
| C21 | 0.0195 (12) | 0.0404 (15)     | 0.0283 (13)     | 0.0041 (10)  | 0.0027 (10)     | -0.0092 (11)           |
| C15 | 0.0275 (12) | 0.0248 (12)     | 0.0162 (11)     | -0.0091 (10) | -0.0018 (10)    | -0.0024 (9)            |
| C20 | 0.0340 (13) | 0.0245 (12)     | 0.0149 (11)     | 0.0018 (10)  | 0.0057 (9)      | -0.0010 (10)           |
| C16 | 0.0301 (13) | 0.0179 (11)     | 0.0255 (12)     | 0.0011 (10)  | 0.0033 (10)     | -0.0009 (10)           |
|     |             |                 |                 |              |                 |                        |

### Geometric parameters (Å, °)

| 01—H1  | 0.96 (3)  | C9—C10   | 1.386 (3) |  |
|--------|-----------|----------|-----------|--|
| 01—C1  | 1.353 (3) | C17—H17A | 0.9800    |  |
| F1—C11 | 1.357 (2) | C17—H17B | 0.9800    |  |
| N1—C8  | 1.416 (3) | C17—H17C | 0.9800    |  |
| N1—C7  | 1.282 (3) | C17—C14  | 1.536 (3) |  |
| C2—C3  | 1.390 (3) | C10—H10  | 0.9500    |  |
|        |           |          |           |  |

| G <b>3</b> G1                | 1 400 (2)                | C10 C11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 277 (2)   |
|------------------------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| C2—C1                        | 1.408 (3)                | C10—C11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.377 (3)   |
| C2—C14                       | 1.538 (3)                | C14—C15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.544 (3)   |
| С5—Н5                        | 0.9500                   | C14—C16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.542 (3)   |
| C5—C4                        | 1.381 (3)                | C13—H13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.9500      |
| C5—C6                        | 1.404 (3)                | C19—H19A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.9800      |
| С3—Н3                        | 0.9500                   | C19—H19B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.9800      |
| C3—C4                        | 1.405 (3)                | C19—H19C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.9800      |
| C4—C18                       | 1.537 (3)                | C21—H21A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.9800      |
| C1—C6                        | 1.411 (3)                | C21—H21B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.9800      |
| C8—C9                        | 1.393 (3)                | C21—H21C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.9800      |
| C8—C13                       | 1.396 (3)                | C15—H15A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.9800      |
| C18—C19                      | 1.528 (3)                | C15—H15B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.9800      |
| $C_{18}$ $C_{21}$            | 1.539 (3)                | C15—H15C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.9800      |
| $C_{18}$ $C_{20}$            | 1 534 (3)                | C20—H20A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.9800      |
| $C_{6}$ $C_{7}$              | 1.354(3)<br>1.453(3)     | $C_{20}$ H20R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.9800      |
| C7 H7                        | 0.0500                   | C20_H20C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.9800      |
| С/—П/                        | 0.9500                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.9800      |
| C12—H12                      | 0.9500                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.9800      |
|                              | 1.375 (3)                | C16—H16B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.9800      |
| C12—C13                      | 1.386 (3)                | C16—H16C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.9800      |
| С9—Н9                        | 0.9500                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
| C1                           | 104.0 (15)               | С11—С10—С9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 118.8 (2)   |
| C7—N1—C8                     | 123.75 (19)              | C11-C10-H10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 120.6       |
| C3—C2—C1                     | 116.84 (18)              | C2—C14—C15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 109.13 (17) |
| C3—C2—C14                    | 122.27 (19)              | C2—C14—C16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 110.96 (18) |
| C1—C2—C14                    | 120.85 (18)              | C17—C14—C2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 111.58 (18) |
| С4—С5—Н5                     | 119.3                    | C17—C14—C15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 107.52 (18) |
| C4-C5-C6                     | 121 34 (19)              | C17 - C14 - C16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 107 71 (18) |
| С6—С5—Н5                     | 1193                     | C16-C14-C15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 109.86 (19) |
| $C_{2}$ $C_{3}$ $H_{3}$      | 117.9                    | F1 - C11 - C12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 118.8 (2)   |
| $C_2 C_3 C_4$                | 12/ 20 (10)              | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 118.0(2)    |
| $C_2 = C_3 = C_4$            | 124.29 (19)              | $C_{12} = C_{11} = C_{10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 110.20(19)  |
| $C_{4} = C_{5} = 115$        | 117.3<br>117.27(10)      | $C_{12}$ $C_{11}$ $C_{10}$ $C_{10}$ $C_{12}$ $C_{11}$ $C_{10}$ $C$ | 123.0(2)    |
| $C_{3} - C_{4} - C_{3}$      | 117.27(19)<br>122.26(10) | Co-C13-H13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 119.4       |
| $C_{3}$ $C_{4}$ $C_{18}$     | 123.20 (19)              | C12-C13-C8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 121.2 (2)   |
| $C_{3}$ — $C_{4}$ — $C_{18}$ | 119.47 (18)              | C12—C13—H13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 119.4       |
| OI - CI - C2                 | 119.29 (17)              | C18—C19—H19A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 109.5       |
| 01                           | 120.08 (18)              | C18—C19—H19B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 109.5       |
| C2—C1—C6                     | 120.60 (18)              | C18—C19—H19C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 109.5       |
| C9—C8—N1                     | 124.60 (19)              | H19A—C19—H19B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 109.5       |
| C9—C8—C13                    | 119.29 (19)              | H19A—C19—H19C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 109.5       |
| C13—C8—N1                    | 116.04 (18)              | H19B—C19—H19C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 109.5       |
| C4—C18—C21                   | 109.16 (18)              | C18—C21—H21A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 109.5       |
| C19—C18—C4                   | 111.67 (18)              | C18—C21—H21B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 109.5       |
| C19—C18—C21                  | 108.09 (19)              | C18—C21—H21C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 109.5       |
| C19—C18—C20                  | 108.30 (18)              | H21A—C21—H21B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 109.5       |
| C20-C18-C4                   | 109.90 (17)              | H21A—C21—H21C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 109.5       |
| C20-C18-C21                  | 109.7 (2)                | H21B—C21—H21C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 109.5       |
| C5—C6—C1                     | 119.58 (19)              | C14—C15—H15A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 109.5       |

| C5—C6—C7      | 119.48 (19)  | C14—C15—H15B    | 109.5        |
|---------------|--------------|-----------------|--------------|
| C1—C6—C7      | 120.89 (19)  | C14—C15—H15C    | 109.5        |
| N1—C7—C6      | 121.20 (19)  | H15A—C15—H15B   | 109.5        |
| N1—C7—H7      | 119.4        | H15A—C15—H15C   | 109.5        |
| С6—С7—Н7      | 119.4        | H15B—C15—H15C   | 109.5        |
| С11—С12—Н12   | 121.1        | C18—C20—H20A    | 109.5        |
| C11—C12—C13   | 117.7 (2)    | C18—C20—H20B    | 109.5        |
| С13—С12—Н12   | 121.1        | C18—C20—H20C    | 109.5        |
| С8—С9—Н9      | 120.0        | H20A—C20—H20B   | 109.5        |
| C10—C9—C8     | 120.0 (2)    | H20A—C20—H20C   | 109.5        |
| С10—С9—Н9     | 120.0        | H20B-C20-H20C   | 109.5        |
| H17A—C17—H17B | 109.5        | C14—C16—H16A    | 109.5        |
| H17A—C17—H17C | 109.5        | C14—C16—H16B    | 109.5        |
| H17B—C17—H17C | 109.5        | C14—C16—H16C    | 109.5        |
| C14—C17—H17A  | 109.5        | H16A—C16—H16B   | 109.5        |
| C14—C17—H17B  | 109.5        | H16A—C16—H16C   | 109.5        |
| C14—C17—H17C  | 109.5        | H16B—C16—H16C   | 109.5        |
| С9—С10—Н10    | 120.6        |                 |              |
|               |              |                 |              |
| O1—C1—C6—C5   | -179.09 (19) | C1—C2—C3—C4     | 0.8 (3)      |
| O1—C1—C6—C7   | 3.5 (3)      | C1—C2—C14—C17   | -178.77 (19) |
| N1-C8-C9-C10  | 177.5 (2)    | C1—C2—C14—C15   | -60.1 (3)    |
| N1-C8-C13-C12 | -177.18 (19) | C1-C2-C14-C16   | 61.1 (3)     |
| C2—C3—C4—C5   | 1.4 (3)      | C1—C6—C7—N1     | -2.5 (3)     |
| C2—C3—C4—C18  | -179.0 (2)   | C8—N1—C7—C6     | -178.37 (19) |
| C2-C1-C6-C5   | 3.0 (3)      | C8—C9—C10—C11   | -1.0 (3)     |
| C2-C1-C6-C7   | -174.40 (19) | C6—C5—C4—C3     | -1.5 (3)     |
| C5-C4-C18-C19 | -3.7 (3)     | C6—C5—C4—C18    | 178.99 (19)  |
| C5-C4-C18-C21 | 115.8 (2)    | C7—N1—C8—C9     | 23.7 (3)     |
| C5-C4-C18-C20 | -123.9 (2)   | C7—N1—C8—C13    | -159.3 (2)   |
| C5—C6—C7—N1   | -179.83 (19) | C9—C8—C13—C12   | -0.1 (3)     |
| C3—C2—C1—O1   | 179.04 (18)  | C9—C10—C11—F1   | -178.1 (2)   |
| C3—C2—C1—C6   | -3.0 (3)     | C9—C10—C11—C12  | 0.8 (3)      |
| C3—C2—C14—C17 | -0.8 (3)     | C14—C2—C3—C4    | -177.2 (2)   |
| C3—C2—C14—C15 | 117.8 (2)    | C14—C2—C1—O1    | -2.9 (3)     |
| C3-C2-C14-C16 | -121.0 (2)   | C14—C2—C1—C6    | 175.04 (19)  |
| C3—C4—C18—C19 | 176.84 (19)  | C11—C12—C13—C8  | -0.1 (3)     |
| C3—C4—C18—C21 | -63.7 (3)    | C13—C8—C9—C10   | 0.7 (3)      |
| C3—C4—C18—C20 | 56.6 (3)     | C13—C12—C11—F1  | 178.72 (19)  |
| C4—C5—C6—C1   | -0.6 (3)     | C13—C12—C11—C10 | -0.3 (3)     |
| C4—C5—C6—C7   | 176.8 (2)    |                 |              |
|               |              |                 |              |

### Hydrogen-bond geometry (Å, °)

| D—H···A  | <i>D</i> —Н | H···A    | D····A    | D—H···A |
|----------|-------------|----------|-----------|---------|
| 01—H1…N1 | 0.96 (3)    | 1.64 (3) | 2.544 (2) | 155 (2) |

(E)-2,4-Di-tert-butyl-6-{[(4-chlorophenyl)imino]methyl}phenol (2\_300K)

#### Crystal data

C<sub>21</sub>H<sub>26</sub>ClNO  $M_r = 343.88$ Monoclinic,  $P2_1/c$  a = 17.9412 (17) Å b = 10.5067 (7) Å c = 10.3890 (7) Å  $\beta = 92.719$  (7)° V = 1956.2 (3) Å<sup>3</sup> Z = 4

#### Data collection

Oxford Diffraction Xcalibur Sapphire3 Gemini ultra diffractometer Detector resolution: 16.1511 pixels mm<sup>-1</sup> ω scans Absorption correction: analytical [CrysAlis PRO (Oxford Diffraction, 2010), based on expressions derived by Clark & Reid (1995)]

#### Refinement

| 5                               |                                                            |
|---------------------------------|------------------------------------------------------------|
| Refinement on $F^2$             | Primary atom site location: structure-invariant            |
| Least-squares matrix: full      | direct methods                                             |
| $R[F^2 > 2\sigma(F^2)] = 0.056$ | Hydrogen site location: mixed                              |
| $wR(F^2) = 0.133$               | H atoms treated by a mixture of independent                |
| S = 1.02                        | and constrained refinement                                 |
| 2382 reflections                | $w = 1/[\sigma^2(F_o^2) + (0.0438P)^2]$                    |
| 277 parameters                  | where $P = (F_o^2 + 2F_c^2)/3$                             |
| 169 restraints                  | $(\Delta/\sigma)_{\rm max} = 0.001$                        |
|                                 | $\Delta \rho_{\rm max} = 0.16 \text{ e } \text{\AA}^{-3}$  |
|                                 | $\Delta \rho_{\rm min} = -0.15 \text{ e } \text{\AA}^{-3}$ |

#### Special details

**Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

F(000) = 736

 $\theta = 2.8 - 30.5^{\circ}$  $\mu = 0.20 \text{ mm}^{-1}$ 

Block, yellow

 $0.33 \times 0.28 \times 0.10 \text{ mm}$ 

 $T_{\min} = 0.947, T_{\max} = 0.981$ 5532 measured reflections

 $\theta_{\rm max} = 22.0^\circ, \ \theta_{\rm min} = 2.8^\circ$ 

2382 independent reflections

1501 reflections with  $I > 2\sigma(I)$ 

T = 300 K

 $R_{\rm int} = 0.050$ 

 $h = -18 \rightarrow 17$ 

 $k = -10 \rightarrow 11$ 

 $l = -10 \rightarrow 10$ 

 $D_{\rm x} = 1.168 {\rm Mg} {\rm m}^{-3}$ 

Mo *K* $\alpha$  radiation,  $\lambda = 0.71073$  Å

Cell parameters from 956 reflections

**Refinement**. Occupancies of the disordered tBu carbon atoms refined with their sum set to equal 1. Restraints were applied to maintain sensible thermal and geometric parameters.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

|     | x            | у            | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ | Occ. (<1) |
|-----|--------------|--------------|--------------|-----------------------------|-----------|
| Cl1 | 1.13127 (6)  | 0.94077 (11) | 0.78074 (11) | 0.0864 (5)                  |           |
| N1  | 0.88659 (17) | 0.7046 (3)   | 0.4603 (3)   | 0.0577 (9)                  |           |
| C2  | 0.71192 (19) | 0.5474 (3)   | 0.2099 (3)   | 0.0417 (9)                  |           |
| C6  | 0.7739 (2)   | 0.7231 (4)   | 0.3260 (3)   | 0.0509 (10)                 |           |
| C1  | 0.7694 (2)   | 0.5931 (3)   | 0.2934 (3)   | 0.0455 (9)                  |           |
| C5  | 0.7198 (2)   | 0.8061 (3)   | 0.2758 (3)   | 0.0539 (11)                 |           |
|     |              |              |              |                             |           |

| Н5       | 0.722929               | 0.891663                | 0.298151                | 0.065*             |           |
|----------|------------------------|-------------------------|-------------------------|--------------------|-----------|
| C8       | 0.94315 (13)           | 0.7639 (2)              | 0.5400(2)               | 0.0534 (10)        |           |
| C13      | 1.01328 (16)           | 0.7074 (2)              | 0.5444 (2)              | 0.0673 (12)        |           |
| H13      | 1.021169               | 0.633327                | 0.497925                | 0.081*             |           |
| C12      | 1.07161 (11)           | 0.7615 (3)              | 0.6183 (3)              | 0.0687 (12)        |           |
| H12      | 1.118527               | 0.723674                | 0.621292                | 0.082*             |           |
| C11      | 1.05982 (14)           | 0.8721 (3)              | 0.6878 (2)              | 0.0598 (11)        |           |
| C10      | 0.98969 (17)           | 0.9286 (2)              | 0.6834 (2)              | 0.0783 (13)        |           |
| H10      | 0.981802               | 1.002679                | 0.729932                | 0.094*             |           |
| С9       | 0.93136(12)            | 0.8745 (3)              | 0.6095 (3)              | 0.0774 (14)        |           |
| Н9       | 0.884442               | 0.912334                | 0.606566                | 0.093*             |           |
| C3       | 0.6604 (2)             | 0.6373 (3)              | 0.1635 (3)              | 0.0478 (10)        |           |
| H3       | 0.621941               | 0.609106                | 0.107416                | 0.057*             |           |
| C7       | 0.8344(2)              | 0.7724 (4)              | 0.4090 (3)              | 0.0604 (11)        |           |
| H7       | 0.835128               | 0.859377                | 0.425792                | 0.073*             |           |
| C4       | 0.6619 (2)             | 0.7667 (4)              | 0.1945 (3)              | 0.0478 (10)        |           |
| C14      | 0.7057(2)              | 0.4067 (3)              | 0.1714 (3)              | 0.0506 (10)        |           |
| C18      | 0.6025(2)              | 0.8590 (3)              | 0.1398(3)               | 0.0554 (11)        |           |
| C15      | 0.6025(2)              | 0.3242(3)               | 0.2922(3)               | 0.0698 (13)        |           |
| H15A     | 0.652863               | 0.344446                | 0.332146                | 0.105*             |           |
| H15B     | 0.740011               | 0.340579                | 0.351764                | 0.105*             |           |
| H15C     | 0.698360               | 0.235895                | 0.268355                | 0.105*             |           |
| C17      | 0.6373(2)              | 0.3794 (4)              | 0.0812 (4)              | 0.0743(13)         |           |
| H17A     | 0.641743               | 0.425296                | 0.002083                | 0.111*             |           |
| H17R     | 0 592947               | 0.405904                | 0.121779                | 0.111*             |           |
| H17C     | 0.634600               | 0.289779                | 0.063425                | 0.111*             |           |
| C16      | 0.031000<br>0.7751(2)  | 0.3662 (4)              | 0.003123<br>0.1004(3)   | 0.0730(13)         |           |
| H16A     | 0.818965               | 0.380550                | 0.155003                | 0.110*             |           |
| H16R     | 0.778138               | 0.415251                | 0.022900                | 0.110*             |           |
| H16C     | 0.771535               | 0.413231                | 0.022900                | 0.110*             |           |
| 01       | 0.82124 (15)           | 0.277421<br>0.5111(2)   | 0.3445(3)               | 0.0639 (8)         |           |
| U1<br>Н1 | 0.853(2)               | 0.5111(2)               | 0.347(4)                | 0.0039 (8)         |           |
| C19A     | 0.000(2)               | 0.334(4)                | 0.337(4)                | 0.071(5)           | 0 3/8 (3) |
|          | 0.5902 (11)            | 0.9770(12)              | 0.2223 (13)             | 0.071 (5)          | 0.348(3)  |
| HIOR     | 0.582055               | 1 022005                | 0.188555                | 0.107*             | 0.348(3)  |
|          | 0.547155               | 1.022903                | 0.188555                | 0.107*             | 0.348(3)  |
| C20A     | 0.033287<br>0.6171(10) | 0.8042(18)              | 0.220415                | 0.107<br>0.085 (4) | 0.348(3)  |
|          | 0.654070               | 0.0942(10)              | 0.0009(9)               | 0.005 (4)          | 0.348(3)  |
| 1120A    | 0.034070               | 0.900210                | -0.041401               | 0.127*             | 0.348(3)  |
|          | 0.571049               | 0.923981                | -0.041491               | 0.127*             | 0.348(3)  |
| C21 A    | 0.034071               | 0.020730<br>0.7865 (12) | 0.043377<br>0.1402 (17) | $0.127^{\circ}$    | 0.348(3)  |
|          | 0.5201 (5)             | 0.7803 (12)             | 0.1402 (17)             | 0.072 (4)          | 0.348(3)  |
|          | 0.323038               | 0.721327                | 0.073283                | 0.108*             | 0.348(3)  |
| H21B     | 0.486020               | 0.845298                | 0.122298                | 0.108*             | 0.348(3)  |
| п21U     | 0.520344               | 0.748315                | 0.223123                | $0.108^{-1}$       | 0.348(3)  |
|          | 0.5389 (8)             | 0.7991 (13)             | 0.0002 (16)             | 0.092 (4)          | 0.387(3)  |
| H2ID     | 0.330333               | 0.780235                | -0.02/000               | 0.139*             | 0.38/(3)  |
| H2IE     | 0.49/910               | 0.85/653                | 0.048018                | U.139 <sup>*</sup> | 0.387 (3) |
| H21F     | 0.522836               | 0.722010                | 0.095920                | 0.139*             | 0.387 (3) |

| C20  | 0.6423 (7)  | 0.9586 (12) | 0.0563 (14) | 0.079 (4) | 0.387 (3) |
|------|-------------|-------------|-------------|-----------|-----------|
| H20D | 0.678231    | 1.004780    | 0.109455    | 0.118*    | 0.387 (3) |
| H20E | 0.606077    | 1.016785    | 0.019098    | 0.118*    | 0.387 (3) |
| H20F | 0.667169    | 0.915818    | -0.011081   | 0.118*    | 0.387 (3) |
| C19  | 0.5693 (9)  | 0.9308 (13) | 0.2522 (11) | 0.065 (4) | 0.387 (3) |
| H19D | 0.543619    | 0.871873    | 0.305125    | 0.098*    | 0.387 (3) |
| H19E | 0.534861    | 0.993995    | 0.219036    | 0.098*    | 0.387 (3) |
| H19F | 0.608657    | 0.971369    | 0.302811    | 0.098*    | 0.387 (3) |
| C20B | 0.6363 (10) | 0.9942 (11) | 0.134 (2)   | 0.083 (5) | 0.265 (3) |
| H20G | 0.645438    | 1.026285    | 0.219502    | 0.124*    | 0.265 (3) |
| H20H | 0.602103    | 1.049534    | 0.086998    | 0.124*    | 0.265 (3) |
| H20I | 0.682498    | 0.990794    | 0.090649    | 0.124*    | 0.265 (3) |
| C19B | 0.5357 (8)  | 0.861 (2)   | 0.2244 (17) | 0.078 (5) | 0.265 (3) |
| H19G | 0.510486    | 0.780208    | 0.218299    | 0.118*    | 0.265 (3) |
| H19H | 0.502067    | 0.927205    | 0.196191    | 0.118*    | 0.265 (3) |
| H19I | 0.552382    | 0.875814    | 0.312275    | 0.118*    | 0.265 (3) |
| C21B | 0.5783 (12) | 0.8217 (18) | 0.0000 (10) | 0.067 (5) | 0.265 (3) |
| H21G | 0.621832    | 0.809134    | -0.048904   | 0.100*    | 0.265 (3) |
| H21H | 0.548346    | 0.888447    | -0.038577   | 0.100*    | 0.265 (3) |
| H21I | 0.549880    | 0.744357    | 0.000638    | 0.100*    | 0.265 (3) |
|      |             |             |             |           |           |

#### Atomic displacement parameters $(Å^2)$

|      | $U^{11}$   | U <sup>22</sup> | $U^{33}$   | $U^{12}$     | $U^{13}$     | $U^{23}$     |
|------|------------|-----------------|------------|--------------|--------------|--------------|
| Cl1  | 0.0734 (9) | 0.0860 (9)      | 0.0969 (9) | -0.0178 (7)  | -0.0263 (6)  | 0.0001 (7)   |
| N1   | 0.054 (2)  | 0.055 (2)       | 0.063 (2)  | 0.0031 (18)  | -0.0124 (17) | 0.0032 (17)  |
| C2   | 0.042 (2)  | 0.043 (2)       | 0.040 (2)  | -0.0002 (19) | -0.0029 (18) | 0.0064 (18)  |
| C6   | 0.046 (3)  | 0.045 (3)       | 0.060 (2)  | -0.004(2)    | -0.010 (2)   | 0.001 (2)    |
| C1   | 0.045 (2)  | 0.045 (2)       | 0.047 (2)  | 0.010 (2)    | 0.0011 (19)  | 0.013 (2)    |
| C5   | 0.059 (3)  | 0.040 (2)       | 0.061 (2)  | 0.005 (2)    | -0.011 (2)   | -0.005 (2)   |
| C8   | 0.045 (3)  | 0.059 (3)       | 0.055 (2)  | 0.000 (2)    | -0.009(2)    | 0.005 (2)    |
| C13  | 0.062 (3)  | 0.055 (3)       | 0.083 (3)  | 0.009 (2)    | -0.020 (2)   | -0.009 (2)   |
| C12  | 0.046 (3)  | 0.066 (3)       | 0.092 (3)  | 0.009 (2)    | -0.014 (2)   | -0.003 (3)   |
| C11  | 0.053 (3)  | 0.062 (3)       | 0.063 (3)  | -0.007(2)    | -0.014 (2)   | 0.006 (2)    |
| C10  | 0.068 (3)  | 0.087 (3)       | 0.078 (3)  | 0.020 (3)    | -0.019 (2)   | -0.028 (3)   |
| C9   | 0.057 (3)  | 0.092 (4)       | 0.081 (3)  | 0.021 (3)    | -0.014 (2)   | -0.028 (3)   |
| C3   | 0.050 (3)  | 0.053 (3)       | 0.040 (2)  | 0.001 (2)    | -0.0041 (18) | -0.0018 (19) |
| C7   | 0.063 (3)  | 0.045 (2)       | 0.071 (3)  | -0.004(2)    | -0.010 (2)   | 0.004 (2)    |
| C4   | 0.049 (3)  | 0.048 (3)       | 0.046 (2)  | 0.007 (2)    | -0.0028 (19) | 0.005 (2)    |
| C14  | 0.055 (3)  | 0.042 (2)       | 0.054 (2)  | 0.001 (2)    | 0.002 (2)    | -0.004 (2)   |
| C18  | 0.057 (3)  | 0.049 (3)       | 0.059 (2)  | 0.012 (2)    | -0.007(2)    | -0.001 (2)   |
| C15  | 0.091 (4)  | 0.047 (3)       | 0.072 (3)  | -0.010 (2)   | 0.004 (2)    | 0.007 (2)    |
| C17  | 0.077 (3)  | 0.060 (3)       | 0.084 (3)  | -0.006 (2)   | -0.017 (2)   | -0.014 (2)   |
| C16  | 0.083 (3)  | 0.055 (3)       | 0.081 (3)  | 0.010 (2)    | 0.006 (3)    | -0.009 (2)   |
| 01   | 0.058 (2)  | 0.0503 (18)     | 0.081 (2)  | 0.0048 (15)  | -0.0197 (15) | 0.0022 (15)  |
| C19A | 0.086 (11) | 0.065 (9)       | 0.063 (9)  | 0.033 (9)    | -0.003 (7)   | 0.006 (8)    |
| C20A | 0.105 (10) | 0.102 (11)      | 0.046 (7)  | 0.048 (8)    | -0.004 (7)   | 0.011 (8)    |
| C21A | 0.068 (8)  | 0.080 (8)       | 0.067 (9)  | 0.033 (7)    | -0.014 (8)   | 0.004 (8)    |

| C21  | 0.102 (9)  | 0.098 (8)  | 0.073 (9)  | 0.032 (8) | -0.046 (8) | -0.015 (9) |
|------|------------|------------|------------|-----------|------------|------------|
| C20  | 0.093 (9)  | 0.106 (10) | 0.037 (7)  | 0.046 (7) | 0.014 (7)  | 0.012 (7)  |
| C19  | 0.069 (10) | 0.071 (10) | 0.058 (7)  | 0.017 (8) | 0.008 (6)  | 0.015 (7)  |
| C20B | 0.101 (10) | 0.079 (9)  | 0.065 (10) | 0.031 (9) | -0.020 (9) | 0.003 (9)  |
| C19B | 0.083 (10) | 0.095 (11) | 0.057 (9)  | 0.039 (9) | 0.005 (9)  | 0.014 (8)  |
| C21B | 0.072 (10) | 0.081 (10) | 0.046 (8)  | 0.025 (9) | -0.013 (7) | 0.015 (8)  |

Geometric parameters (Å, °)

| Cl1—C11  | 1.726 (2) | C15—H15A  | 0.9600   |
|----------|-----------|-----------|----------|
| N1—C8    | 1.422 (3) | C15—H15B  | 0.9600   |
| N1—C7    | 1.274 (4) | C15—H15C  | 0.9600   |
| C2—C1    | 1.400 (5) | C17—H17A  | 0.9600   |
| C2—C3    | 1.392 (4) | C17—H17B  | 0.9600   |
| C2—C14   | 1.534 (4) | С17—Н17С  | 0.9600   |
| C6—C1    | 1.409 (5) | C16—H16A  | 0.9600   |
| C6—C5    | 1.388 (4) | C16—H16B  | 0.9600   |
| C6—C7    | 1.449 (5) | C16—H16C  | 0.9600   |
| C1—O1    | 1.358 (4) | O1—H1     | 0.84 (4) |
| С5—Н5    | 0.9300    | C19A—H19A | 0.9600   |
| C5—C4    | 1.370 (4) | C19A—H19B | 0.9600   |
| C8—C13   | 1.3900    | C19A—H19C | 0.9600   |
| C8—C9    | 1.3900    | C20A—H20A | 0.9600   |
| С13—Н13  | 0.9300    | C20A—H20B | 0.9600   |
| C13—C12  | 1.3900    | C20A—H20C | 0.9600   |
| C12—H12  | 0.9300    | C21A—H21A | 0.9600   |
| C12—C11  | 1.3900    | C21A—H21B | 0.9600   |
| C11—C10  | 1.3900    | C21A—H21C | 0.9600   |
| C10—H10  | 0.9300    | C21—H21D  | 0.9600   |
| C10—C9   | 1.3900    | C21—H21E  | 0.9600   |
| С9—Н9    | 0.9300    | C21—H21F  | 0.9600   |
| С3—Н3    | 0.9300    | C20—H20D  | 0.9600   |
| C3—C4    | 1.397 (5) | C20—H20E  | 0.9600   |
| С7—Н7    | 0.9300    | C20—H20F  | 0.9600   |
| C4—C18   | 1.531 (5) | C19—H19D  | 0.9600   |
| C14—C15  | 1.536 (4) | C19—H19E  | 0.9600   |
| C14—C17  | 1.534 (5) | C19—H19F  | 0.9600   |
| C14—C16  | 1.538 (5) | C20B—H20G | 0.9600   |
| C18—C19A | 1.534 (7) | С20В—Н20Н | 0.9600   |
| C18—C20A | 1.524 (7) | C20B—H20I | 0.9600   |
| C18—C21A | 1.568 (7) | C19B—H19G | 0.9600   |
| C18—C21  | 1.535 (7) | С19В—Н19Н | 0.9600   |
| C18—C20  | 1.554 (7) | C19B—H19I | 0.9600   |
| C18—C19  | 1.534 (7) | C21B—H21G | 0.9600   |
| C18—C20B | 1.548 (7) | C21B—H21H | 0.9600   |
| C18—C19B | 1.520 (7) | C21B—H21I | 0.9600   |
| C18—C21B | 1.546 (7) |           |          |

| C7—N1—C8    | 119.3 (3)   | H15B—C15—H15C  | 109.5   |
|-------------|-------------|----------------|---------|
| C1—C2—C14   | 122.3 (3)   | C14—C17—H17A   | 109.5   |
| C3—C2—C1    | 116.0 (3)   | C14—C17—H17B   | 109.5   |
| C3—C2—C14   | 121.7 (3)   | C14—C17—H17C   | 109.5   |
| C1—C6—C7    | 121.5 (3)   | H17A—C17—H17B  | 109.5   |
| C5—C6—C1    | 119.1 (3)   | H17A—C17—H17C  | 109.5   |
| C5—C6—C7    | 119.3 (4)   | H17B—C17—H17C  | 109.5   |
| C2—C1—C6    | 120.9 (3)   | C14—C16—H16A   | 109.5   |
| O1—C1—C2    | 119.7 (3)   | C14—C16—H16B   | 109.5   |
| O1—C1—C6    | 119.4 (3)   | C14—C16—H16C   | 109.5   |
| С6—С5—Н5    | 118.7       | H16A—C16—H16B  | 109.5   |
| C4—C5—C6    | 122.5 (4)   | H16A—C16—H16C  | 109.5   |
| С4—С5—Н5    | 118.7       | H16B—C16—H16C  | 109.5   |
| C13—C8—N1   | 116.9 (2)   | C1—O1—H1       | 108 (3) |
| C13—C8—C9   | 120.0       | C18—C19A—H19A  | 109.5   |
| C9—C8—N1    | 123.1 (2)   | C18—C19A—H19B  | 109.5   |
| C8—C13—H13  | 120.0       | C18—C19A—H19C  | 109.5   |
| C8—C13—C12  | 120.0       | H19A—C19A—H19B | 109.5   |
| C12—C13—H13 | 120.0       | H19A—C19A—H19C | 109.5   |
| C13—C12—H12 | 120.0       | H19B—C19A—H19C | 109.5   |
| C13—C12—C11 | 120.0       | C18—C20A—H20A  | 109.5   |
| C11—C12—H12 | 120.0       | C18—C20A—H20B  | 109.5   |
| C12—C11—C11 | 120.85 (19) | C18—C20A—H20C  | 109.5   |
| C10-C11-C11 | 119.15 (19) | H20A—C20A—H20B | 109.5   |
| C10-C11-C12 | 120.0       | H20A—C20A—H20C | 109.5   |
| C11—C10—H10 | 120.0       | H20B—C20A—H20C | 109.5   |
| C9—C10—C11  | 120.0       | C18—C21A—H21A  | 109.5   |
| С9—С10—Н10  | 120.0       | C18—C21A—H21B  | 109.5   |
| С8—С9—Н9    | 120.0       | C18—C21A—H21C  | 109.5   |
| С10—С9—С8   | 120.0       | H21A—C21A—H21B | 109.5   |
| С10—С9—Н9   | 120.0       | H21A—C21A—H21C | 109.5   |
| С2—С3—Н3    | 117.4       | H21B—C21A—H21C | 109.5   |
| C2—C3—C4    | 125.1 (3)   | C18—C21—H21D   | 109.5   |
| С4—С3—Н3    | 117.4       | C18—C21—H21E   | 109.5   |
| N1—C7—C6    | 124.3 (4)   | C18—C21—H21F   | 109.5   |
| N1—C7—H7    | 117.8       | H21D—C21—H21E  | 109.5   |
| С6—С7—Н7    | 117.8       | H21D—C21—H21F  | 109.5   |
| C5—C4—C3    | 116.2 (3)   | H21E—C21—H21F  | 109.5   |
| C5—C4—C18   | 122.1 (3)   | C18—C20—H20D   | 109.5   |
| C3—C4—C18   | 121.6 (3)   | C18—C20—H20E   | 109.5   |
| C2—C14—C15  | 109.8 (3)   | C18—C20—H20F   | 109.5   |
| C2-C14-C16  | 109.9 (3)   | H20D-C20-H20E  | 109.5   |
| C15—C14—C16 | 109.7 (3)   | H20D-C20-H20F  | 109.5   |
| C17—C14—C2  | 112.7 (3)   | H20E—C20—H20F  | 109.5   |
| C17—C14—C15 | 107.4 (3)   | C18—C19—H19D   | 109.5   |
| C17—C14—C16 | 107.3 (3)   | C18—C19—H19E   | 109.5   |
| C4—C18—C19A | 115.0 (8)   | C18—C19—H19F   | 109.5   |
| C4—C18—C21A | 106.5 (6)   | H19D—C19—H19E  | 109.5   |
|             |             |                |         |

| C4—C18—C21                                  | 115.9 (6)            | H19D—C19—H19F                    | 109.5       |
|---------------------------------------------|----------------------|----------------------------------|-------------|
| C4—C18—C20                                  | 107.7 (6)            | H19E—C19—H19F                    | 109.5       |
| C4—C18—C19                                  | 108.5 (7)            | C18—C20B—H20G                    | 109.5       |
| C4—C18—C20B                                 | 109.2 (7)            | C18—C20B—H20H                    | 109.5       |
| C4-C18-C21B                                 | 110.3 (8)            | C18— $C20B$ — $H20I$             | 109.5       |
| C19A - C18 - C21A                           | 104.2(7)             | H20G-C20B-H20H                   | 109.5       |
| $C_{20A}$ $C_{18}$ $C_{4}$                  | 101.2(7)<br>1110(6)  | H20G—C20B—H20I                   | 109.5       |
| $C_{20A}$ $C_{18}$ $C_{19A}$                | 111.0(0)<br>111.5(7) | H20H—C20B—H20I                   | 109.5       |
| $C_{20A}$ $C_{18}$ $C_{21A}$                | 108.0(7)             | C18 - C19B - H19G                | 109.5       |
| $C_{20} = C_{10} = C_{20}$                  | 108.0(7)<br>108.0(6) | C18_C19B_H19H                    | 109.5       |
| $C_{10} = C_{10} = C_{20}$                  | 100.0(0)<br>100.1(7) | C18 C19B H19I                    | 109.5       |
| $C_{19} = C_{18} = C_{21}$                  | 107.1(7)             | HING CIOR HINH                   | 109.5       |
| $C_{10} = C_{18} = C_{20}$                  | 107.4(0)<br>110.2(7) | HIG CIDE HIO                     | 109.5       |
| C10P C18 C20P                               | 110.5(7)             | H10U C10D H10I                   | 109.5       |
| $C_{10}^{10} = C_{18}^{10} = C_{20}^{10} B$ | 109.0(8)             | C19 C21D U21C                    | 109.5       |
| C19B - C18 - C21B                           | 110.7(8)<br>106.7(7) | C18 = C21B = H21U                | 109.5       |
| $C_{21B}$ $C_{15}$ $H_{15A}$                | 100.7 (7)            | C18 - C21B - H21H                | 109.5       |
| C14— $C15$ — $H15A$                         | 109.5                | CI8—C2IB—H2II                    | 109.5       |
| C14—C15—H15B                                | 109.5                | H2IG—C2IB—H2IH                   | 109.5       |
| C14—C15—H15C                                | 109.5                | H21G—C21B—H211                   | 109.5       |
| H15A—C15—H15B                               | 109.5                | H21H—C21B—H211                   | 109.5       |
| H15A—C15—H15C                               | 109.5                |                                  |             |
|                                             | 120 22 (12)          |                                  | 170 76 (10) |
| CII_CII_CI0_C9                              | -1/9.// (1/)         | C13—C12—C11—C11                  | 1/9./6(18)  |
| N1—C8—C13—C12                               | 178.8 (2)            | C13—C12—C11—C10                  | 0.0         |
| N1—C8—C9—C10                                | -178.7 (2)           | C12—C11—C10—C9                   | 0.0         |
| C2—C3—C4—C5                                 | 0.9 (5)              | C11—C10—C9—C8                    | 0.0         |
| C2—C3—C4—C18                                | -179.5 (3)           | C9—C8—C13—C12                    | 0.0         |
| C6—C5—C4—C3                                 | -0.5(5)              | C3—C2—C1—C6                      | -0.6(5)     |
| C6—C5—C4—C18                                | 179.9 (3)            | C3—C2—C1—O1                      | 179.0 (3)   |
| C1—C2—C3—C4                                 | -0.4(5)              | C3—C2—C14—C15                    | -120.7 (3)  |
| C1—C2—C14—C15                               | 59.2 (4)             | C3—C2—C14—C17                    | -1.1 (5)    |
| C1—C2—C14—C17                               | 178.9 (3)            | C3—C2—C14—C16                    | 118.6 (3)   |
| C1—C2—C14—C16                               | -61.5 (4)            | C3—C4—C18—C19A                   | 154.4 (8)   |
| C1—C6—C5—C4                                 | -0.4(5)              | C3-C4-C18-C20A                   | -77.8 (10)  |
| C1—C6—C7—N1                                 | -1.3 (6)             | C3-C4-C18-C21A                   | 39.5 (8)    |
| C5—C6—C1—C2                                 | 1.0 (5)              | C3—C4—C18—C21                    | 3.7 (9)     |
| C5—C6—C1—O1                                 | -178.6 (3)           | C3—C4—C18—C20                    | -117.3 (7)  |
| C5—C6—C7—N1                                 | 179.7 (4)            | C3—C4—C18—C19                    | 126.8 (7)   |
| C5-C4-C18-C19A                              | -26.0(9)             | C3—C4—C18—C20B                   | -152.7 (10) |
| C5—C4—C18—C20A                              | 101.7 (10)           | C3—C4—C18—C19B                   | 86.8 (11)   |
| C5—C4—C18—C21A                              | -140.9(7)            | C3—C4—C18—C21B                   | -35.8 (10)  |
| C5—C4—C18—C21                               | -176.7(9)            | C7—N1—C8—C13                     | -150.7 (3)  |
| C5—C4—C18—C20                               | 62.3 (8)             | C7—N1—C8—C9                      | 28.1 (4)    |
| C5—C4—C18—C19                               | -53.6 (8)            | C7—C6—C1—C2                      | -177.9(3)   |
| C5-C4-C18-C20B                              | 26.8 (10)            | C7—C6—C1—O1                      | 2.5 (5)     |
| C5-C4-C18-C19B                              | -93.6 (11)           | C7—C6—C5—C4                      | 178.5 (3)   |
| C5-C4-C18-C21B                              | 143.8 (10)           | C14-C2-C1-C6                     | 179.5 (3)   |
| C8-N1-C7-C6                                 | 1799(3)              | $C_{14} - C_{2} - C_{1} - O_{1}$ | -10(5)      |
|                                             | (-)                  | 01. 02 01 01                     |             |

| C8—C13—C12—C11<br>C13—C8—C9—C10 | 0.0<br>0.0 | C14—C2—C3—C4 | 179.6 (3) |  |
|---------------------------------|------------|--------------|-----------|--|
|                                 |            |              |           |  |

Hydrogen-bond geometry (Å, °)

| D—H···A  | <i>D</i> —Н | H···A    | D···A     | <i>D</i> —H··· <i>A</i> |
|----------|-------------|----------|-----------|-------------------------|
| 01—H1…N1 | 0.84 (4)    | 1.84 (4) | 2.612 (4) | 151 (4)                 |

(E)-2,4-Di-tert-butyl-6-{[(4-chlorophenyl)imino]methyl}phenol (2 250K)

#### Crystal data

| C <sub>21</sub> H <sub>26</sub> ClNO | F(000) = 736                                          |
|--------------------------------------|-------------------------------------------------------|
| $M_r = 343.88$                       | $D_{\rm x} = 1.181 {\rm ~Mg} {\rm ~m}^{-3}$           |
| Monoclinic, $P2_1/c$                 | Mo <i>K</i> $\alpha$ radiation, $\lambda = 0.71073$ Å |
| a = 17.8739 (13)  Å                  | Cell parameters from 1038 reflections                 |
| b = 10.4846 (7)  Å                   | $\theta = 2.8 - 30.5^{\circ}$                         |
| c = 10.3312 (6) Å                    | $\mu=0.20~\mathrm{mm}^{-1}$                           |
| $\beta = 92.296 \ (5)^{\circ}$       | T = 250  K                                            |
| V = 1934.5 (2) Å <sup>3</sup>        | Block, yellow                                         |
| Z = 4                                | $0.33 \times 0.28 \times 0.10 \text{ mm}$             |

Data collection

Oxford Diffraction Xcalibur Sapphire3 Gemini ultra diffractometer Radiation source: Enhance (Mo) X-ray Source Graphite monochromator Detector resolution: 16.1511 pixels mm<sup>-1</sup>  $\omega$  scans

Absorption correction: multi-scan [CrysAlis PRO (Oxford Diffraction, 2010), based on expressions derived by Clark & Reid (1995)]  $T_{\rm min} = 0.651, \ T_{\rm max} = 1.000$ 5874 measured reflections 2688 independent reflections

1737 reflections with  $I > 2\sigma(I)$  $R_{\rm int} = 0.048$  $\theta_{\rm max} = 23.0^\circ, \ \theta_{\rm min} = 2.8^\circ$  $h = -19 \rightarrow 19$  $k = -7 \rightarrow 11$  $l = -8 \rightarrow 11$ 

Primary atom site location: structure-invariant direct methods Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement  $w = 1/[\sigma^2(F_o^2) + (0.0507P)^2 + 0.0321P]$ where  $P = (F_0^2 + 2F_c^2)/3$  $(\Delta/\sigma)_{\rm max} = 0.001$  $\Delta \rho_{\rm max} = 0.16 \text{ e } \text{\AA}^{-3}$  $\Delta \rho_{\rm min} = -0.19 \ {\rm e} \ {\rm \AA}^{-3}$ 

## Least-squares matrix: full

Refinement Refinement on  $F^2$ 

 $R[F^2 > 2\sigma(F^2)] = 0.062$  $wR(F^2) = 0.145$ S = 1.062688 reflections 277 parameters 181 restraints

#### Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

|      | x            | у            | Ζ            | $U_{\rm iso}$ */ $U_{\rm eq}$ | Occ. (<1) |
|------|--------------|--------------|--------------|-------------------------------|-----------|
| Cl1  | 1.13193 (6)  | 0.94179 (11) | 0.78151 (10) | 0.0691 (4)                    |           |
| N1   | 0.88654 (16) | 0.7052 (3)   | 0.4607 (3)   | 0.0459 (8)                    |           |
| C2   | 0.71228 (19) | 0.5467 (3)   | 0.2106 (3)   | 0.0349 (9)                    |           |
| C6   | 0.77403 (19) | 0.7227 (4)   | 0.3262 (3)   | 0.0418 (9)                    |           |
| C1   | 0.76985 (19) | 0.5921 (3)   | 0.2939 (3)   | 0.0386 (9)                    |           |
| C5   | 0.71951 (19) | 0.8063 (3)   | 0.2757 (3)   | 0.0434 (10)                   |           |
| Н5   | 0.722514     | 0.893005     | 0.298350     | 0.052*                        |           |
| C8   | 0.94377 (11) | 0.7642 (2)   | 0.5401 (2)   | 0.0432 (10)                   |           |
| C13  | 1.01412 (13) | 0.70754 (19) | 0.5448 (2)   | 0.0538 (11)                   |           |
| H13  | 1.022330     | 0.632377     | 0.497882     | 0.065*                        |           |
| C12  | 1.07234 (10) | 0.7620(2)    | 0.6190 (2)   | 0.0542 (11)                   |           |
| H12  | 1.119915     | 0.723660     | 0.622222     | 0.065*                        |           |
| C11  | 1.06020(11)  | 0.8731 (2)   | 0.6884 (2)   | 0.0464 (10)                   |           |
| C10  | 0.98984 (14) | 0.9298 (2)   | 0.6837 (2)   | 0.0603 (12)                   |           |
| H10  | 0.981636     | 1.005007     | 0.730646     | 0.072*                        |           |
| C9   | 0.93163 (10) | 0.8754 (2)   | 0.6095 (2)   | 0.0596 (12)                   |           |
| Н9   | 0.884051     | 0.913726     | 0.606306     | 0.072*                        |           |
| C3   | 0.6605 (2)   | 0.6363 (4)   | 0.1633 (3)   | 0.0405 (9)                    |           |
| Н3   | 0.621839     | 0.607366     | 0.106242     | 0.049*                        |           |
| C7   | 0.8341 (2)   | 0.7737 (4)   | 0.4093 (3)   | 0.0479 (10)                   |           |
| H7   | 0.834531     | 0.861802     | 0.426299     | 0.057*                        |           |
| C4   | 0.66174 (19) | 0.7664 (3)   | 0.1944 (3)   | 0.0387 (9)                    |           |
| C14  | 0.7063 (2)   | 0.4057 (3)   | 0.1714 (3)   | 0.0420 (9)                    |           |
| C18  | 0.6015 (2)   | 0.8594 (3)   | 0.1406 (3)   | 0.0442 (10)                   |           |
| C15  | 0.6983 (2)   | 0.3227 (4)   | 0.2931 (3)   | 0.0573 (12)                   |           |
| H15A | 0.652023     | 0.343992     | 0.334006     | 0.086*                        |           |
| H15B | 0.740319     | 0.338326     | 0.353403     | 0.086*                        |           |
| H15C | 0.697570     | 0.233342     | 0.268618     | 0.086*                        |           |
| C17  | 0.6382 (2)   | 0.3786 (4)   | 0.0810 (3)   | 0.0601 (12)                   |           |
| H17A | 0.642360     | 0.426888     | 0.001536     | 0.090*                        |           |
| H17B | 0.592913     | 0.403505     | 0.123160     | 0.090*                        |           |
| H17C | 0.636144     | 0.288238     | 0.061051     | 0.090*                        |           |
| C16  | 0.7765 (2)   | 0.3644 (4)   | 0.1009 (3)   | 0.0562 (11)                   |           |
| H16A | 0.820429     | 0.375223     | 0.158144     | 0.084*                        |           |
| H16B | 0.781606     | 0.416537     | 0.024131     | 0.084*                        |           |
| H16C | 0.771877     | 0.275530     | 0.075867     | 0.084*                        |           |
| 01   | 0.82155 (14) | 0.5102 (2)   | 0.3454 (2)   | 0.0505 (7)                    |           |
| H1   | 0.854 (2)    | 0.560 (3)    | 0.393 (3)    | 0.061*                        |           |
| C19A | 0.6145 (15)  | 0.9993 (10)  | 0.177 (3)    | 0.071 (5)                     | 0.186 (3) |
| H19A | 0.625435     | 1.005722     | 0.269877     | 0.107*                        | 0.186 (3) |
| H19B | 0.569945     | 1.048448     | 0.154559     | 0.107*                        | 0.186 (3) |
| H19C | 0.656466     | 1.032480     | 0.130986     | 0.107*                        | 0.186 (3) |
| C20A | 0.5964 (16)  | 0.848 (3)    | -0.0077 (8)  | 0.062 (5)                     | 0.186 (3) |
| H20A | 0.642755     | 0.877533     | -0.043130    | 0.093*                        | 0.186 (3) |
| H20B | 0.555090     | 0.899299     | -0.041914    | 0.093*                        | 0.186 (3) |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(\hat{A}^2)$ 

| H20C | 0.588199   | 0.759355    | -0.031762   | 0.093*    | 0.186 (3) |
|------|------------|-------------|-------------|-----------|-----------|
| C21A | 0.5258 (8) | 0.817 (3)   | 0.191 (3)   | 0.072 (5) | 0.186 (3) |
| H21A | 0.510607   | 0.737444    | 0.149171    | 0.108*    | 0.186 (3) |
| H21B | 0.488492   | 0.881758    | 0.172063    | 0.108*    | 0.186 (3) |
| H21C | 0.530645   | 0.803503    | 0.284028    | 0.108*    | 0.186 (3) |
| C21  | 0.5267 (5) | 0.7884 (9)  | 0.1091 (14) | 0.067 (3) | 0.430 (3) |
| H21D | 0.533628   | 0.727840    | 0.039633    | 0.101*    | 0.430 (3) |
| H21E | 0.488407   | 0.849654    | 0.082473    | 0.101*    | 0.430 (3) |
| H21F | 0.511235   | 0.743347    | 0.185598    | 0.101*    | 0.430 (3) |
| C20  | 0.6277 (7) | 0.9232 (14) | 0.0188 (10) | 0.078 (4) | 0.430 (3) |
| H20D | 0.673949   | 0.968784    | 0.038304    | 0.117*    | 0.430 (3) |
| H20E | 0.589704   | 0.982636    | -0.013368   | 0.117*    | 0.430 (3) |
| H20F | 0.636022   | 0.858912    | -0.046640   | 0.117*    | 0.430 (3) |
| C19  | 0.5826 (7) | 0.9595 (11) | 0.2424 (10) | 0.058 (3) | 0.430 (3) |
| H19D | 0.569757   | 0.917114    | 0.321951    | 0.086*    | 0.430 (3) |
| H19E | 0.540506   | 1.010508    | 0.210528    | 0.086*    | 0.430 (3) |
| H19F | 0.625644   | 1.014351    | 0.259222    | 0.086*    | 0.430 (3) |
| C20B | 0.6455 (6) | 0.9763 (10) | 0.0889 (13) | 0.070 (4) | 0.384 (3) |
| H20G | 0.674235   | 1.015577    | 0.159852    | 0.106*    | 0.384 (3) |
| H20H | 0.610355   | 1.037986    | 0.051520    | 0.106*    | 0.384 (3) |
| H20I | 0.679044   | 0.948126    | 0.023244    | 0.106*    | 0.384 (3) |
| C19B | 0.5531 (8) | 0.9061 (16) | 0.2476 (10) | 0.067 (4) | 0.384 (3) |
| H19G | 0.522430   | 0.836418    | 0.277077    | 0.100*    | 0.384 (3) |
| H19H | 0.521145   | 0.974629    | 0.215108    | 0.100*    | 0.384 (3) |
| H19I | 0.584808   | 0.937131    | 0.319260    | 0.100*    | 0.384 (3) |
| C21B | 0.5564 (8) | 0.8076 (12) | 0.0236 (12) | 0.076 (4) | 0.384 (3) |
| H21G | 0.590289   | 0.777256    | -0.040629   | 0.114*    | 0.384 (3) |
| H21H | 0.525093   | 0.874864    | -0.013633   | 0.114*    | 0.384 (3) |
| H21I | 0.525061   | 0.737719    | 0.050679    | 0.114*    | 0.384 (3) |
|      |            |             |             |           |           |

Atomic displacement parameters  $(\mathring{A}^2)$ 

|     | $U^{11}$    | $U^{22}$   | $U^{33}$    | $U^{12}$     | $U^{13}$     | $U^{23}$     |
|-----|-------------|------------|-------------|--------------|--------------|--------------|
| C11 | 0.0589 (7)  | 0.0702 (9) | 0.0765 (7)  | -0.0139 (7)  | -0.0192 (5)  | 0.0017 (6)   |
| N1  | 0.0395 (18) | 0.046 (2)  | 0.0517 (18) | -0.0014 (18) | -0.0062 (15) | 0.0021 (15)  |
| C2  | 0.038 (2)   | 0.035 (2)  | 0.0313 (18) | 0.000 (2)    | 0.0008 (16)  | 0.0022 (16)  |
| C6  | 0.044 (2)   | 0.038 (2)  | 0.042 (2)   | 0.002 (2)    | -0.0059 (18) | 0.0013 (18)  |
| C1  | 0.039 (2)   | 0.038 (2)  | 0.039 (2)   | 0.005 (2)    | 0.0005 (17)  | 0.0088 (18)  |
| C5  | 0.050 (2)   | 0.031 (2)  | 0.048 (2)   | 0.004 (2)    | -0.0048 (19) | -0.0024 (17) |
| C8  | 0.038 (2)   | 0.046 (3)  | 0.045 (2)   | 0.000 (2)    | -0.0004 (17) | 0.0026 (19)  |
| C13 | 0.050 (3)   | 0.047 (3)  | 0.064 (2)   | 0.011 (2)    | -0.009 (2)   | -0.002 (2)   |
| C12 | 0.037 (2)   | 0.062 (3)  | 0.063 (2)   | 0.007 (2)    | -0.0048 (19) | 0.001 (2)    |
| C11 | 0.044 (2)   | 0.050 (3)  | 0.045 (2)   | -0.002 (2)   | -0.0018 (17) | 0.0043 (19)  |
| C10 | 0.059 (3)   | 0.068 (3)  | 0.053 (2)   | 0.018 (3)    | -0.010 (2)   | -0.018 (2)   |
| C9  | 0.041 (2)   | 0.078 (3)  | 0.059 (2)   | 0.015 (2)    | -0.008(2)    | -0.020(2)    |
| C3  | 0.043 (2)   | 0.045 (2)  | 0.0328 (18) | 0.001 (2)    | -0.0015 (16) | -0.0032 (17) |
| C7  | 0.048 (2)   | 0.041 (2)  | 0.054 (2)   | -0.004 (2)   | -0.004 (2)   | 0.0044 (19)  |
| C4  | 0.043 (2)   | 0.040 (2)  | 0.0336 (19) | 0.005 (2)    | -0.0005 (16) | 0.0008 (17)  |
|     |             |            |             |              |              |              |

| C14  | 0.047 (2)   | 0.039 (2)   | 0.0393 (19) | -0.001 (2)  | 0.0009 (17)  | -0.0010 (17) |  |
|------|-------------|-------------|-------------|-------------|--------------|--------------|--|
| C18  | 0.047 (2)   | 0.045 (2)   | 0.040 (2)   | 0.015 (2)   | -0.0019 (18) | -0.0025 (19) |  |
| C15  | 0.077 (3)   | 0.042 (3)   | 0.053 (2)   | -0.008(2)   | 0.007 (2)    | 0.0074 (19)  |  |
| C17  | 0.071 (3)   | 0.043 (3)   | 0.066 (2)   | -0.007 (2)  | -0.009 (2)   | -0.013 (2)   |  |
| C16  | 0.065 (3)   | 0.047 (3)   | 0.058 (2)   | 0.006 (2)   | 0.009 (2)    | -0.005 (2)   |  |
| 01   | 0.0480 (17) | 0.0390 (17) | 0.0633 (17) | 0.0041 (14) | -0.0135 (13) | 0.0005 (13)  |  |
| C19A | 0.073 (10)  | 0.093 (11)  | 0.049 (9)   | 0.040 (9)   | -0.004 (8)   | 0.000 (9)    |  |
| C20A | 0.061 (11)  | 0.077 (11)  | 0.050 (9)   | 0.038 (10)  | 0.011 (9)    | 0.008 (9)    |  |
| C21A | 0.057 (10)  | 0.100 (11)  | 0.060 (10)  | 0.035 (9)   | 0.014 (9)    | 0.008 (10)   |  |
| C21  | 0.052 (6)   | 0.079 (7)   | 0.070 (7)   | 0.027 (6)   | -0.019 (6)   | -0.021 (7)   |  |
| C20  | 0.088 (8)   | 0.108 (9)   | 0.038 (6)   | 0.044 (7)   | 0.011 (6)    | 0.029 (6)    |  |
| C19  | 0.047 (8)   | 0.073 (8)   | 0.053 (6)   | 0.017 (6)   | 0.014 (5)    | 0.012 (6)    |  |
| C20B | 0.079 (8)   | 0.085 (8)   | 0.048 (7)   | 0.039 (7)   | 0.016 (6)    | 0.023 (6)    |  |
| C19B | 0.047 (9)   | 0.097 (10)  | 0.057 (6)   | 0.029 (8)   | 0.008 (6)    | 0.006 (7)    |  |
| C21B | 0.080 (9)   | 0.088 (8)   | 0.058 (7)   | 0.044 (7)   | -0.025 (7)   | -0.019 (7)   |  |
|      |             |             |             |             |              |              |  |

Geometric parameters (Å, °)

| Cl1—C11  | 1.7285 (18) | C15—H15A  | 0.9700   |
|----------|-------------|-----------|----------|
| N1—C8    | 1.426 (3)   | C15—H15B  | 0.9700   |
| N1—C7    | 1.280 (4)   | C15—H15C  | 0.9700   |
| C2—C1    | 1.398 (4)   | С17—Н17А  | 0.9700   |
| C2—C3    | 1.394 (4)   | С17—Н17В  | 0.9700   |
| C2—C14   | 1.536 (5)   | С17—Н17С  | 0.9700   |
| C6—C1    | 1.411 (5)   | C16—H16A  | 0.9700   |
| C6—C5    | 1.396 (4)   | C16—H16B  | 0.9700   |
| C6—C7    | 1.450 (4)   | C16—H16C  | 0.9700   |
| C1—O1    | 1.354 (4)   | O1—H1     | 0.91 (3) |
| С5—Н5    | 0.9400      | C19A—H19A | 0.9700   |
| C5—C4    | 1.370 (4)   | C19A—H19B | 0.9700   |
| C8—C13   | 1.3900      | C19A—H19C | 0.9700   |
| C8—C9    | 1.3900      | C20A—H20A | 0.9700   |
| С13—Н13  | 0.9400      | C20A—H20B | 0.9700   |
| C13—C12  | 1.3900      | C20A—H20C | 0.9700   |
| C12—H12  | 0.9400      | C21A—H21A | 0.9700   |
| C12—C11  | 1.3900      | C21A—H21B | 0.9700   |
| C11—C10  | 1.3900      | C21A—H21C | 0.9700   |
| C10—H10  | 0.9400      | C21—H21D  | 0.9700   |
| С10—С9   | 1.3900      | C21—H21E  | 0.9700   |
| С9—Н9    | 0.9400      | C21—H21F  | 0.9700   |
| С3—Н3    | 0.9400      | C20—H20D  | 0.9700   |
| C3—C4    | 1.401 (5)   | С20—Н20Е  | 0.9700   |
| С7—Н7    | 0.9400      | C20—H20F  | 0.9700   |
| C4—C18   | 1.540 (5)   | C19—H19D  | 0.9700   |
| C14—C15  | 1.541 (4)   | С19—Н19Е  | 0.9700   |
| C14—C17  | 1.531 (4)   | C19—H19F  | 0.9700   |
| C14—C16  | 1.539 (5)   | C20B—H20G | 0.9700   |
| C18—C19A | 1.531 (8)   | С20В—Н20Н | 0.9700   |

| C18—C20A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.536 (7)                | C20B—H20I                                                        | 0.9700  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|------------------------------------------------------------------|---------|
| C18—C21A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.537 (8)                | C19B—H19G                                                        | 0.9700  |
| C18—C21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.554 (6)                | C19B—H19H                                                        | 0.9700  |
| C18—C20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.515 (6)                | C19B—H19I                                                        | 0.9700  |
| C18—C19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.534 (6)                | C21B—H21G                                                        | 0.9700  |
| C18—C20B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.561 (7)                | C21B—H21H                                                        | 0.9700  |
| C18—C19B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.512 (6)                | C21B—H21I                                                        | 0.9700  |
| C18—C21B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.526 (6)                |                                                                  |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                                                                  |         |
| C7—N1—C8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 119.5 (3)                | H15B—C15—H15C                                                    | 109.5   |
| C1 - C2 - C14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 122.1 (3)                | C14—C17—H17A                                                     | 109.5   |
| $C_{3}$ $C_{2}$ $C_{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 116.7 (3)                | C14—C17—H17B                                                     | 109.5   |
| $C_{3}$ $C_{2}$ $C_{14}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 121.2(3)                 | C14-C17-H17C                                                     | 109.5   |
| C1 - C6 - C7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 121.2(3)<br>121.9(3)     | H17A—C17—H17B                                                    | 109.5   |
| $C_{5} - C_{6} - C_{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1194(3)                  | H17A - C17 - H17C                                                | 109.5   |
| $C_{5} - C_{6} - C_{7}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 119.1(3)<br>118.6(3)     | H17B-C17-H17C                                                    | 109.5   |
| $C_{2} - C_{1} - C_{6}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1204(3)                  | C14-C16-H16A                                                     | 109.5   |
| 01 - C1 - C2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 120.4(3)<br>120.0(3)     | C14 $C16$ $H16B$                                                 | 109.5   |
| 01 - C1 - C6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 120.0(3)                 | C14 $C16$ $H16C$                                                 | 109.5   |
| C6-C5-H5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 118.8                    | $H_{164}$ $C_{16}$ $H_{16B}$                                     | 109.5   |
| C4 - C5 - C6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 122 4 (3)                | H16A - C16 - H16C                                                | 109.5   |
| C4 - C5 - H5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 118.8                    | $H_{16B}$ $C_{16}$ $H_{16C}$                                     | 109.5   |
| $C_{13}$ $C_{8}$ $N_{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 117.5 (2)                | C1 - O1 - H1                                                     | 105.3   |
| $C_{13}$ $C_{8}$ $C_{9}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 120.0                    | $C_{18}$ $C_{194}$ $H_{194}$                                     | 109 (2) |
| $C_{1}^{0} = C_{1}^{0} = C_{1}^{0} = C_{1}^{0}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 120.0<br>122.5(2)        | $C_{18}$ $C_{19A}$ $H_{19B}$                                     | 109.5   |
| C8-C13-H13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 122.3 (2)                | C18-C19A-H19C                                                    | 109.5   |
| $C_{8}$ $C_{13}$ $C_{12}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 120.0                    | H194 - C194 - H19B                                               | 109.5   |
| C12_C13_H13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 120.0                    | H19A - C19A - H19C                                               | 109.5   |
| $C_{12} = C_{13} = H_{12}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 120.0                    | H10R C10A H10C                                                   | 109.5   |
| $C_{11} = C_{12} = C_{13}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 120.0                    | $C_{18} C_{200} H_{200}$                                         | 109.5   |
| $C_{11} = C_{12} = C_{13}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 120.0                    | $C_{18}$ $C_{20A}$ $H_{20B}$                                     | 109.5   |
| $C_{12}$ $C_{11}$ $C_{11}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 120.0                    | $C_{18}$ $C_{20A}$ $H_{20C}$                                     | 109.5   |
| $C_{12}$ $C_{11}$ $C_{11}$ $C_{11}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 120.30(15)<br>110.44(15) | H20A C20A H20B                                                   | 109.5   |
| $C_{10}$ $C_{11}$ $C_{12}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 120.0                    | H20A C20A H20C                                                   | 109.5   |
| $C_{10} = C_{11} = C_{12}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 120.0                    | H20R C20A H20C                                                   | 109.5   |
| $C_{11}$ $C_{10}$ $C_{9}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 120.0                    | $C_{18} C_{214} H_{214}$                                         | 109.5   |
| $C_{1} = C_{10} = C_{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 120.0                    | C18 C21A H21B                                                    | 109.5   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 120.0                    | $C_{18} = C_{21A} = H_{21C}$                                     | 109.5   |
| $C_{10}$ $C_{9}$ $C_{8}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 120.0                    | $H_{21A} = C_{21A} = H_{21B}$                                    | 109.5   |
| $C_{10}$ $C_{9}$ $H_{9}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 120.0                    | $\frac{1121}{121}$                                               | 109.5   |
| $C_2 C_3 H_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 117.6                    | H21R C21A H21C                                                   | 109.5   |
| $C_2 = C_3 = C_4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 117.0                    | $\begin{array}{cccccccccccccccccccccccccccccccccccc$             | 109.5   |
| $C_2 - C_3 - C_4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 124.8 (3)                | $C_{18} = C_{21} = H_{21E}$                                      | 109.5   |
| $\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 123 5 (4)                | $C_{10} - C_{21} - \Pi_{21E}$                                    | 109.5   |
| N1 C7 H7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 123.3 (4)                | $\begin{array}{c} 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 $ | 109.5   |
| $\frac{1}{1} \frac{1}{1} \frac{1}$ | 110.3                    | $\begin{array}{cccccccccccccccccccccccccccccccccccc$             | 109.5   |
| $C_{0}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 110.3<br>116.2(2)        | $\Pi_{2}\Pi_{2}\Pi_{2}\Pi_{2}\Pi_{2}\Pi_{2}\Pi_{2}\Pi_{2}$       | 109.5   |
| $C_{3} - C_{4} - C_{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 110.3(3)                 | $\Pi \angle I E = \bigcup \angle I = \Pi \angle I E$             | 109.5   |
| UJ-U4-U18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 121.8 (5)                | U10-U20-H20D                                                     | 109.5   |

| C3—C4—C18      | 121.9 (3)    | C18—C20—H20E    | 109.5       |
|----------------|--------------|-----------------|-------------|
| C2—C14—C15     | 109.7 (3)    | C18—C20—H20F    | 109.5       |
| C2—C14—C16     | 110.3 (3)    | H20D-C20-H20E   | 109.5       |
| C17—C14—C2     | 112.6 (3)    | H20D-C20-H20F   | 109.5       |
| C17—C14—C15    | 107.2 (3)    | H20E—C20—H20F   | 109.5       |
| C17—C14—C16    | 107.6 (3)    | C18—C19—H19D    | 109.5       |
| C16—C14—C15    | 109.4 (3)    | C18—C19—H19E    | 109.5       |
| C4—C18—C21     | 110.8 (5)    | C18—C19—H19F    | 109.5       |
| C4—C18—C20B    | 105.5 (5)    | H19D—C19—H19E   | 109.5       |
| C19A—C18—C4    | 114.9 (9)    | H19D—C19—H19F   | 109.5       |
| C19A—C18—C20A  | 109.0 (9)    | H19E—C19—H19F   | 109.5       |
| C19A—C18—C21A  | 108.8 (9)    | C18—C20B—H20G   | 109.5       |
| C20A—C18—C4    | 108.8 (10)   | C18—C20B—H20H   | 109.5       |
| C20A-C18-C21A  | 107.3 (8)    | C18—C20B—H20I   | 109.5       |
| C21A—C18—C4    | 107.7 (9)    | H20G-C20B-H20H  | 109.5       |
| C20—C18—C4     | 110.2 (5)    | H20G-C20B-H20I  | 109.5       |
| C20—C18—C21    | 109.2 (5)    | H20H—C20B—H20I  | 109.5       |
| C20—C18—C19    | 110.6 (6)    | C18—C19B—H19G   | 109.5       |
| C19—C18—C4     | 110.9 (5)    | С18—С19В—Н19Н   | 109.5       |
| C19—C18—C21    | 105.1 (6)    | C18—C19B—H19I   | 109.5       |
| C19B—C18—C4    | 110.7 (6)    | H19G—C19B—H19H  | 109.5       |
| C19B—C18—C20B  | 107.8 (6)    | H19G—C19B—H19I  | 109.5       |
| C19B—C18—C21B  | 113.2 (6)    | H19H—C19B—H19I  | 109.5       |
| C21B—C18—C4    | 113.6 (5)    | C18—C21B—H21G   | 109.5       |
| C21B—C18—C20B  | 105.4 (6)    | C18—C21B—H21H   | 109.5       |
| C14—C15—H15A   | 109.5        | C18—C21B—H21I   | 109.5       |
| C14—C15—H15B   | 109.5        | H21G—C21B—H21H  | 109.5       |
| C14—C15—H15C   | 109.5        | H21G—C21B—H21I  | 109.5       |
| H15A—C15—H15B  | 109.5        | H21H—C21B—H21I  | 109.5       |
| H15A—C15—H15C  | 109.5        |                 |             |
|                |              |                 |             |
| Cl1—C11—C10—C9 | -179.81 (17) | C13—C12—C11—Cl1 | 179.81 (17) |
| N1—C8—C13—C12  | 179.0 (2)    | C13—C12—C11—C10 | 0.0         |
| N1-C8-C9-C10   | -179.0 (2)   | C12—C11—C10—C9  | 0.0         |
| C2—C3—C4—C5    | 1.2 (5)      | C11—C10—C9—C8   | 0.0         |
| C2-C3-C4-C18   | -178.6 (3)   | C9—C8—C13—C12   | 0.0         |
| C6—C5—C4—C3    | -0.5 (5)     | C3—C2—C1—C6     | -0.3 (5)    |
| C6—C5—C4—C18   | 179.4 (3)    | C3—C2—C1—O1     | 179.0 (3)   |
| C1—C2—C3—C4    | -0.8 (5)     | C3—C2—C14—C15   | -120.7 (3)  |
| C1—C2—C14—C15  | 60.0 (4)     | C3—C2—C14—C17   | -1.4 (4)    |
| C1—C2—C14—C17  | 179.3 (3)    | C3—C2—C14—C16   | 118.8 (3)   |
| C1—C2—C14—C16  | -60.5 (4)    | C3—C4—C18—C19A  | -176.1 (13) |
| C1C6C5C4       | -0.6 (5)     | C3—C4—C18—C20A  | -53.6 (13)  |
| C1C6C7N1       | -1.1 (6)     | C3—C4—C18—C21A  | 62.4 (13)   |
| C5-C6-C1-C2    | 1.0 (5)      | C3—C4—C18—C21   | 26.7 (7)    |
| C5-C6-C1-O1    | -178.3 (3)   | C3—C4—C18—C20   | -94.2 (8)   |
| C5—C6—C7—N1    | 179.7 (3)    | C3—C4—C18—C19   | 143.0 (6)   |
| C5-C4-C18-C19A | 4.0 (13)     | C3—C4—C18—C20B  | -132.1 (6)  |
|                |              |                 |             |

| C5-C4-C18-C20A | 126.5 (13)  | C3—C4—C18—C19B | 111.5 (8)  |
|----------------|-------------|----------------|------------|
| C5-C4-C18-C21A | -117.4 (13) | C3—C4—C18—C21B | -17.1 (9)  |
| C5-C4-C18-C21  | -153.1 (6)  | C7—N1—C8—C13   | -150.8 (3) |
| C5-C4-C18-C20  | 85.9 (8)    | C7—N1—C8—C9    | 28.2 (4)   |
| C5-C4-C18-C19  | -36.8 (7)   | C7—C6—C1—C2    | -178.2 (3) |
| C5-C4-C18-C20B | 48.1 (7)    | C7—C6—C1—O1    | 2.5 (5)    |
| C5-C4-C18-C19B | -68.3 (8)   | C7—C6—C5—C4    | 178.7 (3)  |
| C5-C4-C18-C21B | 163.0 (8)   | C14—C2—C1—C6   | 179.1 (3)  |
| C8—N1—C7—C6    | 179.3 (3)   | C14—C2—C1—O1   | -1.7 (5)   |
| C8—C13—C12—C11 | 0.0         | C14—C2—C3—C4   | 179.8 (3)  |
| C13—C8—C9—C10  | 0.0         |                |            |
|                |             |                |            |

Hydrogen-bond geometry (Å, °)

| D—H···A  | <i>D</i> —Н | H···A    | $D \cdots A$ | D—H···A |
|----------|-------------|----------|--------------|---------|
| 01—H1…N1 | 0.91 (3)    | 1.76 (4) | 2.615 (4)    | 155 (3) |

(E)-2,4-Di-tert-butyl-6-{[(4-chlorophenyl)imino]methyl}phenol (2\_200K)

| Crystal data                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $C_{21}H_{26}CINO$ $M_r = 343.88$ Monoclinic, $P2_{1/c}$ $a = 17.8132 (12) Å$ $b = 10.4564 (6) Å$ $c = 10.2814 (6) Å$ $\beta = 91.965 (5)^{\circ}$ $V = 1913.9 (2) Å^{3}$ $Z = 4$                                                                                                                    | F(000) = 736<br>$D_x = 1.193 \text{ Mg m}^{-3}$<br>Mo K $\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$<br>Cell parameters from 3727 reflections<br>$\theta = 2.8-32.7^{\circ}$<br>$\mu = 0.21 \text{ mm}^{-1}$<br>T = 200  K<br>Block, yellow<br>$0.33 \times 0.28 \times 0.10 \text{ mm}$                                                                                                            |
| Data collection                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                          |
| Oxford Diffraction Xcalibur Sapphire3 Gemini<br>ultra<br>diffractometer<br>Radiation source: Enhance (Mo) X-ray Source<br>Graphite monochromator<br>Detector resolution: 16.1511 pixels mm <sup>-1</sup><br>ω scans<br>Absorption correction: multi-scan<br>(CrysAlis PRO; Oxford Diffraction, 2010) | $T_{\min} = 0.947, T_{\max} = 1.000$<br>11973 measured reflections<br>2833 independent reflections<br>2216 reflections with $I > 2\sigma(I)$<br>$R_{int} = 0.055$<br>$\theta_{max} = 23.5^{\circ}, \theta_{min} = 2.8^{\circ}$<br>$h = -20 \rightarrow 20$<br>$k = -11 \rightarrow 11$<br>$l = -11 \rightarrow 11$                                                                                       |
| Refinement                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                          |
| Refinement on $F^2$<br>Least-squares matrix: full<br>$R[F^2 > 2\sigma(F^2)] = 0.051$<br>$wR(F^2) = 0.120$<br>S = 1.03<br>2833 reflections<br>277 parameters<br>163 restraints                                                                                                                        | Primary atom site location: structure-invariant<br>direct methods<br>Hydrogen site location: mixed<br>H atoms treated by a mixture of independent<br>and constrained refinement<br>$w = 1/[\sigma^2(F_o^2) + (0.0449P)^2 + 1.0995P]$<br>where $P = (F_o^2 + 2F_c^2)/3$<br>$(\Delta/\sigma)_{max} = 0.001$<br>$\Delta\rho_{max} = 0.26$ e Å <sup>-3</sup><br>$\Delta\rho_{min} = -0.23$ e Å <sup>-3</sup> |

#### Special details

**Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

**Refinement**. Occupancies of the disordered tBu carbon atoms refined with their sum set to equal 1. Restraints were applied to maintain sensible thermal and geometric parameters.

| 2 $2$ $0.007000000000000000000000000000000000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           | r                          | 12                      | 7                       | <i>U</i> :*/ <i>U</i>  | Occ. (<1) |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------------------------|-------------------------|-------------------------|------------------------|-----------|
| C1111.32.7 (4)0.592.30 (7)0.78211 (7)0.0326 (6)C20.71237 (14)0.5467 (2)0.2096 (2)0.0279 (6)C60.77395 (14)0.7224 (2)0.3267 (2)0.0320 (6)C10.76975 (14)0.5920 (2)0.2943 (2)0.0298 (6)C50.71934 (15)0.8066 (2)0.2762 (2)0.0355 (7)H50.7223720.8944240.2993160.043*C80.94401 (8)0.76410 (16)0.54074 (15)0.0336 (6)C131.01456 (9)0.70715 (13)0.54523 (16)0.0397 (7)H131.0229170.6308900.4976330.044*C121.07287 (7)0.76177 (16)0.61938 (17)0.0407 (7)H131.0229170.6308900.4976330.044*C111.06064 (8)0.87334 (16)0.68903 (15)0.0362 (7)C100.99009 (10)0.93030 (14)0.68453 (16)0.0449 (7)H100.9817351.0065570.7321320.054*C30.66019 (14)0.6359 (2)0.1628 (2)0.0313 (6)H30.6209540.6064070.1055600.038*C70.83424 (15)0.7737 (3)0.4096 (2)0.0337 (7)H70.8347620.8630130.4263780.046*C40.66132 (15)0.439820.3342740.066*C140.70657 (15)0.4046 (2)0.1712 (2)0.0332 (6)C140.70657 (15)0.439820.3342740.066*C150.69801 (17)                                                                                                                                                                                                                                                                                         | <u></u>   | 1 12257 (4)                | <i>y</i><br>0.04220 (7) | 0.78211 (7)             |                        | 000.(1)   |
| N1 $0.88079 (12)$ $0.7031 (2)$ $0.4031 (2)$ $0.0306 (6)$ C2 $0.71237 (14)$ $0.5467 (2)$ $0.2096 (2)$ $0.0279 (6)$ C6 $0.77395 (14)$ $0.5920 (2)$ $0.2943 (2)$ $0.02320 (6)$ C1 $0.76975 (14)$ $0.5920 (2)$ $0.2943 (2)$ $0.0298 (6)$ C5 $0.71934 (15)$ $0.8066 (2)$ $0.2762 (2)$ $0.0355 (7)$ H5 $0.722372$ $0.894424$ $0.299316$ $0.043*$ C8 $0.94401 (8)$ $0.76410 (16)$ $0.54074 (15)$ $0.0336 (6)$ C13 $1.01456 (9)$ $0.70715 (13)$ $0.54523 (16)$ $0.0397 (7)$ H13 $1.022917$ $0.630890$ $0.497633$ $0.044*$ C12 $1.07287 (7)$ $0.76177 (16)$ $0.61938 (17)$ $0.0407 (7)$ H12 $1.121089$ $0.722839$ $0.622454$ $0.049*$ C11 $1.06064 (8)$ $0.87334 (16)$ $0.68903 (15)$ $0.0352 (7)$ C10 $0.99009 (10)$ $0.93030 (14)$ $0.68453 (16)$ $0.0449 (7)$ H10 $0.981735$ $1.006557$ $0.732132$ $0.054*$ C3 $0.66019 (14)$ $0.6359 (2)$ $0.1628 (2)$ $0.0313 (6)$ H3 $0.620954$ $0.606407$ $0.105560$ $0.038*$ C7 $0.83424 (15)$ $0.7737 (3)$ $0.4096 (2)$ $0.0337 (6)$ H7 $0.834762$ $0.863013$ $0.426378$ $0.046*$ C4 $0.60133 (15)$ $0.8594 (2)$ $0.1404 (2)$ $0.0367 (7)$ C14 $0.70657 (15)$ $0.4046 (2)$ $0.1712$                                                                                   | UII<br>N1 | 1.13237(4)                 | 0.94230(7)              | 0.78211(7)<br>0.4612(2) | 0.0322(3)              |           |
| C2 $0.11251(14)$ $0.340(12)$ $0.2050(2)$ $0.0279(0)$ C6 $0.77395(14)$ $0.7224(2)$ $0.3267(2)$ $0.0320(6)$ C1 $0.76975(14)$ $0.5920(2)$ $0.2742(2)$ $0.0329(6)$ C5 $0.71934(15)$ $0.8066(2)$ $0.2762(2)$ $0.0355(7)$ H5 $0.722372$ $0.894424$ $0.299316$ $0.043^*$ C8 $0.94401(8)$ $0.76410(16)$ $0.54074(15)$ $0.0336(6)$ C13 $1.0456(9)$ $0.70715(13)$ $0.54523(16)$ $0.0397(7)$ H13 $1.022917$ $0.630890$ $0.497633$ $0.0448^*$ C12 $1.07287(7)$ $0.76177(16)$ $0.61938(17)$ $0.0407(7)$ H12 $1.121089$ $0.722839$ $0.622454$ $0.049^*$ C11 $1.06064(8)$ $0.87334(16)$ $0.6893(15)$ $0.0362(7)$ C10 $0.99009(10)$ $0.93030(14)$ $0.68453(16)$ $0.0499^*$ C11 $1.06057$ $0.732132$ $0.054^*$ C9 $0.93178(7)$ $0.87568(16)$ $0.61039(17)$ $0.0451(8)$ H9 $0.883562$ $0.914610$ $0.607313$ $0.054^*$ C3 $0.66019(14)$ $0.6359(2)$ $0.1628(2)$ $0.0383(7)$ H7 $0.8424762$ $0.863013$ $0.426378$ $0.046^*$ C4 $0.66142(14)$ $0.7664(2)$ $0.1712(2)$ $0.0332(6)$ C14 $0.70657(15)$ $0.4046(2)$ $0.1714(2)$ $0.0367(7)$ C15 $0.69801(17)$ $0.322(3)$ $0.2931(3)$ $0.0439(7)$ C16 $0.60133(15)$                                                                                                             | NI<br>C2  | 0.88079(12)<br>0.71237(14) | 0.7031(2)<br>0.5467(2)  | 0.4015(2)<br>0.2006(2)  | 0.0300(0)<br>0.0270(6) |           |
| Co $0.7/595 (14)$ $0.7224 (2)$ $0.526 (2)$ $0.0220 (6)$ C1 $0.76975 (14)$ $0.5920 (2)$ $0.2943 (2)$ $0.0298 (6)$ C5 $0.71934 (15)$ $0.8066 (2)$ $0.2762 (2)$ $0.0355 (7)$ H5 $0.722372$ $0.894424$ $0.299316$ $0.043*$ C8 $0.94401 (8)$ $0.76410 (16)$ $0.54074 (15)$ $0.0336 (6)$ C13 $1.01456 (9)$ $0.70715 (13)$ $0.5423 (16)$ $0.0397 (7)$ H13 $1.022917$ $0.630890$ $0.497633$ $0.0407 (7)$ H12 $1.121089$ $0.722839$ $0.622454$ $0.0407 (7)$ H12 $1.121089$ $0.722839$ $0.622454$ $0.049*$ C11 $1.06064 (8)$ $0.87334 (16)$ $0.68903 (15)$ $0.0362 (7)$ C10 $0.99009 (10)$ $0.93030 (14)$ $0.68453 (16)$ $0.0449 (7)$ H10 $0.981735$ $1.006557$ $0.732132$ $0.054*$ C9 $0.93178 (7)$ $0.87568 (16)$ $0.61039 (17)$ $0.0451 (8)$ H9 $0.883562$ $0.914610$ $0.607313$ $0.054*$ C3 $0.66019 (14)$ $0.6359 (2)$ $0.1628 (2)$ $0.0313 (6)$ H3 $0.620954$ $0.606407$ $0.105560$ $0.038*$ C7 $0.83424 (15)$ $0.7737 (3)$ $0.4096 (2)$ $0.0332 (6)$ C14 $0.70657 (15)$ $0.4046 (2)$ $0.1712 (2)$ $0.0332 (6)$ C15 $0.69801 (17)$ $0.3222 (3)$ $0.2911 (3)$ $0.046*$ C4 $0.60133 (15)$ $0.343982$ $0.334274$                                                                                             | C2        | 0.71237(14)<br>0.77205(14) | 0.3407(2)               | 0.2090(2)               | 0.0279(0)              |           |
| C1 $0.7975(14)$ $0.3920(2)$ $0.2943(2)$ $0.0298(6)$ C5 $0.71934(15)$ $0.8066(2)$ $0.2762(2)$ $0.0355(7)$ H5 $0.722372$ $0.894424$ $0.299316$ $0.043*$ C8 $0.94401(8)$ $0.76410(16)$ $0.54074(15)$ $0.0336(6)$ C13 $1.01456(9)$ $0.70715(13)$ $0.54523(16)$ $0.0397(7)$ H13 $1.022917$ $0.630890$ $0.497633$ $0.048*$ C12 $1.07287(7)$ $0.76177(16)$ $0.61938(17)$ $0.0407(7)$ H12 $1.121089$ $0.722839$ $0.622454$ $0.049*$ C11 $1.0606(8)$ $0.87334(16)$ $0.68903(15)$ $0.0362(7)$ C10 $0.99009(10)$ $0.93030(14)$ $0.68453(16)$ $0.0449(7)$ H10 $0.981735$ $1.006557$ $0.732132$ $0.54*$ C9 $0.93178(7)$ $0.87568(16)$ $0.61039(17)$ $0.0451(8)$ H9 $0.883562$ $0.914610$ $0.607313$ $0.054*$ C3 $0.66019(14)$ $0.6359(2)$ $0.1628(2)$ $0.0338(7)$ H7 $0.834762$ $0.863013$ $0.426378$ $0.046*$ C4 $0.66142(14)$ $0.7664(2)$ $0.1743(2)$ $0.0332(6)$ C14 $0.70657(15)$ $0.4046(2)$ $0.1712(2)$ $0.0332(6)$ C15 $0.69801(17)$ $0.343821$ $0.342474$ $0.066*$ H15B $0.740316$ $0.338251$ $0.354345$ $0.066*$ H15B $0.740316$ $0.338251$ $0.354345$ $0.066*$ H15A $0.664801$ <                                                                                                                         | C6        | 0.77395 (14)               | 0.7224 (2)              | 0.3267 (2)              | 0.0320 (6)             |           |
| CS $0.71934$ (15) $0.8066$ (2) $0.2762$ (2) $0.0355$ (7)H5 $0.722372$ $0.894424$ $0.299316$ $0.043*$ C8 $0.94401$ (8) $0.76410$ (16) $0.54074$ (15) $0.0336$ (6)C13 $1.01456$ (9) $0.70715$ (13) $0.54523$ (16) $0.0397$ (7)H13 $1.022917$ $0.630890$ $0.497633$ $0.044*$ C12 $1.07287$ (7) $0.76177$ (16) $0.61938$ (17) $0.0407$ (7)H12 $1.121089$ $0.722839$ $0.622454$ $0.049*$ C11 $1.06064$ (8) $0.87334$ (16) $0.68903$ (15) $0.0362$ (7)C10 $0.99009$ (10) $0.93030$ (14) $0.68453$ (16) $0.0449$ (7)H10 $0.981735$ $1.006557$ $0.732132$ $0.054*$ C9 $0.93178$ (7) $0.87568$ (16) $0.61039$ (17) $0.0451$ (8)H9 $0.883562$ $0.914610$ $0.607313$ $0.054*$ C3 $0.66019$ (14) $0.6359$ (2) $0.1628$ (2) $0.0313$ (6)H3 $0.620954$ $0.606407$ $0.105560$ $0.038*$ C7 $0.83424$ (15) $0.7737$ (3) $0.4096$ (2) $0.0332$ (6)C14 $0.70657$ (15) $0.4046$ (2) $0.1712$ (2) $0.0332$ (6)C15 $0.69801$ (17) $0.3222$ (3) $0.2931$ (3) $0.046*$ C4 $0.66132$ (14) $0.343982$ $0.334274$ $0.666*$ C15 $0.69801$ (17) $0.3222$ (3) $0.2931$ (3) $0.0465$ (8)H15B $0.740316$ $0.338251$ $0.354345$                                                                                                        | CI        | 0.76975 (14)               | 0.5920 (2)              | 0.2943 (2)              | 0.0298 (6)             |           |
| H5 $0.722372$ $0.894424$ $0.299316$ $0.043^*$ C8 $0.94401$ (8) $0.76410$ (16) $0.54074$ (15) $0.0336$ (6)C13 $1.01456$ (9) $0.70715$ (13) $0.54523$ (16) $0.0397$ (7)H13 $1.022917$ $0.630890$ $0.497633$ $0.048^*$ C12 $1.07287$ (7) $0.76177$ (16) $0.61938$ (17) $0.0407$ (7)H12 $1.121089$ $0.722839$ $0.622454$ $0.049^*$ C11 $1.06064$ (8) $0.87334$ (16) $0.68903$ (15) $0.0362$ (7)C10 $0.99009$ (10) $0.93030$ (14) $0.68453$ (16) $0.0449$ (7)H10 $0.981735$ $1.006557$ $0.732132$ $0.054^*$ C3 $0.66019$ (14) $0.6359$ (2) $0.1628$ (2) $0.0313$ (6)H3 $0.620954$ $0.606407$ $0.105560$ $0.038^*$ C7 $0.83424$ (15) $0.7737$ (3) $0.4096$ (2) $0.0333$ (7)H7 $0.834762$ $0.863013$ $0.426378$ $0.404^*$ C4 $0.66142$ (14) $0.7664$ (2) $0.1712$ (2) $0.0322$ (6)C14 $0.70657$ (15) $0.4046$ (2) $0.1712$ (2) $0.0326$ (7)C15 $0.69801$ (17) $0.3222$ (3) $0.2931$ (3) $0.0439$ (7)H15A $0.650891$ $0.338251$ $0.354345$ $0.666^*$ H15B $0.740316$ $0.338251$ $0.354345$ $0.666^*$ H15B $0.740316$ $0.338251$ $0.354345$ $0.666^*$ H17A $0.644000$ $0.425686$ $-0.001560$ $0.070^*$ <td>C5</td> <td>0.71934 (15)</td> <td>0.8066 (2)</td> <td>0.2762 (2)</td> <td>0.0355 (7)</td> <td></td> | C5        | 0.71934 (15)               | 0.8066 (2)              | 0.2762 (2)              | 0.0355 (7)             |           |
| C8 $0.94401(8)$ $0.76410(16)$ $0.54074(15)$ $0.0336(6)$ C13 $1.01456(9)$ $0.70715(13)$ $0.54523(16)$ $0.0397(7)$ H13 $1.022917$ $0.630890$ $0.497633$ $0.048*$ C12 $1.07287(7)$ $0.76177(16)$ $0.61938(17)$ $0.0407(7)$ H12 $1.121089$ $0.722839$ $0.622454$ $0.049*$ C11 $1.06064(8)$ $0.87334(16)$ $0.68903(15)$ $0.3622(7)$ C10 $0.99009(10)$ $0.93030(14)$ $0.68453(16)$ $0.0449(7)$ H10 $0.981735$ $1.006557$ $0.732132$ $0.054*$ C9 $0.93178(7)$ $0.87568(16)$ $0.61039(17)$ $0.0451(8)$ H9 $0.883562$ $0.914610$ $0.607313$ $0.054*$ C3 $0.66019(14)$ $0.6359(2)$ $0.1628(2)$ $0.0313(6)$ H3 $0.620954$ $0.606407$ $0.105560$ $0.038*$ C7 $0.83424(15)$ $0.7737(3)$ $0.4096(2)$ $0.0307(6)$ C4 $0.66142(14)$ $0.7664(2)$ $0.1712(2)$ $0.0322(6)$ C14 $0.70657(15)$ $0.4046(2)$ $0.1712(2)$ $0.0322(6)$ C18 $0.60891$ $0.343982$ $0.334274$ $0.066*$ H15B $0.740316$ $0.338251$ $0.354345$ $0.066*$ H15B $0.740316$ $0.338251$ $0.354345$ $0.066*$ H17A $0.644000$ $0.4225686$ $-0.001560$ $0.070*$                                                                                                                                                                                             | H5        | 0.722372                   | 0.894424                | 0.299316                | 0.043*                 |           |
| C131.01456 (9)0.70715 (13)0.54523 (16)0.0397 (7)H131.0229170.6308900.4976330.048*C121.07287 (7)0.76177 (16)0.61938 (17)0.0407 (7)H121.1210890.7228390.6224540.049*C111.06064 (8)0.87334 (16)0.68903 (15)0.0362 (7)C100.99009 (10)0.93030 (14)0.68453 (16)0.0449 (7)H100.9817351.0065570.7321320.054*C90.93178 (7)0.87568 (16)0.61039 (17)0.0451 (8)H90.8835620.9146100.6073130.054*C30.66019 (14)0.6359 (2)0.1528 (2)0.0313 (6)H30.6209540.6064070.1055600.038*C70.83424 (15)0.7737 (3)0.4096 (2)0.0303 (7)H70.8347620.8630130.4263780.046*C40.66142 (14)0.7664 (2)0.1712 (2)0.0332 (6)C180.60133 (15)0.8594 (2)0.1404 (2)0.0367 (7)C150.69801 (17)0.3222 (3)0.2931 (3)0.0439 (7)H15A0.6508910.3439820.3342740.066*H15B0.7403160.3382510.3543450.066*H15B0.7403160.3382510.3543450.066*C170.63888 (17)0.3774 (3)0.0794 (3)0.0465 (8)H17A0.6440000.425686 $-0.001560$ 0.070*H17A0.6440000.425686 $-0.001$                                                                                                                                                                                                                                                                                              | C8        | 0.94401 (8)                | 0.76410 (16)            | 0.54074 (15)            | 0.0336 (6)             |           |
| H131.0229170.6308900.4976330.048*C121.07287 (7)0.76177 (16)0.61938 (17)0.0407 (7)H121.1210890.7228390.6224540.049*C111.06064 (8)0.87334 (16)0.68903 (15)0.0362 (7)C100.99009 (10)0.93030 (14)0.68453 (16)0.0449 (7)H100.9817351.0065570.7321320.054*C90.93178 (7)0.87568 (16)0.61039 (17)0.0451 (8)H90.8835620.9146100.6073130.054*C30.66019 (14)0.6359 (2)0.1628 (2)0.0313 (6)H30.6209540.6064070.1055600.038*C70.83424 (15)0.7737 (3)0.4096 (2)0.0307 (6)C140.76657 (15)0.4046 (2)0.1712 (2)0.0322 (6)C180.60133 (15)0.8594 (2)0.1404 (2)0.0367 (7)C150.69801 (17)0.3222 (3)0.2931 (3)0.0439 (7)H15A0.6508910.3382510.3543450.066*H15B0.7403160.3382510.3543450.066*H15C0.6973590.2316020.2685410.066*C170.63888 (17)0.3774 (3)0.0794 (3)0.0465 (8)H17A0.6440000.425686-0.0015600.070*                                                                                                                                                                                                                                                                                                                                                                                                              | C13       | 1.01456 (9)                | 0.70715 (13)            | 0.54523 (16)            | 0.0397 (7)             |           |
| C12 $1.07287 (7)$ $0.76177 (16)$ $0.61938 (17)$ $0.0407 (7)$ H12 $1.121089$ $0.722839$ $0.622454$ $0.049*$ C11 $1.06064 (8)$ $0.87334 (16)$ $0.68903 (15)$ $0.0362 (7)$ C10 $0.99009 (10)$ $0.93030 (14)$ $0.68453 (16)$ $0.0449 (7)$ H10 $0.981735$ $1.006557$ $0.732132$ $0.054*$ C9 $0.93178 (7)$ $0.87568 (16)$ $0.61039 (17)$ $0.0451 (8)$ H9 $0.883562$ $0.914610$ $0.607313$ $0.054*$ C3 $0.66019 (14)$ $0.6359 (2)$ $0.1628 (2)$ $0.0313 (6)$ H3 $0.620954$ $0.606407$ $0.105560$ $0.038*$ C7 $0.83424 (15)$ $0.7737 (3)$ $0.4096 (2)$ $0.0383 (7)$ H7 $0.834762$ $0.863013$ $0.426378$ $0.046*$ C4 $0.66142 (14)$ $0.7664 (2)$ $0.1712 (2)$ $0.0332 (6)$ C18 $0.60133 (15)$ $0.8594 (2)$ $0.1404 (2)$ $0.0367 (7)$ C15 $0.69801 (17)$ $0.3222 (3)$ $0.2931 (3)$ $0.0439 (7)$ H15A $0.650891$ $0.338251$ $0.354345$ $0.666*$ H15B $0.740316$ $0.338251$ $0.354345$ $0.666*$ H15C $0.697359$ $0.231602$ $0.268541$ $0.066*$ C17 $0.63888 (17)$ $0.3774 (3)$ $0.0794 (3)$ $0.0465 (8)$ H17A $0.644000$ $0.425686$ $-0.001560$ $0.070*$                                                                                                                                                          | H13       | 1.022917                   | 0.630890                | 0.497633                | 0.048*                 |           |
| H121.1210890.7228390.6224540.049*C111.06064 (8)0.87334 (16)0.68903 (15)0.0362 (7)C100.99009 (10)0.93030 (14)0.68453 (16)0.0449 (7)H100.9817351.0065570.7321320.054*C90.93178 (7)0.87568 (16)0.61039 (17)0.0451 (8)H90.8835620.9146100.6073130.054*C30.66019 (14)0.6359 (2)0.1628 (2)0.0313 (6)H30.6209540.6064070.1055600.038*C70.83424 (15)0.7737 (3)0.4096 (2)0.0383 (7)H70.8347620.8630130.4263780.046*C40.66142 (14)0.7664 (2)0.1712 (2)0.0322 (6)C180.60133 (15)0.8594 (2)0.1404 (2)0.0367 (7)C150.69801 (17)0.3222 (3)0.2931 (3)0.0439 (7)H15A0.6508910.3439820.3342740.666*H15B0.7403160.3382510.3543450.666*H15C0.6973590.2316020.2685410.066*C170.63888 (17)0.3774 (3)0.0794 (3)0.0465 (8)H17A0.6440000.425686-0.0015600.070*H17A0.5926810.4034780.1211750.070*                                                                                                                                                                                                                                                                                                                                                                                                                              | C12       | 1.07287 (7)                | 0.76177 (16)            | 0.61938 (17)            | 0.0407 (7)             |           |
| C111.06064 (8)0.87334 (16)0.68903 (15)0.0362 (7)C100.99009 (10)0.93030 (14)0.68453 (16)0.0449 (7)H100.9817351.0065570.7321320.054*C90.93178 (7)0.87568 (16)0.61039 (17)0.0451 (8)H90.8835620.9146100.6073130.054*C30.66019 (14)0.6359 (2)0.1628 (2)0.0313 (6)H30.6209540.6064070.1055600.038*C70.83424 (15)0.7737 (3)0.4096 (2)0.0383 (7)H70.8347620.8630130.4263780.046*C40.66142 (14)0.7664 (2)0.1712 (2)0.0322 (6)C180.60133 (15)0.8594 (2)0.1404 (2)0.0367 (7)C150.69801 (17)0.3222 (3)0.2931 (3)0.0439 (7)H15A0.6508910.3439820.3342740.066*H15B0.7403160.3382510.3543450.066*H15C0.6973590.2316020.2685410.066*C170.63888 (17)0.3774 (3)0.0794 (3)0.0465 (8)H17A0.6440000.425686-0.0015600.070*H17B0.5926810.4034780.1211750.070*                                                                                                                                                                                                                                                                                                                                                                                                                                                               | H12       | 1.121089                   | 0.722839                | 0.622454                | 0.049*                 |           |
| C100.99009 (10)0.93030 (14)0.68453 (16)0.0449 (7)H100.9817351.0065570.7321320.054*C90.93178 (7)0.87568 (16)0.61039 (17)0.0451 (8)H90.8835620.9146100.6073130.054*C30.66019 (14)0.6359 (2)0.1628 (2)0.0313 (6)H30.6209540.6064070.1055600.038*C70.83424 (15)0.7737 (3)0.4096 (2)0.0383 (7)H70.8347620.8630130.4263780.046*C40.66142 (14)0.7664 (2)0.1712 (2)0.0307 (6)C140.70657 (15)0.4046 (2)0.1712 (2)0.0367 (7)C150.69801 (17)0.3222 (3)0.2931 (3)0.0439 (7)H15A0.6508910.3439820.3342740.066*H15B0.7403160.3382510.3543450.066*C170.63888 (17)0.3774 (3)0.0794 (3)0.0465 (8)H17A0.6440000.425686-0.0015600.070*H17B0.5926810.4034780.1211750.070*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C11       | 1.06064 (8)                | 0.87334 (16)            | 0.68903 (15)            | 0.0362 (7)             |           |
| H100.9817351.0065570.7321320.054*C90.93178 (7)0.87568 (16)0.61039 (17)0.0451 (8)H90.8835620.9146100.6073130.054*C30.66019 (14)0.6359 (2)0.1628 (2)0.0313 (6)H30.6209540.6064070.1055600.038*C70.83424 (15)0.7737 (3)0.4096 (2)0.0383 (7)H70.8347620.8630130.4263780.046*C40.66142 (14)0.7664 (2)0.1712 (2)0.0322 (6)C140.70657 (15)0.4046 (2)0.1712 (2)0.0367 (7)C150.69801 (17)0.3222 (3)0.2931 (3)0.0439 (7)H15A0.6508910.3439820.3342740.066*H15B0.7403160.3382510.3543450.066*H15C0.6973590.2316020.2685410.066*C170.63888 (17)0.3774 (3)0.0794 (3)0.0465 (8)H17A0.6440000.425686-0.0015600.070*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C10       | 0.99009 (10)               | 0.93030 (14)            | 0.68453 (16)            | 0.0449 (7)             |           |
| C90.93178 (7)0.87568 (16)0.61039 (17)0.0451 (8)H90.8835620.9146100.6073130.054*C30.66019 (14)0.6359 (2)0.1628 (2)0.0313 (6)H30.6209540.6064070.1055600.038*C70.83424 (15)0.7737 (3)0.4096 (2)0.0383 (7)H70.8347620.8630130.4263780.046*C40.66142 (14)0.7664 (2)0.1943 (2)0.0307 (6)C140.70657 (15)0.4046 (2)0.1712 (2)0.0322 (6)C180.60133 (15)0.8594 (2)0.1404 (2)0.0367 (7)C150.69801 (17)0.3222 (3)0.2931 (3)0.0439 (7)H15A0.6508910.3439820.3342740.066*H15B0.7403160.3382510.3543450.066*H15C0.6973590.2316020.2685410.066*C170.63888 (17)0.3774 (3)0.0794 (3)0.0465 (8)H17A0.6440000.425686-0.0015600.070*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | H10       | 0.981735                   | 1.006557                | 0.732132                | 0.054*                 |           |
| H90.8835620.9146100.6073130.054*C30.66019 (14)0.6359 (2)0.1628 (2)0.0313 (6)H30.6209540.6064070.1055600.038*C70.83424 (15)0.7737 (3)0.4096 (2)0.0383 (7)H70.8347620.8630130.4263780.046*C40.66142 (14)0.7664 (2)0.1712 (2)0.0307 (6)C140.70657 (15)0.4046 (2)0.1712 (2)0.0367 (7)C150.69801 (17)0.3222 (3)0.2931 (3)0.0439 (7)H15A0.6508910.3439820.3342740.066*H15B0.7403160.3382510.3543450.066*H15C0.6973590.2316020.2685410.066*C170.63888 (17)0.3774 (3)0.0794 (3)0.0465 (8)H17A0.6440000.425686-0.0015600.070*H17B0.5926810.4034780.1211750.070*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C9        | 0.93178 (7)                | 0.87568 (16)            | 0.61039 (17)            | 0.0451 (8)             |           |
| C30.66019 (14)0.6359 (2)0.1628 (2)0.0313 (6)H30.6209540.6064070.1055600.038*C70.83424 (15)0.7737 (3)0.4096 (2)0.0383 (7)H70.8347620.8630130.4263780.046*C40.66142 (14)0.7664 (2)0.1943 (2)0.0307 (6)C140.70657 (15)0.4046 (2)0.1712 (2)0.0332 (6)C180.60133 (15)0.8594 (2)0.1404 (2)0.0367 (7)C150.69801 (17)0.3222 (3)0.2931 (3)0.0439 (7)H15A0.6508910.3439820.3342740.066*H15B0.7403160.3382510.3543450.066*H15C0.6973590.2316020.2685410.066*C170.63888 (17)0.3774 (3)0.0794 (3)0.0465 (8)H17A0.6440000.425686-0.0015600.070*H17B0.5926810.4034780.1211750.070*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Н9        | 0.883562                   | 0.914610                | 0.607313                | 0.054*                 |           |
| H30.6209540.6064070.1055600.038*C70.83424 (15)0.7737 (3)0.4096 (2)0.0383 (7)H70.8347620.8630130.4263780.046*C40.66142 (14)0.7664 (2)0.1943 (2)0.0307 (6)C140.70657 (15)0.4046 (2)0.1712 (2)0.0322 (6)C180.60133 (15)0.8594 (2)0.1404 (2)0.0367 (7)C150.69801 (17)0.3222 (3)0.2931 (3)0.0439 (7)H15A0.6508910.3439820.3342740.066*H15B0.7403160.3382510.3543450.066*H15C0.6973590.2316020.2685410.066*C170.63888 (17)0.3774 (3)0.0794 (3)0.0465 (8)H17A0.6440000.425686-0.0015600.070*H17B0.5926810.4034780.1211750.070*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | C3        | 0.66019 (14)               | 0.6359 (2)              | 0.1628 (2)              | 0.0313 (6)             |           |
| C70.83424 (15)0.7737 (3)0.4096 (2)0.0383 (7)H70.8347620.8630130.4263780.046*C40.66142 (14)0.7664 (2)0.1943 (2)0.0307 (6)C140.70657 (15)0.4046 (2)0.1712 (2)0.0322 (6)C180.60133 (15)0.8594 (2)0.1404 (2)0.0367 (7)C150.69801 (17)0.3222 (3)0.2931 (3)0.0439 (7)H15A0.6508910.3439820.3342740.066*H15B0.7403160.3382510.3543450.066*C170.63888 (17)0.3774 (3)0.0794 (3)0.0465 (8)H17A0.6440000.425686-0.0015600.070*H17B0.5926810.4034780.1211750.070*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | H3        | 0.620954                   | 0.606407                | 0.105560                | 0.038*                 |           |
| H70.8347620.8630130.4263780.046*C40.66142 (14)0.7664 (2)0.1943 (2)0.0307 (6)C140.70657 (15)0.4046 (2)0.1712 (2)0.0322 (6)C180.60133 (15)0.8594 (2)0.1404 (2)0.0367 (7)C150.69801 (17)0.3222 (3)0.2931 (3)0.0439 (7)H15A0.6508910.3439820.3342740.066*H15B0.7403160.3382510.3543450.066*H15C0.6973590.2316020.2685410.066*C170.63888 (17)0.3774 (3)0.0794 (3)0.0465 (8)H17A0.6440000.425686-0.0015600.070*H17B0.5926810.4034780.1211750.070*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C7        | 0.83424 (15)               | 0.7737 (3)              | 0.4096 (2)              | 0.0383 (7)             |           |
| C40.66142 (14)0.7664 (2)0.1943 (2)0.0307 (6)C140.70657 (15)0.4046 (2)0.1712 (2)0.0332 (6)C180.60133 (15)0.8594 (2)0.1404 (2)0.0367 (7)C150.69801 (17)0.3222 (3)0.2931 (3)0.0439 (7)H15A0.6508910.3439820.3342740.066*H15B0.7403160.3382510.3543450.066*H15C0.6973590.2316020.2685410.066*C170.63888 (17)0.3774 (3)0.0794 (3)0.0465 (8)H17A0.6440000.425686-0.0015600.070*H17B0.5926810.4034780.1211750.070*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | H7        | 0.834762                   | 0.863013                | 0.426378                | 0.046*                 |           |
| C140.70657 (15)0.4046 (2)0.1712 (2)0.0332 (6)C180.60133 (15)0.8594 (2)0.1404 (2)0.0367 (7)C150.69801 (17)0.3222 (3)0.2931 (3)0.0439 (7)H15A0.6508910.3439820.3342740.066*H15B0.7403160.3382510.3543450.066*H15C0.6973590.2316020.2685410.066*C170.63888 (17)0.3774 (3)0.0794 (3)0.0465 (8)H17A0.6440000.425686-0.0015600.070*H17B0.5926810.4034780.1211750.070*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C4        | 0.66142 (14)               | 0.7664 (2)              | 0.1943 (2)              | 0.0307 (6)             |           |
| C180.60133 (15)0.8594 (2)0.1404 (2)0.0367 (7)C150.69801 (17)0.3222 (3)0.2931 (3)0.0439 (7)H15A0.6508910.3439820.3342740.066*H15B0.7403160.3382510.3543450.066*H15C0.6973590.2316020.2685410.066*C170.63888 (17)0.3774 (3)0.0794 (3)0.0465 (8)H17A0.6440000.425686-0.0015600.070*H17B0.5926810.4034780.1211750.070*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C14       | 0.70657 (15)               | 0.4046 (2)              | 0.1712 (2)              | 0.0332 (6)             |           |
| C150.69801 (17)0.3222 (3)0.2931 (3)0.0439 (7)H15A0.6508910.3439820.3342740.066*H15B0.7403160.3382510.3543450.066*H15C0.6973590.2316020.2685410.066*C170.63888 (17)0.3774 (3)0.0794 (3)0.0465 (8)H17A0.6440000.425686-0.0015600.070*H17B0.5926810.4034780.1211750.070*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C18       | 0.60133 (15)               | 0.8594 (2)              | 0.1404 (2)              | 0.0367 (7)             |           |
| H15A0.6508910.3439820.3342740.066*H15B0.7403160.3382510.3543450.066*H15C0.6973590.2316020.2685410.066*C170.63888 (17)0.3774 (3)0.0794 (3)0.0465 (8)H17A0.6440000.425686-0.0015600.070*H17B0.5926810.4034780.1211750.070*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C15       | 0.69801 (17)               | 0.3222 (3)              | 0.2931 (3)              | 0.0439 (7)             |           |
| H15B0.7403160.3382510.3543450.066*H15C0.6973590.2316020.2685410.066*C170.63888 (17)0.3774 (3)0.0794 (3)0.0465 (8)H17A0.6440000.425686-0.0015600.070*H17B0.5926810.4034780.1211750.070*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | H15A      | 0.650891                   | 0.343982                | 0.334274                | 0.066*                 |           |
| H15C0.6973590.2316020.2685410.066*C170.63888 (17)0.3774 (3)0.0794 (3)0.0465 (8)H17A0.6440000.425686-0.0015600.070*H17B0.5926810.4034780.1211750.070*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | H15B      | 0.740316                   | 0.338251                | 0.354345                | 0.066*                 |           |
| C170.63888 (17)0.3774 (3)0.0794 (3)0.0465 (8)H17A0.6440000.425686-0.0015600.070*H17B0.5926810.4034780.1211750.070*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | H15C      | 0.697359                   | 0.231602                | 0.268541                | 0.066*                 |           |
| H17A 0.644000 0.425686 -0.001560 0.070*<br>H17B 0.592681 0.403478 0.121175 0.070*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C17       | 0.63888 (17)               | 0.3774 (3)              | 0.0794 (3)              | 0.0465 (8)             |           |
| H17B 0.592681 0.403478 0.121175 0.070*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | H17A      | 0.644000                   | 0.425686                | -0.001560               | 0.070*                 |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | H17B      | 0.592681                   | 0.403478                | 0.121175                | 0.070*                 |           |
| H17C 0.636648 0.285761 0.059765 0.070*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | H17C      | 0.636648                   | 0.285761                | 0.059765                | 0.070*                 |           |
| C16 $0.77756(16)$ $0.3643(3)$ $0.0999(3)$ $0.0428(7)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C16       | 0.77756 (16)               | 0.3643(3)               | 0.0999(3)               | 0.0428(7)              |           |
| H16A 0.821972 0.377903 0.157111 0.064*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | H16A      | 0.821972                   | 0.377903                | 0.157111                | 0.064*                 |           |
| H16B 0.781899 0.415848 0.020850 0.064*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | H16B      | 0.781899                   | 0.415848                | 0.020850                | 0.064*                 |           |
| H16C 0.773942 0.273671 0.076322 0.064*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | H16C      | 0.773942                   | 0.273671                | 0.076322                | 0.064*                 |           |
| $O_1 = 0.82194(11) = 0.50987(17) = 0.34582(18) = 0.0402(5)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 01        | 0.82194 (11)               | 0.50987(17)             | 0.34582(18)             | 0.0402 (5)             |           |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

| H1   | 0.8546 (16) | 0.558 (3)   | 0.393 (3)   | 0.048*      |           |
|------|-------------|-------------|-------------|-------------|-----------|
| C19A | 0.5841 (6)  | 0.9688 (8)  | 0.2335 (9)  | 0.056 (2)   | 0.397 (3) |
| H19A | 0.578196    | 0.934541    | 0.321271    | 0.084*      | 0.397 (3) |
| H19B | 0.537477    | 1.011330    | 0.204144    | 0.084*      | 0.397 (3) |
| H19C | 0.625456    | 1.030547    | 0.234649    | 0.084*      | 0.397 (3) |
| C20A | 0.6207 (5)  | 0.9049 (9)  | 0.0084 (6)  | 0.0584 (17) | 0.397 (3) |
| H20A | 0.668299    | 0.951978    | 0.014029    | 0.088*      | 0.397 (3) |
| H20B | 0.580867    | 0.961318    | -0.026060   | 0.088*      | 0.397 (3) |
| H20C | 0.625793    | 0.831309    | -0.049733   | 0.088*      | 0.397 (3) |
| C21A | 0.5242 (4)  | 0.7860 (7)  | 0.1286 (9)  | 0.0549 (18) | 0.397 (3) |
| H21A | 0.528405    | 0.715012    | 0.067022    | 0.082*      | 0.397 (3) |
| H21B | 0.484766    | 0.844851    | 0.097309    | 0.082*      | 0.397 (3) |
| H21C | 0.511489    | 0.752489    | 0.214062    | 0.082*      | 0.397 (3) |
| C21  | 0.5428 (6)  | 0.7975 (9)  | 0.0490 (11) | 0.059 (2)   | 0.352 (3) |
| H21D | 0.567894    | 0.757403    | -0.023963   | 0.089*      | 0.352 (3) |
| H21E | 0.507726    | 0.862852    | 0.015734    | 0.089*      | 0.352 (3) |
| H21F | 0.515184    | 0.732302    | 0.096381    | 0.089*      | 0.352 (3) |
| C20  | 0.6425 (5)  | 0.9631 (9)  | 0.0597 (10) | 0.0515 (19) | 0.352 (3) |
| H20D | 0.679851    | 1.007013    | 0.115857    | 0.077*      | 0.352 (3) |
| H20E | 0.605841    | 1.025285    | 0.025090    | 0.077*      | 0.352 (3) |
| H20F | 0.667725    | 0.921987    | -0.012572   | 0.077*      | 0.352 (3) |
| C19  | 0.5651 (7)  | 0.9280 (11) | 0.2518 (9)  | 0.052 (2)   | 0.352 (3) |
| H19D | 0.539501    | 0.865724    | 0.305942    | 0.078*      | 0.352 (3) |
| H19E | 0.528618    | 0.990367    | 0.216956    | 0.078*      | 0.352 (3) |
| H19F | 0.603881    | 0.972415    | 0.304559    | 0.078*      | 0.352 (3) |
| C20B | 0.6386 (7)  | 0.9930 (8)  | 0.1258 (13) | 0.058 (2)   | 0.251 (3) |
| H20G | 0.653661    | 1.025970    | 0.211976    | 0.086*      | 0.251 (3) |
| H20H | 0.602626    | 1.051980    | 0.083568    | 0.086*      | 0.251 (3) |
| H20I | 0.682966    | 0.985101    | 0.072560    | 0.086*      | 0.251 (3) |
| C19B | 0.5392 (6)  | 0.8693 (14) | 0.2343 (11) | 0.056 (2)   | 0.251 (3) |
| H19G | 0.512683    | 0.787352    | 0.238268    | 0.085*      | 0.251 (3) |
| H19H | 0.503938    | 0.936304    | 0.205344    | 0.085*      | 0.251 (3) |
| H19I | 0.560231    | 0.890857    | 0.320895    | 0.085*      | 0.251 (3) |
| C21B | 0.5742 (8)  | 0.8229 (13) | 0.0027 (8)  | 0.052 (2)   | 0.251 (3) |
| H21G | 0.617596    | 0.811044    | -0.052123   | 0.078*      | 0.251 (3) |
| H21H | 0.542180    | 0.891235    | -0.033717   | 0.078*      | 0.251 (3) |
| H21I | 0.545401    | 0.743186    | 0.005536    | 0.078*      | 0.251 (3) |
|      |             |             |             |             |           |

Atomic displacement parameters  $(\mathring{A}^2)$ 

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$     | $U^{23}$     |
|-----|-------------|-------------|-------------|--------------|--------------|--------------|
| Cl1 | 0.0446 (5)  | 0.0534 (5)  | 0.0575 (5)  | -0.0118 (4)  | -0.0160 (3)  | 0.0012 (4)   |
| N1  | 0.0321 (13) | 0.0390 (13) | 0.0384 (12) | -0.0005 (11) | -0.0057 (10) | -0.0001 (10) |
| C2  | 0.0293 (15) | 0.0303 (14) | 0.0241 (12) | -0.0015 (12) | 0.0004 (11)  | 0.0034 (11)  |
| C6  | 0.0318 (15) | 0.0323 (14) | 0.0317 (13) | 0.0003 (12)  | -0.0022 (11) | 0.0006 (12)  |
| C1  | 0.0280 (14) | 0.0319 (14) | 0.0294 (13) | 0.0044 (12)  | 0.0004 (11)  | 0.0068 (11)  |
| C5  | 0.0398 (17) | 0.0264 (14) | 0.0400 (15) | 0.0036 (13)  | -0.0049 (13) | -0.0008 (12) |
| C8  | 0.0290 (15) | 0.0388 (15) | 0.0327 (14) | -0.0008 (13) | -0.0024 (11) | 0.0000 (12)  |
|     |             |             |             |              |              |              |

| C13  | 0.0360 (17) | 0.0376 (15) | 0.0448 (16) | 0.0061 (14)  | -0.0072 (13) | -0.0049 (13) |
|------|-------------|-------------|-------------|--------------|--------------|--------------|
| C12  | 0.0292 (16) | 0.0444 (17) | 0.0483 (16) | 0.0078 (14)  | -0.0039 (13) | 0.0035 (14)  |
| C11  | 0.0334 (16) | 0.0408 (16) | 0.0339 (14) | -0.0063 (13) | -0.0039 (12) | 0.0043 (13)  |
| C10  | 0.0424 (18) | 0.0496 (18) | 0.0421 (16) | 0.0099 (15)  | -0.0080 (13) | -0.0145 (14) |
| C9   | 0.0328 (17) | 0.0578 (19) | 0.0444 (16) | 0.0137 (15)  | -0.0052 (13) | -0.0134 (15) |
| C3   | 0.0307 (15) | 0.0372 (15) | 0.0257 (13) | 0.0004 (12)  | -0.0018 (11) | -0.0005 (11) |
| C7   | 0.0397 (17) | 0.0320 (14) | 0.0429 (16) | -0.0021 (13) | -0.0043 (13) | 0.0009 (13)  |
| C4   | 0.0325 (15) | 0.0322 (14) | 0.0273 (13) | 0.0044 (12)  | -0.0021 (11) | 0.0013 (11)  |
| C14  | 0.0362 (16) | 0.0298 (14) | 0.0336 (14) | -0.0008 (12) | -0.0005 (12) | -0.0004 (12) |
| C18  | 0.0394 (17) | 0.0371 (15) | 0.0333 (14) | 0.0111 (13)  | -0.0036 (12) | -0.0019 (12) |
| C15  | 0.055 (2)   | 0.0340 (15) | 0.0423 (16) | -0.0049 (15) | 0.0023 (14)  | 0.0032 (13)  |
| C17  | 0.0493 (19) | 0.0377 (16) | 0.0519 (17) | -0.0046 (15) | -0.0081 (14) | -0.0083 (14) |
| C16  | 0.0474 (18) | 0.0367 (15) | 0.0444 (16) | 0.0057 (14)  | 0.0038 (14)  | -0.0038 (13) |
| 01   | 0.0377 (12) | 0.0338 (10) | 0.0482 (11) | 0.0038 (9)   | -0.0120 (9)  | 0.0007 (9)   |
| C19A | 0.055 (4)   | 0.063 (4)   | 0.049 (3)   | 0.028 (4)    | -0.005 (3)   | 0.001 (4)    |
| C20A | 0.062 (4)   | 0.071 (4)   | 0.042 (3)   | 0.030 (3)    | -0.006 (3)   | 0.008 (3)    |
| C21A | 0.052 (4)   | 0.059 (4)   | 0.053 (4)   | 0.022 (3)    | -0.012 (3)   | 0.001 (3)    |
| C21  | 0.063 (4)   | 0.065 (4)   | 0.049 (4)   | 0.028 (4)    | -0.022 (4)   | -0.003 (4)   |
| C20  | 0.058 (4)   | 0.067 (4)   | 0.030 (4)   | 0.031 (3)    | 0.006 (3)    | 0.012 (3)    |
| C19  | 0.048 (5)   | 0.064 (5)   | 0.044 (3)   | 0.024 (4)    | 0.003 (3)    | 0.007 (4)    |
| C20B | 0.060 (4)   | 0.064 (4)   | 0.048 (4)   | 0.026 (4)    | -0.009 (3)   | 0.007 (4)    |
| C19B | 0.054 (5)   | 0.067 (5)   | 0.048 (4)   | 0.026 (4)    | -0.002 (4)   | 0.005 (4)    |
| C21B | 0.056 (4)   | 0.062 (4)   | 0.038 (4)   | 0.028 (4)    | -0.007 (3)   | 0.004 (4)    |
|      |             |             |             |              |              |              |

#### Geometric parameters (Å, °)

| Cl1—C11 | 1.7302 (13) | C15—H15A  | 0.9800   |
|---------|-------------|-----------|----------|
| N1—C8   | 1.425 (2)   | C15—H15B  | 0.9800   |
| N1—C7   | 1.280 (3)   | C15—H15C  | 0.9800   |
| C2—C1   | 1.402 (3)   | C17—H17A  | 0.9800   |
| C2—C3   | 1.391 (3)   | C17—H17B  | 0.9800   |
| C2—C14  | 1.540 (3)   | C17—H17C  | 0.9800   |
| C6—C1   | 1.405 (3)   | C16—H16A  | 0.9800   |
| C6—C5   | 1.398 (3)   | C16—H16B  | 0.9800   |
| С6—С7   | 1.450 (4)   | C16—H16C  | 0.9800   |
| C1—O1   | 1.360 (3)   | O1—H1     | 0.90 (3) |
| С5—Н5   | 0.9500      | C19A—H19A | 0.9800   |
| C5—C4   | 1.375 (3)   | C19A—H19B | 0.9800   |
| C8—C13  | 1.3900      | C19A—H19C | 0.9800   |
| C8—C9   | 1.3900      | C20A—H20A | 0.9800   |
| С13—Н13 | 0.9500      | C20A—H20B | 0.9800   |
| C13—C12 | 1.3900      | C20A—H20C | 0.9800   |
| C12—H12 | 0.9500      | C21A—H21A | 0.9800   |
| C12—C11 | 1.3900      | C21A—H21B | 0.9800   |
| C11—C10 | 1.3900      | C21A—H21C | 0.9800   |
| C10—H10 | 0.9500      | C21—H21D  | 0.9800   |
| С10—С9  | 1.3900      | C21—H21E  | 0.9800   |
| С9—Н9   | 0.9500      | C21—H21F  | 0.9800   |
|         |             |           |          |

| С3—Н3                                    | 0.9500                 | C20—H20D                                             | 0.9800     |
|------------------------------------------|------------------------|------------------------------------------------------|------------|
| C3—C4                                    | 1.402 (4)              | C20—H20E                                             | 0.9800     |
| С7—Н7                                    | 0.9500                 | C20—H20F                                             | 0.9800     |
| C4—C18                                   | 1.535 (3)              | C19—H19D                                             | 0.9800     |
| C14—C15                                  | 1.533 (4)              | C19—H19E                                             | 0.9800     |
| C14—C17                                  | 1.532 (4)              | C19—H19F                                             | 0.9800     |
| C14—C16                                  | 1.542 (4)              | C20B—H20G                                            | 0.9800     |
| C18—C19A                                 | 1.530 (6)              | C20B—H20H                                            | 0.9800     |
| C18—C20A                                 | 1.490 (6)              | C20B—H20I                                            | 0.9800     |
| C18—C21A                                 | 1.574 (6)              | C19B—H19G                                            | 0.9800     |
| C18—C21                                  | 1.524 (6)              | С19В—Н19Н                                            | 0.9800     |
| C18—C20                                  | 1.564 (6)              | C19B—H19I                                            | 0.9800     |
| C18 - C19                                | 1 515 (6)              | C21B—H21G                                            | 0.9800     |
| C18—C20B                                 | 1.556 (7)              | C21B—H21H                                            | 0.9800     |
| C18 - C19B                               | 1.398(7)<br>1 498(7)   | C21B—H21I                                            | 0.9800     |
| C18 - C21B                               | 1.528 (6)              |                                                      | 0.9000     |
| 010 0210                                 | 1.520 (0)              |                                                      |            |
| C7—N1—C8                                 | 1196(2)                | H15B—C15—H15C                                        | 109 5      |
| $C_1 - C_2 - C_{14}$                     | 119.0(2)<br>121.8(2)   | C14— $C17$ — $H17A$                                  | 109.5      |
| $C_1 C_2 C_{14}$                         | 121.0(2)<br>1169(2)    | C14 $C17$ $H17B$                                     | 109.5      |
| $C_{3}-C_{2}-C_{14}$                     | 110.9(2)<br>121.4(2)   | C14 $C17$ $H17C$                                     | 109.5      |
| $C_{1} - C_{6} - C_{7}$                  | 121.4(2)<br>122.0(2)   | H17A - C17 - H17B                                    | 109.5      |
| $C_{1} = C_{0} = C_{1}$                  | 122.0(2)<br>119.5(2)   | H17A - C17 - H17C                                    | 109.5      |
| $C_5 = C_6 = C_7$                        | 119.5(2)<br>118.5(2)   | H17B C17 H17C                                        | 109.5      |
| $C_{2} = C_{1} = C_{1}$                  | 110.5(2)<br>120.5(2)   | $C_{14}$ $C_{16}$ $H_{16A}$                          | 109.5      |
| $01 \ 01 \ 02$                           | 120.3(2)<br>120.2(2)   | C14 $C16$ $H16B$                                     | 109.5      |
| 01 - 01 - 02                             | 120.2(2)<br>110 $A(2)$ | C14 $C16$ $H16C$                                     | 109.5      |
| C6 C5 H5                                 | 119.4 (2)              | H16A C16 H16B                                        | 109.5      |
| $C_{4}$ $C_{5}$ $C_{6}$                  | 122.2 (2)              |                                                      | 109.5      |
| C4 = C5 = U5                             | 122.2 (2)              | H16P C16 H16C                                        | 109.5      |
| $C_1^2 = C_2^2 = M_1^2$                  | 110.9<br>117.40(14)    | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 109.5      |
| C13 - C8 - C0                            | 117.49 (14)            | C18 $C10A$ $H10A$                                    | 100.1 (18) |
| $C_{13}$ $C_{0}$ $C_{0}$ $C_{0}$ $N_{1}$ | 120.0<br>122.50(14)    | C18 C10A H10P                                        | 109.5      |
| $C_{2}$ $C_{12}$ $H_{12}$                | 122.30 (14)            | $C_{18}$ $C_{19A}$ $H_{10C}$                         | 109.5      |
| $C_{8} = C_{13} = C_{12}$                | 120.0                  | H10A C10A H10P                                       | 109.5      |
| $C_0 = C_{13} = C_{12}$                  | 120.0                  |                                                      | 109.5      |
| С12—С13—П13                              | 120.0                  | H10R C10A H10C                                       | 109.5      |
| C13 - C12 - C12                          | 120.0                  | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 109.5      |
| C11 - C12 - C13                          | 120.0                  | $C_{18}$ $C_{20A}$ $H_{20B}$                         | 109.5      |
| C12 - C12 - C12                          | 120.0<br>120.57(10)    | $C_{18}$ $C_{20A}$ $H_{20C}$                         | 109.5      |
| C12— $C11$ — $C10$                       | 120.37 (10)            | C10 - C20A - H20C                                    | 109.5      |
| C12— $C11$ — $C10$                       | 120.0                  | $H_{20A} = C_{20A} = H_{20B}$                        | 109.5      |
|                                          | 119.43 (10)            | $H_{20}A = C_{20}A = H_{20}C$                        | 109.5      |
| $C_{11} - C_{10} - H_{10}$               | 120.0                  | $H_2UB - U_2UA - H_2UU$                              | 109.5      |
| $C_{0} = C_{10} = U_{10}$                | 120.0                  | $C_{18} = C_{21A} = H_{21A}$                         | 109.5      |
| $C_{\text{P}}$                           | 120.0                  | $C_{18}$ $C_{21A}$ $H_{21B}$                         | 109.5      |
| С8—С9—Н9                                 | 120.0                  | UI8—U21A—H2IU                                        | 109.5      |
| C10-C9-C8                                | 120.0                  | H21A—C21A—H21B                                       | 109.5      |
| C10-C9-H9                                | 120.0                  | H21A—C21A—H21C                                       | 109.5      |
| С2—С3—Н3       | 117.7        | H21B—C21A—H21C  | 109.5       |
|----------------|--------------|-----------------|-------------|
| C2—C3—C4       | 124.6 (2)    | C18—C21—H21D    | 109.5       |
| С4—С3—Н3       | 117.7        | C18—C21—H21E    | 109.5       |
| N1—C7—C6       | 123.6 (2)    | C18—C21—H21F    | 109.5       |
| N1—C7—H7       | 118.2        | H21D—C21—H21E   | 109.5       |
| С6—С7—Н7       | 118.2        | H21D—C21—H21F   | 109.5       |
| C5—C4—C3       | 116.3 (2)    | H21E—C21—H21F   | 109.5       |
| C5—C4—C18      | 121.8 (2)    | C18—C20—H20D    | 109.5       |
| C3—C4—C18      | 121.8 (2)    | C18—C20—H20E    | 109.5       |
| C2-C14-C16     | 109.7 (2)    | C18—C20—H20F    | 109.5       |
| C15—C14—C2     | 109.9 (2)    | H20D—C20—H20E   | 109.5       |
| C15—C14—C16    | 110.0 (2)    | H20D—C20—H20F   | 109.5       |
| C17—C14—C2     | 112.4 (2)    | H20E—C20—H20F   | 109.5       |
| C17—C14—C15    | 107.5 (2)    | C18—C19—H19D    | 109.5       |
| C17—C14—C16    | 107.3 (2)    | C18—C19—H19E    | 109.5       |
| C4—C18—C21A    | 108.4 (3)    | C18—C19—H19F    | 109.5       |
| C4—C18—C20     | 107.3 (4)    | H19D—C19—H19E   | 109.5       |
| C4—C18—C20B    | 108.0 (5)    | H19D—C19—H19F   | 109.5       |
| C19A—C18—C4    | 113.6 (5)    | H19E—C19—H19F   | 109.5       |
| C19A—C18—C21A  | 102.6 (5)    | C18—C20B—H20G   | 109.5       |
| C20A—C18—C4    | 110.5 (4)    | C18—C20B—H20H   | 109.5       |
| C20A—C18—C19A  | 112.9 (5)    | C18—C20B—H20I   | 109.5       |
| C20A—C18—C21A  | 108.3 (5)    | H20G—C20B—H20H  | 109.5       |
| C21—C18—C4     | 114.1 (4)    | H20G—C20B—H20I  | 109.5       |
| C21—C18—C20    | 106.9 (5)    | H20H—C20B—H20I  | 109.5       |
| C19—C18—C4     | 109.7 (5)    | C18—C19B—H19G   | 109.5       |
| C19—C18—C21    | 111.6 (6)    | C18—C19B—H19H   | 109.5       |
| C19—C18—C20    | 107.0 (5)    | C18—C19B—H19I   | 109.5       |
| C19B—C18—C4    | 109.4 (5)    | H19G—C19B—H19H  | 109.5       |
| C19B—C18—C20B  | 109.1 (6)    | H19G—C19B—H19I  | 109.5       |
| C19B—C18—C21B  | 113.4 (7)    | H19H—C19B—H19I  | 109.5       |
| C21B—C18—C4    | 111.8 (5)    | C18—C21B—H21G   | 109.5       |
| C21B—C18—C20B  | 104.9 (6)    | C18—C21B—H21H   | 109.5       |
| C14—C15—H15A   | 109.5        | C18—C21B—H21I   | 109.5       |
| C14—C15—H15B   | 109.5        | H21G—C21B—H21H  | 109.5       |
| C14—C15—H15C   | 109.5        | H21G—C21B—H21I  | 109.5       |
| H15A—C15—H15B  | 109.5        | H21H—C21B—H21I  | 109.5       |
| H15A—C15—H15C  | 109.5        |                 |             |
|                |              |                 |             |
| Cl1—C11—C10—C9 | -179.83 (13) | C13—C12—C11—C11 | 179.83 (13) |
| N1—C8—C13—C12  | 178.92 (17)  | C13—C12—C11—C10 | 0.0         |
| N1—C8—C9—C10   | -178.86 (18) | C12—C11—C10—C9  | 0.0         |
| C2—C3—C4—C5    | 0.7 (4)      | C11—C10—C9—C8   | 0.0         |
| C2—C3—C4—C18   | -179.2 (2)   | C9—C8—C13—C12   | 0.0         |
| C6—C5—C4—C3    | -0.5 (4)     | C3—C2—C1—C6     | -1.3 (3)    |
| C6—C5—C4—C18   | 179.4 (2)    | C3—C2—C1—O1     | 178.8 (2)   |
| C1—C2—C3—C4    | 0.2 (4)      | C3—C2—C14—C15   | -119.8 (3)  |
| C1—C2—C14—C15  | 59.5 (3)     | C3—C2—C14—C17   | 0.0 (3)     |
|                | . /          |                 |             |

| C1—C2—C14—C17  | 179.2 (2)  | C3—C2—C14—C16  | 119.2 (3)  |
|----------------|------------|----------------|------------|
| C1-C2-C14-C16  | -61.5 (3)  | C3—C4—C18—C19A | 147.8 (5)  |
| C1—C6—C5—C4    | -0.6 (4)   | C3-C4-C18-C20A | -84.1 (5)  |
| C1—C6—C7—N1    | -1.5 (4)   | C3-C4-C18-C21A | 34.5 (4)   |
| C5-C6-C1-C2    | 1.5 (4)    | C3-C4-C18-C21  | -1.3 (6)   |
| C5-C6-C1-O1    | -178.6 (2) | C3—C4—C18—C20  | -119.5 (5) |
| C5—C6—C7—N1    | 179.6 (2)  | C3—C4—C18—C19  | 124.6 (5)  |
| C5-C4-C18-C19A | -32.1 (5)  | C3—C4—C18—C20B | -148.9 (6) |
| C5-C4-C18-C20A | 96.0 (5)   | C3—C4—C18—C19B | 92.5 (7)   |
| C5-C4-C18-C21A | -145.4 (4) | C3—C4—C18—C21B | -34.0 (7)  |
| C5-C4-C18-C21  | 178.7 (6)  | C7—N1—C8—C13   | -150.8(2)  |
| C5-C4-C18-C20  | 60.5 (5)   | C7—N1—C8—C9    | 28.1 (3)   |
| C5—C4—C18—C19  | -55.3 (6)  | C7—C6—C1—C2    | -177.3 (2) |
| C5-C4-C18-C20B | 31.2 (6)   | C7—C6—C1—O1    | 2.6 (4)    |
| C5-C4-C18-C19B | -87.4 (7)  | C7—C6—C5—C4    | 178.3 (2)  |
| C5-C4-C18-C21B | 146.1 (7)  | C14—C2—C1—C6   | 179.4 (2)  |
| C8—N1—C7—C6    | 179.6 (2)  | C14—C2—C1—O1   | -0.5 (3)   |
| C8—C13—C12—C11 | 0.0        | C14—C2—C3—C4   | 179.4 (2)  |
| C13—C8—C9—C10  | 0.0        |                | ~ /        |
|                |            |                |            |

Hydrogen-bond geometry (Å, °)

| D—H···A  | D—H      | H···A    | D···A     | <i>D</i> —H··· <i>A</i> |
|----------|----------|----------|-----------|-------------------------|
| 01—H1…N1 | 0.90 (3) | 1.78 (3) | 2.611 (3) | 153 (3)                 |

(*E*)-2,4-Di-*tert*-butyl-6-{[(4-chlorophenyl)imino]methyl}phenol (2\_150K)

Crystal data

| C <sub>21</sub> H <sub>26</sub> ClNO | F(000) = 736                                          |
|--------------------------------------|-------------------------------------------------------|
| $M_r = 343.88$                       | $D_{\rm x} = 1.202 {\rm Mg} {\rm m}^{-3}$             |
| Monoclinic, $P2_1/c$                 | Mo <i>K</i> $\alpha$ radiation, $\lambda = 0.71073$ Å |
| a = 17.7326 (13)  Å                  | Cell parameters from 1441 reflections                 |
| b = 10.4696 (7) Å                    | $\theta = 2.8 - 30.5^{\circ}$                         |
| c = 10.2385 (7) Å                    | $\mu = 0.21 \text{ mm}^{-1}$                          |
| $\beta = 91.536 \ (6)^{\circ}$       | T = 150  K                                            |
| V = 1900.1 (2) Å <sup>3</sup>        | Block, yellow                                         |
| Z = 4                                | $0.33 \times 0.28 \times 0.10 \text{ mm}$             |
| Data collection                      |                                                       |
|                                      |                                                       |

| Oxford Diffraction Acanour Sappnires Gemini          | $I_{\rm min} = 0.793, I_{\rm max} = 1.000$                      |
|------------------------------------------------------|-----------------------------------------------------------------|
| ultra                                                | 8155 measured reflections                                       |
| diffractometer                                       | 3481 independent reflections                                    |
| Radiation source: Enhance (Mo) X-ray Source          | 2376 reflections with $I > 2\sigma(I)$                          |
| Graphite monochromator                               | $R_{\rm int} = 0.053$                                           |
| Detector resolution: 16.1511 pixels mm <sup>-1</sup> | $\theta_{\rm max} = 25.4^\circ, \ \theta_{\rm min} = 2.8^\circ$ |
| $\omega$ scans                                       | $h = -21 \rightarrow 17$                                        |
| Absorption correction: multi-scan                    | $k = -8 \rightarrow 12$                                         |
| (CrysAlis PRO; Oxford Diffraction, 2010)             | $l = -12 \rightarrow 11$                                        |
|                                                      |                                                                 |

Refinement

| Refinement on $F^2$             | Primary atom site location: structure-invariant       |
|---------------------------------|-------------------------------------------------------|
| Least-squares matrix: full      | direct methods                                        |
| $R[F^2 > 2\sigma(F^2)] = 0.063$ | Hydrogen site location: mixed                         |
| $wR(F^2) = 0.138$               | H atoms treated by a mixture of independent           |
| <i>S</i> = 1.08                 | and constrained refinement                            |
| 3481 reflections                | $w = 1/[\sigma^2(F_o^2) + (0.0448P)^2 + 0.2028P]$     |
| 289 parameters                  | where $P = (F_o^2 + 2F_c^2)/3$                        |
| 151 restraints                  | $(\Delta/\sigma)_{\rm max} = 0.001$                   |
|                                 | $\Delta  ho_{ m max} = 0.25 \ { m e} \ { m \AA}^{-3}$ |
|                                 | $\Delta \rho_{\min} = -0.30 \text{ e} \text{ Å}^{-3}$ |
| Special details                 |                                                       |

**Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

**Refinement**. Occupancies of the disordered tBu carbon atoms refined with their sum set to equal 1. Restraints were applied to maintain sensible thermal and geometric parameters.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

|      | x            | у           | Ζ           | $U_{ m iso}$ */ $U_{ m eq}$ | Occ. (<1) |
|------|--------------|-------------|-------------|-----------------------------|-----------|
| Cl1  | 1.13334 (4)  | 0.94171 (8) | 0.78231 (7) | 0.0418 (3)                  |           |
| N1   | 0.88685 (13) | 0.7046 (2)  | 0.4618 (2)  | 0.0297 (6)                  |           |
| C2   | 0.71247 (15) | 0.5465 (3)  | 0.2086 (2)  | 0.0245 (6)                  |           |
| C6   | 0.77422 (15) | 0.7228 (3)  | 0.3264 (3)  | 0.0280 (7)                  |           |
| C1   | 0.76983 (15) | 0.5921 (3)  | 0.2944 (2)  | 0.0250 (6)                  |           |
| C5   | 0.71949 (16) | 0.8067 (3)  | 0.2757 (3)  | 0.0302 (7)                  |           |
| Н5   | 0.722319     | 0.894499    | 0.298693    | 0.036*                      |           |
| C8   | 0.94438 (15) | 0.7641 (3)  | 0.5403 (2)  | 0.0287 (7)                  |           |
| C13  | 1.01462 (16) | 0.7066 (3)  | 0.5473 (3)  | 0.0321 (7)                  |           |
| H13  | 1.022808     | 0.629200    | 0.501449    | 0.038*                      |           |
| C12  | 1.07347 (16) | 0.7610 (3)  | 0.6210 (3)  | 0.0321 (7)                  |           |
| H12  | 1.121797     | 0.721810    | 0.624755    | 0.039*                      |           |
| C11  | 1.06059 (16) | 0.8723 (3)  | 0.6883 (3)  | 0.0297 (7)                  |           |
| C10  | 0.99071 (17) | 0.9303 (3)  | 0.6841 (3)  | 0.0351 (8)                  |           |
| H10  | 0.982626     | 1.007216    | 0.730892    | 0.042*                      |           |
| C9   | 0.93248 (17) | 0.8753 (3)  | 0.6110 (3)  | 0.0363 (8)                  |           |
| Н9   | 0.883967     | 0.913852    | 0.609226    | 0.044*                      |           |
| C3   | 0.66052 (15) | 0.6364 (3)  | 0.1612 (2)  | 0.0272 (7)                  |           |
| Н3   | 0.621635     | 0.607362    | 0.102877    | 0.033*                      |           |
| C7   | 0.83423 (16) | 0.7736 (3)  | 0.4093 (3)  | 0.0317 (7)                  |           |
| H7   | 0.834888     | 0.862856    | 0.425839    | 0.038*                      |           |
| C4   | 0.66156 (15) | 0.7661 (3)  | 0.1933 (2)  | 0.0270 (7)                  |           |
| C14  | 0.70711 (16) | 0.4052 (3)  | 0.1698 (3)  | 0.0287 (7)                  |           |
| C18  | 0.60129 (16) | 0.8594 (3)  | 0.1399 (2)  | 0.0321 (7)                  |           |
| C15  | 0.69702 (17) | 0.3223 (3)  | 0.2924 (3)  | 0.0363 (8)                  |           |
| H15A | 0.649041     | 0.343670    | 0.332380    | 0.054*                      |           |
| H15B | 0.738638     | 0.338686    | 0.355051    | 0.054*                      |           |

| H15C | 0.696970     | 0.231892     | 0.267668     | 0.054*      |           |
|------|--------------|--------------|--------------|-------------|-----------|
| C17  | 0.63941 (17) | 0.3789 (3)   | 0.0769 (3)   | 0.0403 (8)  |           |
| H17A | 0.644986     | 0.427880     | -0.003839    | 0.060*      |           |
| H17B | 0.592770     | 0.404457     | 0.118977     | 0.060*      |           |
| H17C | 0.637276     | 0.287527     | 0.056258     | 0.060*      |           |
| C16  | 0.77834 (17) | 0.3638 (3)   | 0.0987 (3)   | 0.0354 (8)  |           |
| H16A | 0.822729     | 0.376740     | 0.156286     | 0.053*      |           |
| H16B | 0.783395     | 0.414892     | 0.019286     | 0.053*      |           |
| H16C | 0.774305     | 0.273199     | 0.075345     | 0.053*      |           |
| 01   | 0.82193 (11) | 0.50931 (19) | 0.34592 (18) | 0.0328 (5)  |           |
| H1   | 0.8557 (16)  | 0.557 (3)    | 0.395 (3)    | 0.039*      |           |
| C19A | 0.5825 (6)   | 0.9664 (8)   | 0.2365 (8)   | 0.043 (2)   | 0.407 (3) |
| H19A | 0.567673     | 0.928696     | 0.319604     | 0.064*      | 0.407 (3) |
| H19B | 0.540770     | 1.017991     | 0.200353     | 0.064*      | 0.407 (3) |
| H19C | 0.626896     | 1.020681     | 0.251144     | 0.064*      | 0.407 (3) |
| C20A | 0.6231 (5)   | 0.9095 (9)   | 0.0092 (6)   | 0.0491 (17) | 0.407 (3) |
| H20A | 0.664481     | 0.970860     | 0.020627     | 0.074*      | 0.407 (3) |
| H20B | 0.579588     | 0.952041     | -0.032896    | 0.074*      | 0.407 (3) |
| H20C | 0.639393     | 0.838544     | -0.045638    | 0.074*      | 0.407 (3) |
| C21A | 0.5240 (4)   | 0.7858 (7)   | 0.1221 (9)   | 0.0483 (18) | 0.407 (3) |
| H21A | 0.529982     | 0.715328     | 0.060292     | 0.072*      | 0.407 (3) |
| H21B | 0.485159     | 0.844677     | 0.088449     | 0.072*      | 0.407 (3) |
| H21C | 0.508887     | 0.751749     | 0.206657     | 0.072*      | 0.407 (3) |
| C21  | 0.5479 (6)   | 0.8008 (11)  | 0.0366 (10)  | 0.051 (2)   | 0.355 (3) |
| H21D | 0.577046     | 0.769907     | -0.036924    | 0.076*      | 0.355 (3) |
| H21E | 0.511748     | 0.865597     | 0.005605     | 0.076*      | 0.355 (3) |
| H21F | 0.520528     | 0.729261     | 0.075035     | 0.076*      | 0.355 (3) |
| C20  | 0.6437 (5)   | 0.9698 (9)   | 0.0682 (9)   | 0.044 (2)   | 0.355 (3) |
| H20D | 0.671569     | 1.021830     | 0.132766     | 0.067*      | 0.355 (3) |
| H20E | 0.606890     | 1.023480     | 0.020727     | 0.067*      | 0.355 (3) |
| H20F | 0.678952     | 0.933012     | 0.006542     | 0.067*      | 0.355 (3) |
| C19  | 0.5599 (6)   | 0.9184 (11)  | 0.2518 (8)   | 0.041 (3)   | 0.355 (3) |
| H19D | 0.533487     | 0.851489     | 0.299348     | 0.062*      | 0.355 (3) |
| H19E | 0.523300     | 0.980935     | 0.217642     | 0.062*      | 0.355 (3) |
| H19F | 0.596164     | 0.961166     | 0.311072     | 0.062*      | 0.355 (3) |
| C20B | 0.6394 (8)   | 0.9925 (10)  | 0.1248 (14)  | 0.047 (2)   | 0.238 (3) |
| H20G | 0.656770     | 1.023417     | 0.210814     | 0.071*      | 0.238 (3) |
| H20H | 0.602862     | 1.052981     | 0.086629     | 0.071*      | 0.238 (3) |
| H20I | 0.682573     | 0.984762     | 0.067536     | 0.071*      | 0.238 (3) |
| C19B | 0.5385 (7)   | 0.8741 (16)  | 0.2359 (12)  | 0.044 (2)   | 0.238 (3) |
| H19G | 0.508464     | 0.795580     | 0.237052     | 0.066*      | 0.238 (3) |
| H19H | 0.506234     | 0.946000     | 0.209426     | 0.066*      | 0.238 (3) |
| H19I | 0.560280     | 0.890126     | 0.323341     | 0.066*      | 0.238 (3) |
| C21B | 0.5727 (9)   | 0.8205 (16)  | 0.0033 (9)   | 0.046 (2)   | 0.238 (3) |
| H21G | 0.615410     | 0.815201     | -0.055321    | 0.069*      | 0.238 (3) |
| H21H | 0.536654     | 0.884326     | -0.029949    | 0.069*      | 0.238 (3) |
| H21I | 0.547892     | 0.737087     | 0.007774     | 0.069*      | 0.238 (3) |
|      |              |              |              |             | - (-)     |

| Atomic displacement parameters (Å | <sup>2</sup> ) |
|-----------------------------------|----------------|
|-----------------------------------|----------------|

|      | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$     | U <sup>23</sup> |
|------|-------------|-------------|-------------|--------------|--------------|-----------------|
| Cl1  | 0.0364 (5)  | 0.0420 (5)  | 0.0462 (5)  | -0.0084 (4)  | -0.0123 (3)  | 0.0002 (4)      |
| N1   | 0.0267 (14) | 0.0293 (15) | 0.0330 (13) | -0.0019 (12) | -0.0032 (10) | 0.0010 (11)     |
| C2   | 0.0247 (15) | 0.0264 (17) | 0.0224 (14) | -0.0003 (13) | 0.0026 (11)  | 0.0019 (12)     |
| C6   | 0.0260 (16) | 0.0272 (18) | 0.0308 (15) | 0.0000 (13)  | -0.0021 (12) | 0.0010 (13)     |
| C1   | 0.0231 (15) | 0.0256 (17) | 0.0264 (15) | 0.0018 (13)  | 0.0013 (11)  | 0.0039 (12)     |
| C5   | 0.0353 (18) | 0.0204 (17) | 0.0347 (16) | 0.0010 (13)  | -0.0046 (13) | -0.0009 (13)    |
| C8   | 0.0268 (16) | 0.0319 (18) | 0.0271 (15) | -0.0007 (14) | -0.0040 (12) | 0.0013 (13)     |
| C13  | 0.0320 (17) | 0.0276 (18) | 0.0364 (17) | 0.0075 (14)  | -0.0033 (13) | -0.0021 (13)    |
| C12  | 0.0259 (16) | 0.0330 (19) | 0.0373 (17) | 0.0049 (14)  | -0.0037 (13) | 0.0020 (14)     |
| C11  | 0.0271 (17) | 0.0342 (19) | 0.0275 (15) | -0.0046 (14) | -0.0050 (12) | 0.0029 (13)     |
| C10  | 0.0332 (18) | 0.0371 (19) | 0.0350 (17) | 0.0079 (15)  | -0.0027 (13) | -0.0107 (14)    |
| C9   | 0.0278 (17) | 0.044 (2)   | 0.0372 (17) | 0.0088 (15)  | -0.0041 (13) | -0.0064 (15)    |
| C3   | 0.0281 (16) | 0.0328 (18) | 0.0204 (14) | 0.0010 (13)  | -0.0041 (11) | -0.0032 (12)    |
| C7   | 0.0325 (18) | 0.0258 (17) | 0.0366 (17) | -0.0002 (14) | -0.0032 (13) | 0.0006 (13)     |
| C4   | 0.0266 (16) | 0.0297 (18) | 0.0247 (15) | 0.0031 (13)  | -0.0013 (11) | 0.0010 (12)     |
| C14  | 0.0285 (17) | 0.0258 (17) | 0.0317 (16) | 0.0004 (13)  | -0.0021 (12) | -0.0018 (13)    |
| C18  | 0.0361 (18) | 0.0294 (18) | 0.0304 (16) | 0.0097 (14)  | -0.0037 (13) | -0.0012 (13)    |
| C15  | 0.044 (2)   | 0.0284 (18) | 0.0362 (17) | -0.0061 (15) | 0.0008 (14)  | 0.0018 (14)     |
| C17  | 0.043 (2)   | 0.033 (2)   | 0.0442 (19) | -0.0035 (16) | -0.0077 (14) | -0.0060 (15)    |
| C16  | 0.0400 (19) | 0.0301 (18) | 0.0360 (17) | 0.0042 (15)  | 0.0003 (13)  | -0.0038 (14)    |
| 01   | 0.0302 (12) | 0.0266 (12) | 0.0410 (12) | 0.0040 (10)  | -0.0103 (9)  | 0.0000 (9)      |
| C19A | 0.036 (4)   | 0.053 (5)   | 0.038 (3)   | 0.018 (4)    | 0.000 (3)    | 0.002 (4)       |
| C20A | 0.051 (4)   | 0.060 (4)   | 0.036 (4)   | 0.028 (3)    | -0.003 (3)   | 0.008 (3)       |
| C21A | 0.041 (4)   | 0.052 (4)   | 0.051 (4)   | 0.022 (3)    | -0.012 (3)   | -0.002 (3)      |
| C21  | 0.051 (4)   | 0.056 (4)   | 0.043 (4)   | 0.028 (4)    | -0.017 (3)   | -0.001 (4)      |
| C20  | 0.049 (4)   | 0.059 (5)   | 0.026 (5)   | 0.027 (4)    | 0.007 (4)    | 0.016 (4)       |
| C19  | 0.031 (5)   | 0.055 (6)   | 0.039 (4)   | 0.018 (4)    | 0.003 (4)    | 0.003 (4)       |
| C20B | 0.048 (4)   | 0.055 (5)   | 0.039 (5)   | 0.022 (4)    | -0.005 (4)   | 0.007 (4)       |
| C19B | 0.037 (5)   | 0.053 (5)   | 0.042 (4)   | 0.019 (4)    | -0.004 (4)   | 0.000 (4)       |
| C21B | 0.044 (5)   | 0.054 (4)   | 0.041 (4)   | 0.028 (4)    | -0.011 (4)   | 0.004 (4)       |

Geometric parameters (Å, °)

| Cl1—Cl1 | 1.747 (3) | C15—H15A  | 0.9800   |  |
|---------|-----------|-----------|----------|--|
| N1-C8   | 1.425 (3) | C15—H15B  | 0.9800   |  |
| N1—C7   | 1.287 (3) | C15—H15C  | 0.9800   |  |
| C2-C1   | 1.409 (3) | C17—H17A  | 0.9800   |  |
| C2—C3   | 1.395 (4) | C17—H17B  | 0.9800   |  |
| C2-C14  | 1.535 (4) | C17—H17C  | 0.9800   |  |
| C6—C1   | 1.409 (4) | C16—H16A  | 0.9800   |  |
| C6—C5   | 1.398 (4) | C16—H16B  | 0.9800   |  |
| C6—C7   | 1.444 (4) | C16—H16C  | 0.9800   |  |
| C101    | 1.363 (3) | O1—H1     | 0.92 (3) |  |
| С5—Н5   | 0.9500    | C19A—H19A | 0.9800   |  |
| C5—C4   | 1.379 (4) | C19A—H19B | 0.9800   |  |
|         |           |           |          |  |

| C8—C13                       | 1.383 (4)            | C19A—H19C          | 0.9800     |
|------------------------------|----------------------|--------------------|------------|
| C8—C9                        | 1.390 (4)            | C20A—H20A          | 0.9800     |
| С13—Н13                      | 0.9500               | C20A—H20B          | 0.9800     |
| C13—C12                      | 1.393 (4)            | C20A—H20C          | 0.9800     |
| C12—H12                      | 0.9500               | C21A—H21A          | 0.9800     |
| C12—C11                      | 1.376 (4)            | C21A—H21B          | 0.9800     |
| C11—C10                      | 1.379 (4)            | C21A—H21C          | 0.9800     |
| C10—H10                      | 0.9500               | C21—H21D           | 0.9800     |
| С10—С9                       | 1.384 (4)            | C21—H21E           | 0.9800     |
| С9—Н9                        | 0.9500               | C21—H21F           | 0.9800     |
| С3—Н3                        | 0.9500               | C20—H20D           | 0.9800     |
| C3—C4                        | 1.396 (4)            | C20—H20E           | 0.9800     |
| С7—Н7                        | 0.9500               | C20—H20F           | 0.9800     |
| C4—C18                       | 1.538 (4)            | C19—H19D           | 0.9800     |
| C14—C15                      | 1.540 (4)            | C19—H19E           | 0.9800     |
| C14-C17                      | 1.5 10 (1)           | C19—H19F           | 0.9800     |
| C14-C16                      | 1.537(4)             | C20B—H20G          | 0.9800     |
| C18— $C19A$                  | 1.537 (6)            | C20B—H20H          | 0.9800     |
| C18— $C20A$                  | 1.557 (6)            | C20B H20I          | 0.9800     |
| C18 - C21A                   | 1.137 (6)            | C19B H19G          | 0.9800     |
| C18-C21                      | 1.579 (6)            | C19B—H19H          | 0.9800     |
| $C_{18}$ $C_{20}$            | 1.529 (6)            | C19B—H19I          | 0.9800     |
| C18 - C19                    | 1.571 (6)            | $C_{21B}$ H21G     | 0.9800     |
| C18-C20B                     | 1.509 (0)            | C21B_H21H          | 0.9800     |
| C18 C19B                     | 1.556(7)<br>1.512(7) | C21B H21I          | 0.9800     |
| C18 C21B                     | 1.512(7)<br>1.529(7) | C21D—11211         | 0.9800     |
| C10-C21D                     | 1.529(7)             |                    |            |
| C7—N1—C8                     | 119.4 (2)            | H15B—C15—H15C      | 109.5      |
| C1-C2-C14                    | 121.8 (2)            | C14—C17—H17A       | 109.5      |
| $C_{3}$ — $C_{2}$ — $C_{1}$  | 116.6 (3)            | C14—C17—H17B       | 109.5      |
| $C_{3}$ — $C_{2}$ — $C_{14}$ | 121.6 (2)            | C14—C17—H17C       | 109.5      |
| C1—C6—C7                     | 122.0(2)             | H17A—C17—H17B      | 109.5      |
| $C_{5}$ $C_{6}$ $C_{1}$      | 119.3 (2)            | H17A - C17 - H17C  | 109.5      |
| C5—C6—C7                     | 118.7 (3)            | H17B-C17-H17C      | 109.5      |
| C6-C1-C2                     | 120.5(2)             | C14—C16—H16A       | 109.5      |
| 01 - C1 - C2                 | 119.8 (2)            | C14—C16—H16B       | 109.5      |
| 01 - C1 - C6                 | 119.7 (2)            | C14—C16—H16C       | 109.5      |
| С6—С5—Н5                     | 118.9                | H16A—C16—H16B      | 109.5      |
| C4-C5-C6                     | 122.1 (3)            | H16A - C16 - H16C  | 109.5      |
| С4—С5—Н5                     | 118.9                | H16B—C16—H16C      | 109.5      |
| C13 - C8 - N1                | 118.0(3)             | C1 - O1 - H1       | 107.0 (18) |
| C13 - C8 - C9                | 110.0(3)             | C18—C19A—H19A      | 109.5      |
| C9-C8-N1                     | 122.9 (3)            | C18—C19A—H19B      | 109 5      |
| C8-C13-H13                   | 119.6                | C18—C19A—H19C      | 109.5      |
| C8-C13-C12                   | 120.7(3)             | H19A—C19A—H19B     | 109 5      |
| C12—C13—H13                  | 119.6                | H19A - C19A - H19C | 109.5      |
| C13—C12—H12                  | 120.5                | H19B—C19A—H19C     | 109 5      |
| C11-C12-C13                  | 119.0 (3)            | C18—C20A—H20A      | 109.5      |
|                              |                      |                    |            |

|                                                                                                                                                                                                  | 109.5                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| C12—C11—Cl1 119.9 (2) C18—C20A—H20C                                                                                                                                                              | 109.5                                     |
| C12—C11—C10 121.2 (3) H20A—C20A—H20B                                                                                                                                                             | 109.5                                     |
| C10—C11—C11 118.9 (2) H20A—C20A—H20C                                                                                                                                                             | 109.5                                     |
| C11—C10—H10 120.3 H20B—C20A—H20C                                                                                                                                                                 | 109.5                                     |
| C11—C10—C9 119.4 (3) C18—C21A—H21A                                                                                                                                                               | 109.5                                     |
| С9—С10—Н10 120.3 С18—С21А—Н21В                                                                                                                                                                   | 109.5                                     |
| С8—С9—Н9 119.7 С18—С21А—Н21С                                                                                                                                                                     | 109.5                                     |
| C10—C9—C8 120.6 (3) H21A—C21A—H21B                                                                                                                                                               | 109.5                                     |
| С10—С9—Н9 119.7 Н21А—С21А—Н21С                                                                                                                                                                   | 109.5                                     |
| С2—С3—Н3 117.6 Н21В—С21А—Н21С                                                                                                                                                                    | 109.5                                     |
| C2—C3—C4 124.7 (2) C18—C21—H21D                                                                                                                                                                  | 109.5                                     |
| С4—С3—Н3 117.6 С18—С21—Н21Е                                                                                                                                                                      | 109.5                                     |
| N1—C7—C6 123.6 (3) C18—C21—H21F                                                                                                                                                                  | 109.5                                     |
| N1—C7—H7 118.2 H21D—C21—H21E                                                                                                                                                                     | 109.5                                     |
| C6—C7—H7 118.2 H21D—C21—H21F                                                                                                                                                                     | 109.5                                     |
| C5—C4—C3 116.7 (3) H21E—C21—H21F                                                                                                                                                                 | 109.5                                     |
| C5-C4-C18 121.4 (3) C18-C20-H20D                                                                                                                                                                 | 109.5                                     |
| C3—C4—C18 122.0 (2) C18—C20—H20E                                                                                                                                                                 | 109.5                                     |
| C2—C14—C15 109.9 (2) C18—C20—H20F                                                                                                                                                                | 109.5                                     |
| C2—C14—C17 112.0 (2) H20D—C20—H20E                                                                                                                                                               | 109.5                                     |
| C2—C14—C16 110.4 (2) H20D—C20—H20F                                                                                                                                                               | 109.5                                     |
| C17—C14—C15 107.3 (2) H20E—C20—H20F                                                                                                                                                              | 109.5                                     |
| C17—C14—C16 107.1 (2) C18—C19—H19D                                                                                                                                                               | 109.5                                     |
| C16—C14—C15 110.0 (2) C18—C19—H19E                                                                                                                                                               | 109.5                                     |
| C4—C18—C21A 108.9 (4) C18—C19—H19F                                                                                                                                                               | 109.5                                     |
| C4—C18—C20 107.3 (4) H19D—C19—H19E                                                                                                                                                               | 109.5                                     |
| C4—C18—C20B 107.7 (6) H19D—C19—H19F                                                                                                                                                              | 109.5                                     |
| C19A—C18—C4 113.3 (4) H19E—C19—H19F                                                                                                                                                              | 109.5                                     |
| C19A—C18—C21A 103.1 (5) C18—C20B—H20G                                                                                                                                                            | 109.5                                     |
| C20A—C18—C4 110.3 (4) C18—C20B—H20H                                                                                                                                                              | 109.5                                     |
| C20A—C18—C19A 112.7 (5) C18—C20B—H20I                                                                                                                                                            | 109.5                                     |
| C20A—C18—C21A 108.2 (4) H20G—C20B—H20H                                                                                                                                                           | 109.5                                     |
| C21—C18—C4 113.7 (5) H20G—C20B—H20I                                                                                                                                                              | 109.5                                     |
| C21—C18—C20 105.5 (5) H20H—C20B—H20I                                                                                                                                                             | 109.5                                     |
| C19—C18—C4 109.7 (5) C18—C19B—H19G                                                                                                                                                               | 109.5                                     |
| C19—C18—C21 112.6 (6) C18—C19B—H19H                                                                                                                                                              | 109.5                                     |
| C19—C18—C20 107.6 (5) C18—C19B—H19I                                                                                                                                                              | 109.5                                     |
| C19B—C18—C4 110.5 (7) H19G—C19B—H19H                                                                                                                                                             | 109.5                                     |
| C19B—C18—C20B 107.6 (7) H19G—C19B—H19I                                                                                                                                                           | 109.5                                     |
| C19B—C18—C21B 113.0 (7) H19H—C19B—H19I                                                                                                                                                           | 109.5                                     |
|                                                                                                                                                                                                  | 109.5                                     |
| C21B—C18—C4 111.4 (7) C18—C21B—H21G                                                                                                                                                              |                                           |
| C21B—C18—C4 111.4 (7) C18—C21B—H21G<br>C21B—C18—C20B 106.4 (7) C18—C21B—H21H                                                                                                                     | 109.5                                     |
| C21B—C18—C4111.4 (7)C18—C21B—H21GC21B—C18—C20B106.4 (7)C18—C21B—H21HC14—C15—H15A109.5C18—C21B—H21I                                                                                               | 109.5<br>109.5                            |
| C21B—C18—C4111.4 (7)C18—C21B—H21GC21B—C18—C20B106.4 (7)C18—C21B—H21HC14—C15—H15A109.5C18—C21B—H21IC14—C15—H15B109.5H21G—C21B—H21H                                                                | 109.5<br>109.5<br>109.5                   |
| C21B—C18—C4111.4 (7)C18—C21B—H21GC21B—C18—C20B106.4 (7)C18—C21B—H21HC14—C15—H15A109.5C18—C21B—H21IC14—C15—H15B109.5H21G—C21B—H21HC14—C15—H15C109.5H21G—C21B—H21I                                 | 109.5<br>109.5<br>109.5<br>109.5          |
| C21B—C18—C4111.4 (7)C18—C21B—H21GC21B—C18—C20B106.4 (7)C18—C21B—H21HC14—C15—H15A109.5C18—C21B—H21IC14—C15—H15B109.5H21G—C21B—H21HC14—C15—H15C109.5H21G—C21B—H21IH15A—C15—H15B109.5H21G—C21B—H21I | 109.5<br>109.5<br>109.5<br>109.5<br>109.5 |

| Cl1—C11—C10—C9 | -179.3 (2) | C13—C12—C11—Cl1 | 179.5 (2)  |
|----------------|------------|-----------------|------------|
| N1-C8-C13-C12  | 179.2 (2)  | C13-C12-C11-C10 | 0.1 (4)    |
| N1-C8-C9-C10   | -179.0 (3) | C12—C11—C10—C9  | 0.1 (5)    |
| C2—C3—C4—C5    | 1.5 (4)    | C11—C10—C9—C8   | -1.3 (5)   |
| C2-C3-C4-C18   | -178.5 (2) | C9—C8—C13—C12   | -1.9 (4)   |
| C6—C5—C4—C3    | -0.8 (4)   | C3—C2—C1—C6     | -1.5 (4)   |
| C6-C5-C4-C18   | 179.2 (3)  | C3-C2-C1-O1     | 179.1 (2)  |
| C1—C2—C3—C4    | -0.3 (4)   | C3—C2—C14—C15   | -119.6 (3) |
| C1—C2—C14—C15  | 60.1 (3)   | C3—C2—C14—C17   | -0.4 (4)   |
| C1—C2—C14—C17  | 179.3 (2)  | C3—C2—C14—C16   | 118.9 (3)  |
| C1—C2—C14—C16  | -61.4 (3)  | C3—C4—C18—C19A  | 146.3 (5)  |
| C1—C6—C5—C4    | -1.0 (4)   | C3-C4-C18-C20A  | -86.3 (5)  |
| C1—C6—C7—N1    | -1.4 (5)   | C3—C4—C18—C21A  | 32.3 (5)   |
| C5—C6—C1—C2    | 2.1 (4)    | C3-C4-C18-C21   | -7.6 (6)   |
| C5-C6-C1-O1    | -178.5 (2) | C3—C4—C18—C20   | -123.9 (5) |
| C5—C6—C7—N1    | 179.3 (3)  | C3—C4—C18—C19   | 119.6 (5)  |
| C5-C4-C18-C19A | -33.6 (5)  | C3—C4—C18—C20B  | -148.3 (6) |
| C5-C4-C18-C20A | 93.7 (5)   | C3—C4—C18—C19B  | 94.4 (7)   |
| C5-C4-C18-C21A | -147.7 (4) | C3—C4—C18—C21B  | -32.0 (7)  |
| C5-C4-C18-C21  | 172.5 (6)  | C7—N1—C8—C13    | -151.7 (3) |
| C5-C4-C18-C20  | 56.2 (5)   | C7—N1—C8—C9     | 29.4 (4)   |
| C5—C4—C18—C19  | -60.4 (6)  | C7—C6—C1—C2     | -177.1 (3) |
| C5-C4-C18-C20B | 31.7 (6)   | C7—C6—C1—O1     | 2.2 (4)    |
| C5-C4-C18-C19B | -85.6 (7)  | C7—C6—C5—C4     | 178.3 (3)  |
| C5-C4-C18-C21B | 148.0 (7)  | C14—C2—C1—C6    | 178.8 (3)  |
| C8—N1—C7—C6    | 178.9 (2)  | C14—C2—C1—O1    | -0.6 (4)   |
| C8—C13—C12—C11 | 0.8 (4)    | C14—C2—C3—C4    | 179.4 (3)  |
| C13—C8—C9—C10  | 2.2 (4)    |                 |            |

*Hydrogen-bond geometry (Å, °)* 

| D—H···A  | D—H      | H····A   | D····A    | D—H···A |
|----------|----------|----------|-----------|---------|
| 01—H1…N1 | 0.92 (3) | 1.77 (3) | 2.615 (3) | 151 (3) |

(E)-2,4-Di-tert-butyl-6-{[(4-chlorophenyl)imino]methyl}phenol (2\_120K)

| Crystal data                         |  |
|--------------------------------------|--|
| C <sub>21</sub> H <sub>26</sub> ClNO |  |
| $M_r = 343.88$                       |  |
| Monoclinic, $P2_1/c$                 |  |
| a = 17.3623 (8)  Å                   |  |
| b = 10.6691 (4)  Å                   |  |
| c = 10.1512 (6) Å                    |  |
| $\beta = 90.123 \ (5)^{\circ}$       |  |
| $V = 1880.41 (15) Å^3$               |  |
| Z = 4                                |  |

F(000) = 736  $D_x = 1.215 \text{ Mg m}^{-3}$ Mo K\alpha radiation,  $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3057 reflections  $\theta = 2.8-29.4^{\circ}$   $\mu = 0.21 \text{ mm}^{-1}$  T = 120 KBlock, yellow  $0.35 \times 0.31 \times 0.10 \text{ mm}$  Data collection

| Oxford Diffraction Xcalibur Sapphire3 Gemini<br>ultra<br>diffractometer<br>Radiation source: fine-focus sealed X-ray tube,<br>Enhance (Mo) X-ray Source<br>Graphite monochromator<br>Detector resolution: 16.1511 pixels mm <sup>-1</sup><br>ω scans<br>Absorption correction: multi-scan<br>(CrysAlis PRO; Rigaku OD, 2018)<br><i>Refinement</i> | $T_{\min} = 0.846, T_{\max} = 1.000$ 14119 measured reflections 3860 independent reflections 2869 reflections with $I > 2\sigma(I)$ $R_{int} = 0.080$ $\theta_{\max} = 26.4^{\circ}, \theta_{\min} = 2.8^{\circ}$ $h = -21 \rightarrow 21$ $k = -12 \rightarrow 13$ $l = -12 \rightarrow 12$                                                                                                             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Refinement on $F^2$<br>Least-squares matrix: full<br>$R[F^2 > 2\sigma(F^2)] = 0.072$<br>$wR(F^2) = 0.184$<br>S = 1.08<br>3860 reflections<br>227 parameters<br>0 restraints                                                                                                                                                                       | Primary atom site location: structure-invariant<br>direct methods<br>Hydrogen site location: mixed<br>H atoms treated by a mixture of independent<br>and constrained refinement<br>$w = 1/[\sigma^2(F_o^2) + (0.0974P)^2 + 0.0284P]$<br>where $P = (F_o^2 + 2F_c^2)/3$<br>$(\Delta/\sigma)_{max} = 0.001$<br>$\Delta\rho_{max} = 0.72$ e Å <sup>-3</sup><br>$\Delta\rho_{min} = -0.39$ e Å <sup>-3</sup> |

#### Special details

**Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

|     | x            | У            | Ζ           | $U_{ m iso}$ */ $U_{ m eq}$ |  |
|-----|--------------|--------------|-------------|-----------------------------|--|
| Cl1 | 1.13720 (4)  | 0.42872 (7)  | 0.21972 (7) | 0.0291 (2)                  |  |
| 01  | 0.81756 (11) | 0.01140 (18) | 0.6549 (2)  | 0.0234 (5)                  |  |
| N1  | 0.88643 (13) | 0.2000 (2)   | 0.5364 (2)  | 0.0221 (5)                  |  |
| C1  | 0.76870 (15) | 0.0957 (2)   | 0.7100 (3)  | 0.0190 (6)                  |  |
| C2  | 0.71226 (15) | 0.0563 (2)   | 0.8000(2)   | 0.0176 (6)                  |  |
| C3  | 0.66347 (15) | 0.1482 (2)   | 0.8507 (2)  | 0.0181 (6)                  |  |
| H3  | 0.625047     | 0.122581     | 0.911448    | 0.022*                      |  |
| C4  | 0.66710 (15) | 0.2756 (2)   | 0.8182 (2)  | 0.0185 (6)                  |  |
| C5  | 0.72423 (16) | 0.3103 (2)   | 0.7315 (3)  | 0.0207 (6)                  |  |
| Н5  | 0.728888     | 0.396075     | 0.707699    | 0.025*                      |  |
| C6  | 0.77554 (15) | 0.2236 (2)   | 0.6774 (3)  | 0.0206 (6)                  |  |
| C7  | 0.83633 (16) | 0.2707 (3)   | 0.5927 (3)  | 0.0222 (6)                  |  |
| H7  | 0.839241     | 0.358479     | 0.578040    | 0.027*                      |  |
| C8  | 0.94437 (16) | 0.2567 (3)   | 0.4578 (3)  | 0.0220 (6)                  |  |
| C9  | 0.93356 (16) | 0.3698 (3)   | 0.3908 (3)  | 0.0259 (7)                  |  |
| H9  | 0.885128     | 0.410993     | 0.395257    | 0.031*                      |  |
| C10 | 0.99246 (17) | 0.4225 (3)   | 0.3180 (3)  | 0.0263 (7)                  |  |
| H10 | 0.984787     | 0.499450     | 0.272853    | 0.032*                      |  |
| C11 | 1.06281 (16) | 0.3616 (3)   | 0.3118 (3)  | 0.0228 (6)                  |  |
|     |              |              |             |                             |  |

| C12  | 1.07459 (15) | 0.2483 (3)  | 0.3757 (3) | 0.0237 (6)  |  |
|------|--------------|-------------|------------|-------------|--|
| H12  | 1.122888     | 0.206920    | 0.369549   | 0.028*      |  |
| C13  | 1.01569 (16) | 0.1963 (3)  | 0.4480 (3) | 0.0232 (6)  |  |
| H13  | 1.023543     | 0.118641    | 0.491774   | 0.028*      |  |
| C14  | 0.70465 (16) | -0.0826 (2) | 0.8414 (3) | 0.0202 (6)  |  |
| C15  | 0.68718 (17) | -0.1644 (2) | 0.7200 (3) | 0.0250 (6)  |  |
| H15A | 0.638221     | -0.138041   | 0.680534   | 0.037*      |  |
| H15B | 0.683619     | -0.252443   | 0.746784   | 0.037*      |  |
| H15C | 0.728589     | -0.154781   | 0.655291   | 0.037*      |  |
| C16  | 0.77948 (17) | -0.1277 (3) | 0.9081 (3) | 0.0248 (6)  |  |
| H16A | 0.822818     | -0.116117   | 0.847594   | 0.037*      |  |
| H16B | 0.774709     | -0.216640   | 0.930608   | 0.037*      |  |
| H16C | 0.788512     | -0.078912   | 0.988470   | 0.037*      |  |
| C17  | 0.63909 (17) | -0.1029 (3) | 0.9408 (3) | 0.0256 (6)  |  |
| H17A | 0.649505     | -0.054348   | 1.020799   | 0.038*      |  |
| H17B | 0.635716     | -0.192137   | 0.963089   | 0.038*      |  |
| H17C | 0.590270     | -0.075304   | 0.901822   | 0.038*      |  |
| C18  | 0.60941 (15) | 0.3719 (2)  | 0.8713 (3) | 0.0190 (6)  |  |
| C19  | 0.65006 (19) | 0.4970 (3)  | 0.9009 (3) | 0.0372 (8)  |  |
| H19A | 0.692735     | 0.482484    | 0.962350   | 0.056*      |  |
| H19B | 0.613254     | 0.555566    | 0.940291   | 0.056*      |  |
| H19C | 0.670102     | 0.532543    | 0.818786   | 0.056*      |  |
| C20  | 0.54766 (18) | 0.3952 (3)  | 0.7656(3)  | 0.0349 (8)  |  |
| H20A | 0.572239     | 0.425402    | 0.684790   | 0.052*      |  |
| H20B | 0.511059     | 0.458194    | 0.797330   | 0.052*      |  |
| H20C | 0.520259     | 0.316787    | 0.747190   | 0.052*      |  |
| C21  | 0.57028 (19) | 0.3278 (3)  | 0.9979 (3) | 0.0338 (8)  |  |
| H21A | 0.538460     | 0.254103    | 0.978936   | 0.051*      |  |
| H21B | 0.537700     | 0.395173    | 1.032490   | 0.051*      |  |
| H21C | 0.609591     | 0.305934    | 1.063367   | 0.051*      |  |
| H1   | 0.848 (2)    | 0.056 (3)   | 0.607 (4)  | 0.055 (12)* |  |
|      |              |             |            |             |  |

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$     | $U^{23}$     |
|-----|-------------|-------------|-------------|--------------|--------------|--------------|
| Cl1 | 0.0211 (4)  | 0.0345 (5)  | 0.0318 (4)  | -0.0069 (3)  | 0.0043 (3)   | 0.0002 (3)   |
| O1  | 0.0179 (11) | 0.0238 (11) | 0.0283 (11) | 0.0021 (8)   | 0.0017 (9)   | -0.0006 (8)  |
| N1  | 0.0149 (12) | 0.0279 (13) | 0.0236 (12) | -0.0010 (9)  | 0.0006 (10)  | 0.0004 (10)  |
| C1  | 0.0133 (13) | 0.0232 (14) | 0.0205 (13) | 0.0009 (11)  | -0.0057 (11) | -0.0049 (11) |
| C2  | 0.0137 (13) | 0.0211 (14) | 0.0181 (13) | 0.0005 (10)  | -0.0076 (11) | -0.0006 (10) |
| C3  | 0.0135 (13) | 0.0250 (15) | 0.0158 (13) | -0.0021 (11) | -0.0039 (10) | -0.0001 (10) |
| C4  | 0.0155 (13) | 0.0223 (14) | 0.0178 (13) | 0.0006 (10)  | -0.0066 (11) | -0.0018 (10) |
| C5  | 0.0226 (15) | 0.0180 (14) | 0.0213 (14) | 0.0004 (11)  | -0.0030 (12) | 0.0013 (11)  |
| C6  | 0.0159 (13) | 0.0248 (15) | 0.0209 (14) | -0.0018 (11) | -0.0011 (11) | -0.0001 (11) |
| C7  | 0.0210 (14) | 0.0208 (14) | 0.0247 (14) | -0.0016 (11) | -0.0030 (12) | -0.0005 (11) |
| C8  | 0.0208 (14) | 0.0255 (15) | 0.0196 (13) | -0.0037 (12) | -0.0022(11)  | -0.0014 (11) |
| C9  | 0.0187 (15) | 0.0339 (17) | 0.0252 (15) | 0.0071 (12)  | -0.0025 (12) | 0.0032 (12)  |
| C10 | 0.0230 (16) | 0.0296 (16) | 0.0261 (15) | 0.0035 (12)  | -0.0027 (12) | 0.0060 (12)  |
|     |             |             |             |              |              |              |

| C11 | 0.0202 (15) | 0.0260 (15) | 0.0221 (14) | -0.0053 (11) | 0.0016 (12)  | -0.0042 (11) |
|-----|-------------|-------------|-------------|--------------|--------------|--------------|
| C12 | 0.0152 (14) | 0.0279 (15) | 0.0279 (15) | 0.0015 (11)  | -0.0021 (12) | -0.0020 (12) |
| C13 | 0.0211 (15) | 0.0232 (14) | 0.0253 (15) | 0.0037 (11)  | -0.0030 (12) | 0.0005 (11)  |
| C14 | 0.0205 (14) | 0.0189 (14) | 0.0213 (14) | 0.0003 (11)  | -0.0047 (11) | 0.0000 (10)  |
| C15 | 0.0291 (16) | 0.0202 (15) | 0.0255 (15) | -0.0030 (12) | -0.0046 (13) | -0.0003 (11) |
| C16 | 0.0244 (15) | 0.0229 (15) | 0.0272 (15) | 0.0029 (12)  | -0.0057 (12) | 0.0014 (11)  |
| C17 | 0.0249 (16) | 0.0249 (15) | 0.0270 (15) | -0.0001 (12) | -0.0039 (13) | 0.0048 (12)  |
| C18 | 0.0160 (14) | 0.0221 (14) | 0.0188 (13) | 0.0040 (11)  | -0.0026 (11) | 0.0002 (10)  |
| C19 | 0.0349 (19) | 0.0291 (17) | 0.048 (2)   | 0.0036 (14)  | 0.0013 (16)  | -0.0103 (14) |
| C20 | 0.0297 (18) | 0.047 (2)   | 0.0276 (16) | 0.0168 (14)  | -0.0075 (14) | -0.0077 (14) |
| C21 | 0.0357 (19) | 0.0346 (18) | 0.0313 (17) | 0.0117 (14)  | 0.0083 (15)  | 0.0015 (13)  |
|     |             |             |             |              |              |              |

Geometric parameters (Å, °)

| Cl1—Cl1      | 1.750 (3) | C13—H13       | 0.9500    | - |
|--------------|-----------|---------------|-----------|---|
| 01—C1        | 1.357 (3) | C14—C15       | 1.540 (4) |   |
| 01—H1        | 0.86 (4)  | C14—C16       | 1.541 (4) |   |
| N1C7         | 1.286 (3) | C14—C17       | 1.538 (4) |   |
| N1—C8        | 1.421 (3) | C15—H15A      | 0.9800    |   |
| C1—C2        | 1.406 (4) | C15—H15B      | 0.9800    |   |
| C1—C6        | 1.409 (4) | C15—H15C      | 0.9800    |   |
| C2—C3        | 1.395 (4) | C16—H16A      | 0.9800    |   |
| C2-C14       | 1.545 (4) | C16—H16B      | 0.9800    |   |
| С3—Н3        | 0.9500    | C16—H16C      | 0.9800    |   |
| C3—C4        | 1.400 (4) | C17—H17A      | 0.9800    |   |
| C4—C5        | 1.378 (4) | C17—H17B      | 0.9800    |   |
| C4—C18       | 1.534 (3) | C17—H17C      | 0.9800    |   |
| С5—Н5        | 0.9500    | C18—C19       | 1.539 (4) |   |
| C5—C6        | 1.398 (4) | C18—C20       | 1.535 (4) |   |
| С6—С7        | 1.453 (4) | C18—C21       | 1.529 (4) |   |
| С7—Н7        | 0.9500    | C19—H19A      | 0.9800    |   |
| С8—С9        | 1.397 (4) | C19—H19B      | 0.9800    |   |
| C8—C13       | 1.400 (4) | C19—H19C      | 0.9800    |   |
| С9—Н9        | 0.9500    | C20—H20A      | 0.9800    |   |
| C9—C10       | 1.382 (4) | C20—H20B      | 0.9800    |   |
| C10—H10      | 0.9500    | C20—H20C      | 0.9800    |   |
| C10—C11      | 1.385 (4) | C21—H21A      | 0.9800    |   |
| C11—C12      | 1.386 (4) | C21—H21B      | 0.9800    |   |
| С12—Н12      | 0.9500    | C21—H21C      | 0.9800    |   |
| C12—C13      | 1.377 (4) |               |           |   |
| C1           | 104 (2)   | C17—C14—C15   | 107.5 (2) |   |
| C7—N1—C8     | 118.7 (2) | C17—C14—C16   | 107.0 (2) |   |
| 01 - C1 - C2 | 120.5(2)  | C14—C15—H15A  | 109.5     |   |
| 01—C1—C6     | 119.5 (2) | C14—C15—H15B  | 109.5     |   |
| C2-C1-C6     | 120.1 (2) | C14—C15—H15C  | 109.5     |   |
| C1—C2—C14    | 121.6 (2) | H15A—C15—H15B | 109.5     |   |
| C3—C2—C1     | 117.0 (2) | H15A—C15—H15C | 109.5     |   |
|              | × /       |               |           |   |

| C3—C2—C14                           | 121.4 (2)            | H15B—C15—H15C                                                | 109.5                |
|-------------------------------------|----------------------|--------------------------------------------------------------|----------------------|
| С2—С3—Н3                            | 117.7                | C14—C16—H16A                                                 | 109.5                |
| C2—C3—C4                            | 124.7 (2)            | C14—C16—H16B                                                 | 109.5                |
| С4—С3—Н3                            | 117.7                | C14—C16—H16C                                                 | 109.5                |
| C3—C4—C18                           | 122.6 (2)            | H16A—C16—H16B                                                | 109.5                |
| C5—C4—C3                            | 116.3 (2)            | H16A—C16—H16C                                                | 109.5                |
| C5—C4—C18                           | 121.1 (2)            | H16B—C16—H16C                                                | 109.5                |
| С4—С5—Н5                            | 118.9                | C14—C17—H17A                                                 | 109.5                |
| C4—C5—C6                            | 122.2 (2)            | C14—C17—H17B                                                 | 109.5                |
| С6—С5—Н5                            | 118.9                | C14—C17—H17C                                                 | 109.5                |
| C1 - C6 - C7                        | 122.4 (2)            | H17A—C17—H17B                                                | 109.5                |
| C5-C6-C1                            | 119.7 (2)            | H17A—C17—H17C                                                | 109.5                |
| $C_{5} - C_{6} - C_{7}$             | 117.9 (2)            | H17B-C17-H17C                                                | 109.5                |
| N1 - C7 - C6                        | 123.6(3)             | C4-C18-C19                                                   | 1105.5               |
| N1-C7-H7                            | 118.2                | C4-C18-C20                                                   | 108.6(2)             |
| С6—С7—Н7                            | 118.2                | $C_{20}$ $C_{18}$ $C_{19}$                                   | 108.0(2)<br>108.4(2) |
| $C_{0} = C_{8} = N_{1}$             | 173.2                | $C_{20} = C_{10} = C_{10}$                                   | 100.4(2)<br>1124(2)  |
| $C_{0}$ $C_{8}$ $C_{13}$            | 123.2(2)<br>1187(2)  | $\begin{array}{cccccccccccccccccccccccccccccccccccc$         | 112.4(2)<br>107.9(2) |
| $C_{3} = C_{3} = C_{13}$            | 118.7(2)<br>118.1(2) | $C_{21}$ $C_{18}$ $C_{20}$                                   | 107.9(2)<br>109.0(2) |
| $C_{13} = C_{13} = C_{13} = C_{13}$ | 110.6                | $C_{21} = C_{10} = C_{20}$                                   | 109.0 (2)            |
| $C_{0} = C_{0} = H_{0}$             | 119.0                | C18 C19 H19R                                                 | 109.5                |
| $C_{10} = C_{2} = C_{8}$            | 120.8 (5)            | C18 $C19$ $H10C$                                             | 109.5                |
| $C_{10} - C_{9} - H_{9}$            | 119.0                | $\begin{array}{c} C10 \\ H10A \\ C10 \\ H10P \\ \end{array}$ | 109.5                |
| $C_{0} = C_{10} = C_{11}$           | 120.4                | П19А—С19—П19В                                                | 109.5                |
|                                     | 119.2 (3)            | H19A - C19 - H19C                                            | 109.5                |
| CII - CI0 - HI0                     | 120.4                | HI9B - CI9 - HI9C                                            | 109.5                |
|                                     | 119.0 (2)            | C18 - C20 - H20A                                             | 109.5                |
| C10—C11—C12                         | 121.1 (2)            | C18—C20—H20B                                                 | 109.5                |
| C12—C11—C11                         | 119.9 (2)            | C18—C20—H20C                                                 | 109.5                |
| C11—C12—H12                         | 120.3                | H20A—C20—H20B                                                | 109.5                |
| C13—C12—C11                         | 119.4 (3)            | H20A—C20—H20C                                                | 109.5                |
| C13—C12—H12                         | 120.3                | H20B—C20—H20C                                                | 109.5                |
| C8—C13—H13                          | 119.7                | C18—C21—H21A                                                 | 109.5                |
| C12—C13—C8                          | 120.7 (3)            | C18—C21—H21B                                                 | 109.5                |
| C12—C13—H13                         | 119.7                | C18—C21—H21C                                                 | 109.5                |
| C15—C14—C2                          | 110.0 (2)            | H21A—C21—H21B                                                | 109.5                |
| C15—C14—C16                         | 109.8 (2)            | H21A—C21—H21C                                                | 109.5                |
| C16—C14—C2                          | 110.3 (2)            | H21B—C21—H21C                                                | 109.5                |
| C17—C14—C2                          | 112.2 (2)            |                                                              |                      |
| Cl1—C11—C12—C13                     | 179.9 (2)            | C3—C4—C18—C21                                                | 22.2 (4)             |
| O1—C1—C2—C3                         | -179.0 (2)           | C4—C5—C6—C1                                                  | 1.0 (4)              |
| O1—C1—C2—C14                        | 1.1 (4)              | C4—C5—C6—C7                                                  | -176.7 (3)           |
| O1—C1—C6—C5                         | 178.5 (2)            | C5-C4-C18-C19                                                | -39.5 (3)            |
| O1—C1—C6—C7                         | -3.9 (4)             | C5-C4-C18-C20                                                | 79.2 (3)             |
| N1—C8—C9—C10                        | 178.5 (3)            | C5-C4-C18-C21                                                | -160.1 (3)           |
| N1—C8—C13—C12                       | -178.6 (2)           | C5—C6—C7—N1                                                  | -179.3 (3)           |
| C1—C2—C3—C4                         | -0.1 (4)             | C6—C1—C2—C3                                                  | 1.8 (4)              |
| C1—C2—C14—C15                       | -60.5 (3)            | C6—C1—C2—C14                                                 | -178.1 (2)           |
|                                     | (-)                  |                                                              | (-)                  |

|                     |            |                 | 20.0(4)    |
|---------------------|------------|-----------------|------------|
| C1 - C2 - C14 - C16 | 60.8 (3)   | C/-NI-C8-C9     | -29.0 (4)  |
| C1—C2—C14—C17       | 179.9 (2)  | C7—N1—C8—C13    | 150.7 (3)  |
| C1C6C7N1            | 3.0 (4)    | C8—N1—C7—C6     | -178.6 (2) |
| C2-C1-C6-C5         | -2.3 (4)   | C8—C9—C10—C11   | 0.1 (4)    |
| C2-C1-C6-C7         | 175.3 (3)  | C9—C8—C13—C12   | 1.1 (4)    |
| C2—C3—C4—C5         | -1.0 (4)   | C9—C10—C11—Cl1  | -180.0 (2) |
| C2-C3-C4-C18        | 176.8 (2)  | C9—C10—C11—C12  | 0.9 (4)    |
| C3—C2—C14—C15       | 119.6 (3)  | C10-C11-C12-C13 | -0.9 (4)   |
| C3-C2-C14-C16       | -119.1 (3) | C11—C12—C13—C8  | -0.1 (4)   |
| C3—C2—C14—C17       | 0.0 (3)    | C13—C8—C9—C10   | -1.2 (4)   |
| C3—C4—C5—C6         | 0.6 (4)    | C14—C2—C3—C4    | 179.7 (2)  |
| C3—C4—C18—C19       | 142.8 (3)  | C18—C4—C5—C6    | -177.3 (2) |
| C3—C4—C18—C20       | -98.5 (3)  |                 |            |
|                     |            |                 |            |

*Hydrogen-bond geometry (Å, °)* 

| D—H···A  | D—H      | H···A    | D···A     | <i>D</i> —H··· <i>A</i> |
|----------|----------|----------|-----------|-------------------------|
| 01—H1…N1 | 0.86 (4) | 1.82 (4) | 2.633 (3) | 157 (4)                 |

(E)-2,4-Di-tert-butyl-6-{[(4-chlorophenyl)imino]methyl}phenol (2\_100K)

Crystal data

| $C_{21}H_{26}CINO$                                   | F(000) = 736                                                        |
|------------------------------------------------------|---------------------------------------------------------------------|
| $M_r = 343.88$                                       | $D_{\rm x} = 1.222 {\rm Mg} {\rm m}^{-3}$                           |
| Monoclinic, $P2_1/c$                                 | Mo <i>K</i> $\alpha$ radiation, $\lambda = 0.71073$ Å               |
| a = 17.3011 (11)  Å                                  | Cell parameters from 2408 reflections                               |
| b = 10.6780 (7)  Å                                   | $\theta = 3.0 - 28.5^{\circ}$                                       |
| c = 10.1200 (6) Å                                    | $\mu = 0.21 \text{ mm}^{-1}$                                        |
| $\beta = 90.252 \ (6)^{\circ}$                       | T = 100  K                                                          |
| V = 1869.6 (2) Å <sup>3</sup>                        | Block, yellow                                                       |
| Z = 4                                                | $0.35 \times 0.31 \times 0.10 \text{ mm}$                           |
|                                                      |                                                                     |
| Data collection                                      |                                                                     |
| Oxford Diffraction Xcalibur Sapphire3 Gemini         | $T_{\rm min} = 0.435, T_{\rm max} = 1.000$                          |
| ultra                                                | 13865 measured reflections                                          |
| diffractometer                                       | 3830 independent reflections                                        |
| Radiation source: fine-focus sealed X-ray tube,      | 2740 reflections with $I > 2\sigma(I)$                              |
| Enhance (Mo) X-ray Source                            | $R_{\rm int} = 0.087$                                               |
| Graphite monochromator                               | $\theta_{\rm max} = 26.4^{\circ}, \ \theta_{\rm min} = 2.8^{\circ}$ |
| Detector resolution: 16.1511 pixels mm <sup>-1</sup> | $h = -21 \rightarrow 21$                                            |
| $\omega$ scans                                       | $k = -13 \rightarrow 12$                                            |
| Absorption correction: multi-scan                    | $l = -12 \rightarrow 12$                                            |
| (CrysAlis PRO; Rigaku OD, 2018)                      |                                                                     |
|                                                      |                                                                     |

Refinement

Refinement on  $F^2$ Least-squares matrix: full  $R[F^2 > 2\sigma(F^2)] = 0.071$  $wR(F^2) = 0.176$ S = 1.083830 reflections 227 parameters 0 restraints Primary atom site location: structure-invariant direct methods Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement  $w = 1/[\sigma^2(F_o^2) + (0.0777P)^2 + 0.1484P]$ where  $P = (F_o^2 + 2F_c^2)/3$  $(\Delta/\sigma)_{max} = 0.001$ 

### $\Delta \rho_{\rm max} = 0.78~{\rm e}~{\rm \AA}^{-3}$

#### Special details

**Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

 $\Delta \rho_{\rm min} = -0.33 \ {\rm e} \ {\rm \AA}^{-3}$ 

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(\hat{A}^2)$ 

|      | x            | y           | Z           | $U_{\rm iso}^*/U_{\rm eq}$ |  |
|------|--------------|-------------|-------------|----------------------------|--|
| Cl1  | 1.13773 (4)  | 0.42791 (8) | 0.21945 (7) | 0.0256 (2)                 |  |
| 01   | 0.81741 (11) | 0.0118 (2)  | 0.6546 (2)  | 0.0204 (5)                 |  |
| N1   | 0.88628 (13) | 0.1997 (2)  | 0.5360 (2)  | 0.0188 (5)                 |  |
| C1   | 0.76828 (15) | 0.0953 (3)  | 0.7102 (3)  | 0.0166 (6)                 |  |
| C2   | 0.71225 (15) | 0.0567 (3)  | 0.8006 (3)  | 0.0158 (6)                 |  |
| C3   | 0.66361 (15) | 0.1488 (3)  | 0.8519 (3)  | 0.0174 (6)                 |  |
| Н3   | 0.625221     | 0.123319    | 0.913072    | 0.021*                     |  |
| C4   | 0.66743 (15) | 0.2770 (3)  | 0.8192 (3)  | 0.0169 (6)                 |  |
| C5   | 0.72457 (15) | 0.3112 (3)  | 0.7318 (3)  | 0.0185 (6)                 |  |
| Н5   | 0.729376     | 0.396807    | 0.707748    | 0.022*                     |  |
| C6   | 0.77587 (15) | 0.2237 (3)  | 0.6773 (3)  | 0.0182 (6)                 |  |
| C7   | 0.83659 (15) | 0.2709 (3)  | 0.5925 (3)  | 0.0202 (6)                 |  |
| H7   | 0.839745     | 0.358649    | 0.578040    | 0.024*                     |  |
| C8   | 0.94457 (16) | 0.2562 (3)  | 0.4575 (3)  | 0.0207 (7)                 |  |
| C9   | 0.93401 (16) | 0.3697 (3)  | 0.3906 (3)  | 0.0219 (7)                 |  |
| H9   | 0.885555     | 0.411241    | 0.395504    | 0.026*                     |  |
| C10  | 0.99279 (16) | 0.4219 (3)  | 0.3179 (3)  | 0.0230 (7)                 |  |
| H10  | 0.985164     | 0.498936    | 0.272778    | 0.028*                     |  |
| C11  | 1.06341 (16) | 0.3605 (3)  | 0.3115 (3)  | 0.0195 (6)                 |  |
| C12  | 1.07512 (16) | 0.2469 (3)  | 0.3751 (3)  | 0.0207 (7)                 |  |
| H12  | 1.123484     | 0.205169    | 0.369027    | 0.025*                     |  |
| C13  | 1.01552 (16) | 0.1952 (3)  | 0.4473 (3)  | 0.0210 (7)                 |  |
| H13  | 1.022982     | 0.117143    | 0.490631    | 0.025*                     |  |
| C14  | 0.70433 (16) | -0.0810 (3) | 0.8423 (3)  | 0.0200 (6)                 |  |
| C15  | 0.68658 (17) | -0.1637 (3) | 0.7208 (3)  | 0.0231 (7)                 |  |
| H15A | 0.637498     | -0.137423   | 0.680836    | 0.035*                     |  |
| H15B | 0.682833     | -0.251498   | 0.748351    | 0.035*                     |  |
| H15C | 0.728151     | -0.154809   | 0.655975    | 0.035*                     |  |
| C16  | 0.77979 (17) | -0.1272 (3) | 0.9085 (3)  | 0.0229 (7)                 |  |
| H16A | 0.823093     | -0.115608   | 0.847655    | 0.034*                     |  |
| H16B | 0.774832     | -0.216273   | 0.930465    | 0.034*                     |  |
| H16C | 0.789282     | -0.079174   | 0.989484    | 0.034*                     |  |
| C17  | 0.63903 (17) | -0.1017 (3) | 0.9424 (3)  | 0.0246 (7)                 |  |
| H17A | 0.648940     | -0.051191   | 1.021584    | 0.037*                     |  |
| H17B | 0.636894     | -0.190453   | 0.966803    | 0.037*                     |  |
| H17C | 0.589610     | -0.076628   | 0.902822    | 0.037*                     |  |
| C18  | 0.60929 (15) | 0.3727 (3)  | 0.8717 (3)  | 0.0177 (6)                 |  |
| C19  | 0.64974 (18) | 0.4978 (3)  | 0.9001 (3)  | 0.0286 (7)                 |  |

| H19A | 0.692356     | 0.484323   | 0.962575   | 0.043*      |  |
|------|--------------|------------|------------|-------------|--|
| H19B | 0.612582     | 0.556769   | 0.938221   | 0.043*      |  |
| H19C | 0.670105     | 0.532357   | 0.817525   | 0.043*      |  |
| C20  | 0.54720 (17) | 0.3955 (3) | 0.7653 (3) | 0.0264 (7)  |  |
| H20A | 0.571882     | 0.424736   | 0.683940   | 0.040*      |  |
| H20B | 0.510720     | 0.459064   | 0.796448   | 0.040*      |  |
| H20C | 0.519426     | 0.317246   | 0.747587   | 0.040*      |  |
| C21  | 0.57033 (18) | 0.3288 (3) | 0.9980 (3) | 0.0278 (8)  |  |
| H21A | 0.538892     | 0.254485   | 0.979150   | 0.042*      |  |
| H21B | 0.537177     | 0.395670   | 1.032112   | 0.042*      |  |
| H21C | 0.609837     | 0.307842   | 1.064106   | 0.042*      |  |
| H1   | 0.850 (2)    | 0.056 (4)  | 0.597 (3)  | 0.041 (10)* |  |
|      |              |            |            |             |  |

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$     | $U^{23}$     |
|-----|-------------|-------------|-------------|--------------|--------------|--------------|
| C11 | 0.0244 (4)  | 0.0243 (5)  | 0.0281 (4)  | -0.0057 (3)  | 0.0030 (3)   | 0.0002 (3)   |
| O1  | 0.0221 (11) | 0.0134 (12) | 0.0257 (11) | 0.0022 (8)   | 0.0037 (9)   | -0.0002 (9)  |
| N1  | 0.0183 (12) | 0.0200 (15) | 0.0179 (12) | 0.0003 (10)  | 0.0002 (10)  | 0.0008 (10)  |
| C1  | 0.0157 (13) | 0.0139 (16) | 0.0202 (14) | -0.0001 (11) | -0.0065 (11) | -0.0030 (12) |
| C2  | 0.0179 (14) | 0.0112 (16) | 0.0182 (13) | -0.0017 (11) | -0.0079 (11) | 0.0008 (11)  |
| C3  | 0.0180 (14) | 0.0178 (17) | 0.0163 (13) | -0.0034 (11) | -0.0017 (11) | -0.0013 (11) |
| C4  | 0.0177 (14) | 0.0158 (17) | 0.0171 (14) | -0.0008 (11) | -0.0057 (11) | 0.0004 (11)  |
| C5  | 0.0238 (15) | 0.0127 (16) | 0.0189 (14) | -0.0001 (12) | -0.0032 (12) | 0.0007 (11)  |
| C6  | 0.0196 (14) | 0.0153 (16) | 0.0196 (14) | -0.0013 (12) | -0.0037 (12) | -0.0008 (12) |
| C7  | 0.0230 (15) | 0.0164 (17) | 0.0212 (14) | -0.0010 (12) | -0.0031 (12) | 0.0023 (12)  |
| C8  | 0.0226 (15) | 0.0212 (18) | 0.0183 (14) | -0.0033 (12) | -0.0034 (12) | -0.0025 (12) |
| C9  | 0.0215 (15) | 0.0241 (18) | 0.0202 (14) | 0.0048 (12)  | -0.0033 (12) | 0.0007 (12)  |
| C10 | 0.0247 (15) | 0.0205 (18) | 0.0236 (15) | 0.0022 (13)  | -0.0025 (12) | 0.0072 (13)  |
| C11 | 0.0215 (15) | 0.0198 (18) | 0.0172 (14) | -0.0026 (12) | 0.0013 (11)  | -0.0011 (12) |
| C12 | 0.0187 (15) | 0.0208 (18) | 0.0227 (15) | 0.0026 (12)  | -0.0014 (12) | -0.0023 (12) |
| C13 | 0.0254 (15) | 0.0149 (17) | 0.0228 (15) | 0.0023 (12)  | -0.0024 (12) | -0.0010 (12) |
| C14 | 0.0231 (15) | 0.0165 (17) | 0.0204 (14) | 0.0009 (12)  | -0.0026 (12) | -0.0010 (12) |
| C15 | 0.0280 (16) | 0.0146 (17) | 0.0267 (16) | -0.0018 (13) | -0.0044 (13) | -0.0001 (12) |
| C16 | 0.0277 (16) | 0.0180 (18) | 0.0229 (15) | 0.0032 (13)  | -0.0052 (13) | 0.0005 (12)  |
| C17 | 0.0299 (17) | 0.0188 (18) | 0.0253 (16) | -0.0020 (13) | 0.0005 (13)  | 0.0039 (13)  |
| C18 | 0.0207 (14) | 0.0149 (16) | 0.0173 (13) | 0.0022 (12)  | 0.0002 (11)  | -0.0015 (11) |
| C19 | 0.0321 (17) | 0.0182 (19) | 0.0355 (18) | 0.0023 (14)  | -0.0012 (14) | -0.0068 (14) |
| C20 | 0.0267 (16) | 0.026 (2)   | 0.0264 (15) | 0.0121 (14)  | -0.0051 (13) | -0.0048 (14) |
| C21 | 0.0372 (18) | 0.0204 (19) | 0.0260 (16) | 0.0111 (14)  | 0.0042 (14)  | -0.0005 (13) |

Geometric parameters (Å, °)

| Cl1—C11 | 1.746 (3) | C13—H13  | 0.9500    |  |
|---------|-----------|----------|-----------|--|
| 01—C1   | 1.356 (3) | C14—C15  | 1.544 (4) |  |
| 01—H1   | 0.94 (4)  | C14—C16  | 1.546 (4) |  |
| N1—C7   | 1.284 (4) | C14—C17  | 1.537 (4) |  |
| N1—C8   | 1.421 (4) | C15—H15A | 0.9800    |  |
|         |           |          |           |  |

| C1—C2                   | 1.399 (4)            | C15—H15B                   | 0.9800               |
|-------------------------|----------------------|----------------------------|----------------------|
| C1—C6                   | 1.417 (4)            | С15—Н15С                   | 0.9800               |
| C2—C3                   | 1.395 (4)            | C16—H16A                   | 0.9800               |
| C2—C14                  | 1.537 (4)            | C16—H16B                   | 0.9800               |
| C3—H3                   | 0.9500               | C16—H16C                   | 0.9800               |
| $C_3 - C_4$             | 1 409 (4)            | C17—H17A                   | 0.9800               |
| C4-C5                   | 1.109(1)<br>1 378(4) | C17—H17B                   | 0.9800               |
| C4-C18                  | 1.570(1)<br>1.531(4) | C17 - H17C                 | 0.9800               |
| C5—H5                   | 0.9500               | $C_{18}$ $C_{19}$          | 1.535(4)             |
| C5-C6                   | 1,404(4)             | $C_{18}$ $C_{20}$          | 1.535(4)<br>1.537(4) |
| C6-C7                   | 1.450(4)             | $C_{18}$ $C_{20}$          | 1.537(4)<br>1.522(4) |
| C7H7                    | 0.9500               | C19 - H19A                 | 0.9800               |
| $C^{8}$                 | 1,300(4)             | C10 H10P                   | 0.9800               |
| $C_{8}$ $C_{13}$        | 1.399(4)<br>1.304(4) | C10 H10C                   | 0.9800               |
| C0_U0                   | 1.394 (4)            |                            | 0.9800               |
| $C_{9}$                 | 0.9300               | C20—H20A                   | 0.9800               |
| $C_{10}$                | 1.570 (4)            | C20—H20B                   | 0.9600               |
|                         | 1,280 (4)            | $C_{20}$ $H_{21}$          | 0.9800               |
|                         | 1.389 (4)            | C21—H2IA                   | 0.9800               |
|                         | 1.388 (4)            | C21—H2IB                   | 0.9800               |
| C12—H12                 | 0.9500               | C2I—H2IC                   | 0.9800               |
| C12—C13                 | 1.382 (4)            |                            |                      |
| C1—O1—H1                | 108 (2)              | C17—C14—C15                | 107.4 (2)            |
| C7—N1—C8                | 118.4 (3)            | C17—C14—C16                | 106.9 (2)            |
| 01—C1—C2                | 121.0 (3)            | C14—C15—H15A               | 109.5                |
| O1—C1—C6                | 118.7 (2)            | C14—C15—H15B               | 109.5                |
| C2—C1—C6                | 120.3 (3)            | C14—C15—H15C               | 109.5                |
| C1—C2—C14               | 121.6 (2)            | H15A—C15—H15B              | 109.5                |
| C3—C2—C1                | 117.2 (3)            | H15A—C15—H15C              | 109.5                |
| C3—C2—C14               | 121.2 (2)            | H15B—C15—H15C              | 109.5                |
| С2—С3—Н3                | 117.7                | C14—C16—H16A               | 109.5                |
| C2—C3—C4                | 124.6 (3)            | C14—C16—H16B               | 109.5                |
| C4—C3—H3                | 117.7                | C14—C16—H16C               | 109.5                |
| $C_{3}-C_{4}-C_{18}$    | 122.4 (2)            | H16A—C16—H16B              | 109.5                |
| $C_{5}-C_{4}-C_{3}$     | 116.2 (3)            | H16A - C16 - H16C          | 109.5                |
| C5-C4-C18               | 121.3(3)             | H16B—C16—H16C              | 109.5                |
| C4—C5—H5                | 118.9                | C14—C17—H17A               | 109.5                |
| C4-C5-C6                | 122.2 (3)            | C14—C17—H17B               | 109.5                |
| С6—С5—Н5                | 118.9                | C14—C17—H17C               | 109.5                |
| C1 - C6 - C7            | 122 9 (3)            | H17A - C17 - H17B          | 109.5                |
| $C_{5}$                 | 122.9(3)<br>1195(3)  | H17A - C17 - H17C          | 109.5                |
| $C_{5}$ $C_{6}$ $C_{7}$ | 117.5(3)             | H17B-C17-H17C              | 109.5                |
| N1-C7-C6                | 123 1 (3)            | C4-C18-C19                 | 110 3 (2)            |
| N1-C7-H7                | 118 5                | C4-C18-C20                 | 10.3(2)<br>108 7 (2) |
| C6—C7—H7                | 118.5                | C19 - C18 - C20            | 108.0(2)             |
| C9 - C8 - N1            | 123 1 (3)            | $C_{21}$ $C_{18}$ $C_{4}$  | 112.3 (2)            |
| C13 - C8 - N1           | 1180(3)              | $C_{21} - C_{18} - C_{19}$ | 1083(2)              |
| C13 - C8 - C9           | 118.8 (3)            | $C_{21} = C_{18} = C_{20}$ | 100.3(2)<br>100.1(2) |
|                         | 110.0 (3)            | 021 - 010 - 020            | 107.1 (4)            |

| С8—С9—Н9        | 119.5      | C18—C19—H19A    | 109.5      |
|-----------------|------------|-----------------|------------|
| C10—C9—C8       | 120.9 (3)  | C18—C19—H19B    | 109.5      |
| С10—С9—Н9       | 119.5      | C18—C19—H19C    | 109.5      |
| C9—C10—H10      | 120.5      | H19A—C19—H19B   | 109.5      |
| C9—C10—C11      | 119.1 (3)  | H19A—C19—H19C   | 109.5      |
| C11—C10—H10     | 120.5      | H19B—C19—H19C   | 109.5      |
| C10—C11—C11     | 118.7 (2)  | C18—C20—H20A    | 109.5      |
| C12—C11—Cl1     | 120.1 (2)  | C18—C20—H20B    | 109.5      |
| C12—C11—C10     | 121.2 (3)  | C18—C20—H20C    | 109.5      |
| C11—C12—H12     | 120.4      | H20A—C20—H20B   | 109.5      |
| C13—C12—C11     | 119.1 (3)  | H20A—C20—H20C   | 109.5      |
| C13—C12—H12     | 120.4      | H20B-C20-H20C   | 109.5      |
| C8—C13—H13      | 119.6      | C18—C21—H21A    | 109.5      |
| C12—C13—C8      | 120.8 (3)  | C18—C21—H21B    | 109.5      |
| C12—C13—H13     | 119.6      | C18—C21—H21C    | 109.5      |
| C2—C14—C15      | 110.3 (2)  | H21A—C21—H21B   | 109.5      |
| C2—C14—C16      | 110.4 (2)  | H21A—C21—H21C   | 109.5      |
| C2—C14—C17      | 112.6 (2)  | H21B—C21—H21C   | 109.5      |
| C15—C14—C16     | 109.1 (2)  |                 |            |
|                 |            |                 |            |
| Cl1—C11—C12—C13 | -180.0(2)  | C3-C4-C18-C21   | 22.7 (4)   |
| O1—C1—C2—C3     | -179.3 (2) | C4—C5—C6—C1     | 1.4 (4)    |
| O1—C1—C2—C14    | 0.7 (4)    | C4—C5—C6—C7     | -176.5(2)  |
| O1—C1—C6—C5     | 178.7 (2)  | C5-C4-C18-C19   | -39.5 (3)  |
| O1—C1—C6—C7     | -3.5 (4)   | C5-C4-C18-C20   | 78.8 (3)   |
| N1-C8-C9-C10    | 178.7 (3)  | C5-C4-C18-C21   | -160.4(3)  |
| N1-C8-C13-C12   | -178.4 (2) | C5-C6-C7-N1     | -179.2 (2) |
| C1—C2—C3—C4     | -0.3 (4)   | C6—C1—C2—C3     | 2.2 (4)    |
| C1—C2—C14—C15   | -60.0(3)   | C6-C1-C2-C14    | -177.8 (2) |
| C1-C2-C14-C16   | 60.6 (3)   | C7—N1—C8—C9     | -29.0 (4)  |
| C1—C2—C14—C17   | 180.0 (2)  | C7—N1—C8—C13    | 150.8 (3)  |
| C1—C6—C7—N1     | 3.0 (4)    | C8—N1—C7—C6     | -178.5 (2) |
| C2-C1-C6-C5     | -2.7 (4)   | C8—C9—C10—C11   | 0.0 (4)    |
| C2-C1-C6-C7     | 175.0 (2)  | C9—C8—C13—C12   | 1.4 (4)    |
| C2—C3—C4—C5     | -1.0 (4)   | C9—C10—C11—Cl1  | -179.8 (2) |
| C2—C3—C4—C18    | 176.0 (2)  | C9—C10—C11—C12  | 1.1 (5)    |
| C3—C2—C14—C15   | 120.0 (3)  | C10-C11-C12-C13 | -0.8 (4)   |
| C3—C2—C14—C16   | -119.3 (3) | C11—C12—C13—C8  | -0.5 (4)   |
| C3—C2—C14—C17   | 0.0 (3)    | C13-C8-C9-C10   | -1.2 (4)   |
| C3—C4—C5—C6     | 0.5 (4)    | C14—C2—C3—C4    | 179.7 (2)  |
| C3—C4—C18—C19   | 143.6 (3)  | C18—C4—C5—C6    | -176.6 (2) |
| C3—C4—C18—C20   | -98.1 (3)  |                 | ~ /        |

### Hydrogen-bond geometry (Å, °)

| D—H···A  | <i>D</i> —Н | Н…А      | $D \cdots A$ | <i>D</i> —H··· <i>A</i> |
|----------|-------------|----------|--------------|-------------------------|
| O1—H1…N1 | 0.94 (4)    | 1.77 (4) | 2.626 (3)    | 150 (3)                 |

(*E*)-6-{[(4-Bromophenyl)imino]methyl}-2,4-di-*tert*-butylphenol (3\_300K)

#### Crystal data

C<sub>21</sub>H<sub>26</sub>BrNO  $M_r = 388.34$ Monoclinic,  $P2_1/c$ *a* = 18.0356 (7) Å b = 10.5891 (3) Å c = 10.3641 (3) Å  $\beta = 92.894 (3)^{\circ}$  $V = 1976.82 (11) \text{ Å}^3$ Z = 4

#### Data collection

| $T_{\min} = 0.744, T_{\max} = 1.000$<br>13771 measured reflections     |
|------------------------------------------------------------------------|
| 3195 independent reflections<br>2444 reflections with $I > 2\sigma(I)$ |
| $R_{\rm int} = 0.036$                                                  |
| $\theta_{\rm max} = 24.4^\circ, \ \theta_{\rm min} = 2.9^\circ$        |
| $h = -20 \rightarrow 20$                                               |
| $k = -12 \rightarrow 12$                                               |
| $l = -9 \rightarrow 12$                                                |
|                                                                        |
| Hydrogen site location: mixed                                          |
| H atoms treated by a mixture of independent                            |
| and constrained refinement                                             |
| $w = 1/[\sigma^2(F_o^2) + (0.0477P)^2 + 1.8801P]$                      |
|                                                                        |

where  $P = (F_0^2 + 2F_c^2)/3$ 3195 reflections  $(\Delta/\sigma)_{\rm max} < 0.001$  $\Delta \rho_{\rm max} = 0.35 \text{ e } \text{\AA}^{-3}$ 278 parameters  $\Delta \rho_{\rm min} = -0.42 \text{ e} \text{ Å}^{-3}$ 181 restraints Primary atom site location: iterative

### Special details

S = 1.05

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

F(000) = 808

 $\theta = 3.8 - 26.3^{\circ}$  $\mu = 2.09 \text{ mm}^{-1}$ 

Needle, yellow

 $0.3 \times 0.05 \times 0.05$  mm

T = 300 K

 $D_{\rm x} = 1.305 {\rm Mg} {\rm m}^{-3}$ 

Mo *K* $\alpha$  radiation,  $\lambda = 0.71073$  Å

Cell parameters from 5921 reflections

Refinement. Occupancies of the disordered tBu carbon atoms refined with their sum set to equal 1. Restraints were applied to maintain sensible thermal and geometric parameters.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(\hat{A}^2)$ 

|     | x            | У           | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ | Occ. (<1) |
|-----|--------------|-------------|--------------|-----------------------------|-----------|
| Br1 | -0.13439 (2) | 0.44494 (4) | -0.28958 (4) | 0.0747 (2)                  |           |
| 01  | 0.18011 (15) | 0.0118 (2)  | 0.1572 (3)   | 0.0579 (7)                  |           |
| N1  | 0.11610 (16) | 0.2045 (3)  | 0.0400 (3)   | 0.0537 (8)                  |           |
| C1  | 0.23225 (19) | 0.0925 (3)  | 0.2067 (3)   | 0.0430 (8)                  |           |
| C2  | 0.28963 (19) | 0.0485 (3)  | 0.2917 (3)   | 0.0420 (8)                  |           |
| C3  | 0.34106 (19) | 0.1369 (3)  | 0.3377 (3)   | 0.0431 (8)                  |           |
| Н3  | 0.379201     | 0.108749    | 0.394293     | 0.052*                      |           |
|     |              |             |              |                             |           |

| C4       | 0.34003 (19)           | 0.2656 (3)             | 0.3056 (3)             | 0.0435 (8)           |           |
|----------|------------------------|------------------------|------------------------|----------------------|-----------|
| C5       | 0.2828 (2)             | 0.3041 (3)             | 0.2226 (3)             | 0.0500 (9)           |           |
| Н5       | 0.280144               | 0.388602               | 0.198256               | 0.060*               |           |
| C6       | 0.22857 (19)           | 0.2213 (3)             | 0.1737 (3)             | 0.0457 (8)           |           |
| C7       | 0.1689 (2)             | 0.2713 (3)             | 0.0889 (4)             | 0.0552 (9)           |           |
| H7       | 0.169479               | 0.357012               | 0.069392               | 0.066*               |           |
| C8       | 0.05915 (11)           | 0.2622 (2)             | -0.0400(2)             | 0.0508 (9)           |           |
| C9       | 0.07093 (11)           | 0.3723 (2)             | -0.1091(3)             | 0.0766 (13)          |           |
| H9       | 0.117599               | 0.409847               | -0.105520              | 0.092*               |           |
| C10      | 0.01295 (14)           | 0.4263 (2)             | -0.1834(3)             | 0.0785(14)           |           |
| H10      | 0.020835               | 0.499922               | -0 229591              | 0.094*               |           |
| C11      | -0.05680(11)           | 0.3701(2)              | -0.1887(2)             | 0.0548(9)            |           |
| C12      | -0.06858(10)           | 0.3701(2)<br>0.2600(2) | -0.1196(3)             | 0.0510(5)            |           |
| H12      | -0.115249              | 0.22000 (2)            | -0.123143              | 0.0039 (11)          |           |
| C13      | -0.01060(13)           | 0.222455               | -0.0453(2)             | 0.077<br>0.0632 (11) |           |
| H13      | -0.018486              | 0.132377               | 0.00930                | 0.0052 (11)          |           |
| C14      | 0.2053 (2)             | -0.0018(3)             | 0.3314(3)              | 0.070                |           |
| C14      | 0.2935(2)<br>0.3636(2) | -0.1180(4)             | 0.3314(3)<br>0.4203(4) | 0.0497(9)            |           |
| U15 A    | 0.3030(2)              | -0.1180(4)             | 0.4203 (4)             | 0.0711(12)<br>0.107* |           |
|          | 0.300902               | -0.008907              | 0.497657               | 0.107*               |           |
|          | 0.407373               | -0.095515              | 0.3//130               | 0.107*               |           |
| HISC CIC | 0.303385               | -0.200130              | 0.441881               | 0.10/*               |           |
|          | 0.3015 (3)             | -0.1740(3)             | 0.2096 (4)             | 0.0660 (11)          |           |
| HI6A     | 0.345/58               | -0.151821              | 0.16/1/9               | 0.099*               |           |
| HI6B     | 0.258964               | -0.159794              | 0.151916               | 0.099*               |           |
| H16C     | 0.303551               | -0.261414              | 0.233901               | 0.099*               |           |
| C17      | 0.2266 (2)             | -0.1294 (4)            | 0.4035 (4)             | 0.0664 (11)          |           |
| H17A     | 0.182802               | -0.114908              | 0.349023               | 0.100*               |           |
| H17B     | 0.224329               | -0.079598              | 0.480615               | 0.100*               |           |
| H17C     | 0.229647               | -0.217221              | 0.426102               | 0.100*               |           |
| C18      | 0.39918 (19)           | 0.3570 (3)             | 0.3597 (3)             | 0.0522 (9)           |           |
| C19      | 0.4482 (9)             | 0.4004 (17)            | 0.2535 (11)            | 0.081 (4)            | 0.355 (3) |
| H19A     | 0.418064               | 0.439075               | 0.185464               | 0.121*               | 0.355 (3) |
| H19B     | 0.473713               | 0.328962               | 0.219822               | 0.121*               | 0.355 (3) |
| H19C     | 0.483769               | 0.460442               | 0.287998               | 0.121*               | 0.355 (3) |
| C20      | 0.4448 (9)             | 0.3044 (13)            | 0.4756 (13)            | 0.082 (4)            | 0.355 (3) |
| H20A     | 0.476534               | 0.238076               | 0.447404               | 0.123*               | 0.355 (3) |
| H20B     | 0.412078               | 0.271351               | 0.537524               | 0.123*               | 0.355 (3) |
| H20C     | 0.474601               | 0.370539               | 0.514700               | 0.123*               | 0.355 (3) |
| C21      | 0.3571 (7)             | 0.4742 (11)            | 0.4100 (17)            | 0.079 (4)            | 0.355 (3) |
| H21A     | 0.319872               | 0.446979               | 0.466823               | 0.118*               | 0.355 (3) |
| H21B     | 0.333962               | 0.518954               | 0.338168               | 0.118*               | 0.355 (3) |
| H21C     | 0.391644               | 0.529029               | 0.456036               | 0.118*               | 0.355 (3) |
| C19A     | 0.4187 (7)             | 0.4572 (10)            | 0.2595 (10)            | 0.062 (3)            | 0.438 (3) |
| H19D     | 0.376880               | 0.512125               | 0.243062               | 0.094*               | 0.438 (3) |
| H19E     | 0.430823               | 0.416343               | 0.180623               | 0.094*               | 0.438 (3) |
| H19F     | 0.460444               | 0.505822               | 0.292182               | 0.094*               | 0.438 (3) |
| C21A     | 0.3737(7)              | 0.4203 (14)            | 0.4805 (11)            | 0.090(4)             | 0.438(3)  |
| H21D     | 0.363048               | 0.357173               | 0.543364               | 0.134*               | 0.438(3)  |
|          | 0.000010               |                        |                        |                      |           |

| H21E | 0.329755    | 0.468808    | 0.459680    | 0.134*      | 0.438 (3) |
|------|-------------|-------------|-------------|-------------|-----------|
| H21F | 0.412178    | 0.475130    | 0.515061    | 0.134*      | 0.438 (3) |
| C20A | 0.4737 (5)  | 0.2868 (9)  | 0.3916 (16) | 0.082 (3)   | 0.438 (3) |
| H20D | 0.488342    | 0.242091    | 0.316439    | 0.123*      | 0.438 (3) |
| H20E | 0.467291    | 0.228013    | 0.460651    | 0.123*      | 0.438 (3) |
| H20F | 0.511371    | 0.347029    | 0.417369    | 0.123*      | 0.438 (3) |
| C21B | 0.3838 (14) | 0.4944 (10) | 0.322 (3)   | 0.080 (5)   | 0.206 (3) |
| H21G | 0.348944    | 0.530000    | 0.379038    | 0.120*      | 0.206 (3) |
| H21H | 0.363454    | 0.498002    | 0.234797    | 0.120*      | 0.206 (3) |
| H21I | 0.429244    | 0.541650    | 0.328991    | 0.120*      | 0.206 (3) |
| C19B | 0.4740 (8)  | 0.315 (2)   | 0.310 (3)   | 0.083 (5)   | 0.206 (3) |
| H19G | 0.471709    | 0.316358    | 0.217625    | 0.125*      | 0.206 (3) |
| H19H | 0.484719    | 0.230211    | 0.339687    | 0.125*      | 0.206 (3) |
| H19I | 0.512429    | 0.370550    | 0.342880    | 0.125*      | 0.206 (3) |
| C20B | 0.4044 (15) | 0.347 (2)   | 0.5076 (8)  | 0.069 (5)   | 0.206 (3) |
| H20G | 0.408459    | 0.260255    | 0.532620    | 0.103*      | 0.206 (3) |
| H20H | 0.360682    | 0.383289    | 0.541945    | 0.103*      | 0.206 (3) |
| H20I | 0.447399    | 0.392569    | 0.540896    | 0.103*      | 0.206 (3) |
| H1   | 0.151 (3)   | 0.055 (4)   | 0.111 (5)   | 0.082 (16)* |           |
|      |             |             |             |             |           |

Atomic displacement parameters  $(Å^2)$ 

|      | $U^{11}$    | $U^{22}$    | U <sup>33</sup> | $U^{12}$     | $U^{13}$     | $U^{23}$     |
|------|-------------|-------------|-----------------|--------------|--------------|--------------|
| Br1  | 0.0643 (3)  | 0.0739 (3)  | 0.0832 (3)      | 0.0135 (2)   | -0.0217 (2)  | 0.0037 (2)   |
| 01   | 0.0565 (17) | 0.0467 (14) | 0.0685 (18)     | -0.0075 (13) | -0.0172 (14) | -0.0028 (13) |
| N1   | 0.0446 (18) | 0.0564 (17) | 0.0586 (19)     | 0.0014 (14)  | -0.0115 (15) | -0.0028 (14) |
| C1   | 0.040 (2)   | 0.0430 (18) | 0.0458 (19)     | -0.0038 (15) | -0.0031 (15) | -0.0078 (15) |
| C2   | 0.049 (2)   | 0.0384 (17) | 0.0389 (17)     | -0.0003 (15) | 0.0021 (15)  | -0.0060 (14) |
| C3   | 0.042 (2)   | 0.0489 (19) | 0.0374 (17)     | -0.0006 (15) | -0.0033 (14) | -0.0016 (15) |
| C4   | 0.047 (2)   | 0.0424 (18) | 0.0409 (18)     | -0.0037 (15) | -0.0032 (15) | -0.0016 (14) |
| C5   | 0.052 (2)   | 0.0377 (18) | 0.059 (2)       | -0.0018 (15) | -0.0071 (18) | -0.0008 (15) |
| C6   | 0.041 (2)   | 0.0441 (18) | 0.051 (2)       | 0.0022 (15)  | -0.0058 (16) | -0.0030 (15) |
| C7   | 0.053 (2)   | 0.0462 (19) | 0.064 (2)       | 0.0031 (17)  | -0.0114 (19) | -0.0031 (17) |
| C8   | 0.044 (2)   | 0.055 (2)   | 0.052 (2)       | 0.0030 (17)  | -0.0072 (16) | -0.0024 (17) |
| C9   | 0.054 (3)   | 0.097 (3)   | 0.077 (3)       | -0.025 (2)   | -0.014 (2)   | 0.031 (3)    |
| C10  | 0.064 (3)   | 0.085 (3)   | 0.084 (3)       | -0.020(2)    | -0.022 (2)   | 0.034 (2)    |
| C11  | 0.049 (2)   | 0.060 (2)   | 0.054 (2)       | 0.0020 (18)  | -0.0057 (17) | -0.0001 (18) |
| C12  | 0.042 (2)   | 0.068 (2)   | 0.080 (3)       | -0.0089 (18) | -0.013 (2)   | 0.005 (2)    |
| C13  | 0.054 (3)   | 0.054 (2)   | 0.080 (3)       | -0.0094 (18) | -0.014 (2)   | 0.0076 (19)  |
| C14  | 0.057 (2)   | 0.0407 (18) | 0.052 (2)       | 0.0003 (16)  | -0.0017 (17) | 0.0005 (15)  |
| C15  | 0.082 (3)   | 0.051 (2)   | 0.079 (3)       | 0.006 (2)    | -0.019 (2)   | 0.012 (2)    |
| C16  | 0.087 (3)   | 0.047 (2)   | 0.064 (3)       | 0.008 (2)    | 0.002 (2)    | -0.0078 (18) |
| C17  | 0.079 (3)   | 0.052 (2)   | 0.069 (3)       | -0.008(2)    | 0.009 (2)    | 0.0049 (19)  |
| C18  | 0.055 (2)   | 0.051 (2)   | 0.049 (2)       | -0.0173 (17) | -0.0085 (17) | 0.0019 (16)  |
| C19  | 0.073 (9)   | 0.095 (9)   | 0.073 (7)       | -0.041 (7)   | 0.000 (7)    | -0.007 (7)   |
| C20  | 0.091 (9)   | 0.093 (8)   | 0.059 (7)       | -0.048 (7)   | -0.031 (7)   | 0.011 (7)    |
| C21  | 0.089 (8)   | 0.073 (7)   | 0.074 (8)       | -0.035 (6)   | 0.004 (7)    | -0.034 (7)   |
| C19A | 0.063 (7)   | 0.068 (7)   | 0.057 (5)       | -0.023 (5)   | 0.012 (5)    | -0.007 (5)   |

| C21A | 0.099 (8)  | 0.112 (9)  | 0.058 (6)  | -0.056 (7) | 0.010 (6)  | -0.026 (6) |
|------|------------|------------|------------|------------|------------|------------|
| C20A | 0.069 (6)  | 0.082 (6)  | 0.092 (8)  | -0.034 (5) | -0.033 (6) | 0.017 (7)  |
| C21B | 0.093 (10) | 0.078 (9)  | 0.067 (10) | -0.047 (9) | -0.012 (9) | 0.002 (9)  |
| C19B | 0.075 (9)  | 0.104 (10) | 0.072 (10) | -0.046 (9) | 0.011 (9)  | -0.013 (9) |
| C20B | 0.071 (11) | 0.075 (10) | 0.059 (9)  | -0.040 (9) | -0.005 (8) | -0.021 (8) |

Geometric parameters (Å, °)

| Br1—C11  | 1.8794 (16) | C17—H17C    | 0.9600    |
|----------|-------------|-------------|-----------|
| 01—C1    | 1.353 (4)   | C18—C19     | 1.517 (7) |
| O1—H1    | 0.83 (5)    | C18—C20     | 1.527 (7) |
| N1—C7    | 1.272 (5)   | C18—C21     | 1.558 (7) |
| N1—C8    | 1.425 (3)   | C18—C19A    | 1.538 (6) |
| C1—C2    | 1.404 (5)   | C18—C21A    | 1.512 (7) |
| C1—C6    | 1.406 (4)   | C18—C20A    | 1.557 (7) |
| C2—C3    | 1.386 (4)   | C18—C21B    | 1.528 (8) |
| C2—C14   | 1.543 (4)   | C18—C19B    | 1.535 (8) |
| С3—Н3    | 0.9300      | C18—C20B    | 1.535 (8) |
| C3—C4    | 1.403 (4)   | C19—H19A    | 0.9600    |
| C4—C5    | 1.372 (5)   | C19—H19B    | 0.9600    |
| C4—C18   | 1.526 (4)   | C19—H19C    | 0.9600    |
| С5—Н5    | 0.9300      | C20—H20A    | 0.9600    |
| C5—C6    | 1.390 (5)   | C20—H20B    | 0.9600    |
| C6—C7    | 1.454 (5)   | C20—H20C    | 0.9600    |
| С7—Н7    | 0.9300      | C21—H21A    | 0.9600    |
| C8—C9    | 1.3900      | C21—H21B    | 0.9600    |
| C8—C13   | 1.3900      | C21—H21C    | 0.9600    |
| С9—Н9    | 0.9300      | C19A—H19D   | 0.9600    |
| C9—C10   | 1.3900      | C19A—H19E   | 0.9600    |
| C10—H10  | 0.9300      | C19A—H19F   | 0.9600    |
| C10—C11  | 1.3900      | C21A—H21D   | 0.9600    |
| C11—C12  | 1.3900      | C21A—H21E   | 0.9600    |
| C12—H12  | 0.9300      | C21A—H21F   | 0.9600    |
| C12—C13  | 1.3900      | C20A—H20D   | 0.9600    |
| С13—Н13  | 0.9300      | C20A—H20E   | 0.9600    |
| C14—C15  | 1.527 (5)   | C20A—H20F   | 0.9600    |
| C14—C16  | 1.541 (5)   | C21B—H21G   | 0.9600    |
| C14—C17  | 1.532 (5)   | C21B—H21H   | 0.9600    |
| C15—H15A | 0.9600      | C21B—H21I   | 0.9600    |
| C15—H15B | 0.9600      | C19B—H19G   | 0.9600    |
| C15—H15C | 0.9600      | С19В—Н19Н   | 0.9600    |
| C16—H16A | 0.9600      | C19B—H19I   | 0.9600    |
| C16—H16B | 0.9600      | C20B—H20G   | 0.9600    |
| C16—H16C | 0.9600      | С20В—Н20Н   | 0.9600    |
| C17—H17A | 0.9600      | C20B—H20I   | 0.9600    |
| C17—H17B | 0.9600      |             |           |
| C1—O1—H1 | 106 (3)     | C4—C18—C21B | 113.3 (8) |
|          |             |             |           |

| C7—N1—C8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 119.8 (3)                | C4—C18—C19B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 107.6 (9) |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| O1—C1—C2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 120.3 (3)                | C4C18C20B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 109.4 (8) |
| O1—C1—C6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 119.8 (3)                | C19—C18—C4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 110.3 (6) |
| C2—C1—C6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 119.9 (3)                | C19—C18—C20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 111.7 (7) |
| C1—C2—C14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 121.6 (3)                | C19—C18—C21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 108.3 (7) |
| C3—C2—C1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 116.8 (3)                | C20-C18-C21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 106.2 (7) |
| C3—C2—C14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 121.6 (3)                | C19A—C18—C20A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 104.4 (6) |
| С2—С3—Н3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 117.5                    | C21A—C18—C4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 110.5 (5) |
| C2—C3—C4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 125.0 (3)                | C21A—C18—C19A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 110.0 (6) |
| C4—C3—H3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 117.5                    | C21A—C18—C20A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 109 3 (6) |
| $C_{3}$ $C_{4}$ $C_{18}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 121.9(3)                 | $C_{21B}$ $C_{18}$ $C_{19B}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 110 2 (9) |
| $C_{5} - C_{4} - C_{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 121.9(3)<br>1160(3)      | C21B - C18 - C20B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 108.6(8)  |
| $C_{5} - C_{4} - C_{18}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 122 1 (3)                | $C_{19B} - C_{18} - C_{20B}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 107.6(8)  |
| C4-C5-H5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 118.9                    | C18-C19-H19A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 109.5     |
| C4-C5-C6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 122 3 (3)                | C18-C19-H19B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 109.5     |
| C6-C5-H5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 122.5 (5)                | C18 - C19 - H19C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 109.5     |
| $C_1  C_6  C_7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 121.6 (3)                | $H_{10A} = C_{10} = H_{10B}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 109.5     |
| $C_1 - C_0 - C_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 121.0(3)                 | H10A C10 H10C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 109.5     |
| $C_{5} = C_{6} = C_{7}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 120.0(3)<br>118 $4(3)$   | H10R C10 H10C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 109.5     |
| N1 C7 C6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 110.4(3)<br>123.7(3)     | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 109.5     |
| N1 = C7 = C0<br>N1 = C7 = H7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 123.7 (5)                | $C_{18} = C_{20} = H_{20R}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 109.5     |
| $N_1 = C_1 = H_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 118.1                    | $C_{18} = C_{20} = H_{20C}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 109.5     |
| $C_0 = C_1 = H_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 122 33 (10)              | H20A C20 H20B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 109.5     |
| $C_{2}$ $C_{3}$ $C_{13}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 122.33 (19)              | $H_{20A} = C_{20} = H_{20B}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 109.5     |
| $C_{3}$ $C_{8}$ $N_{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 117.65 (10)              | $H_{20}R$ C20 H20C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 109.5     |
| $C_{13}$ $C_{23}$ $C$ | 117.05 (19)              | $C_{18} C_{21} H_{21A}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 109.5     |
| $C_{8} = C_{9} = C_{10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 120.0                    | $C_{18}$ $C_{21}$ $H_{21R}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 109.5     |
| $C_{0} = C_{0} = C_{10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 120.0                    | $C_{18} = C_{21} = H_{21C}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 109.5     |
| $C_{10} - C_{9} - 11_{9}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 120.0                    | $\begin{array}{c} 10 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ 121 \\ $                                                                                                                                                                                                                                                                                                                                                                                                         | 109.5     |
| $C_{9}$ $C_{10}$ $C_{11}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 120.0                    | $H_{21A} = C_{21} = H_{21C}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 109.5     |
| $C_{11} = C_{10} = C_{11}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 120.0                    | H21P C21 H21C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 109.5     |
| $C_{11} = C_{10} = 1110$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 120.0<br>110.25(12)      | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 109.5     |
| $C_{10}$ $C_{11}$ $B_{r1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 119.23(13)<br>120.75(12) | $C_{18}$ $C_{10A}$ $H_{10E}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 109.5     |
| $C_{12}$ $C_{11}$ $C_{10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 120.75 (15)              | $C_{18}$ $C_{10A}$ $H_{10E}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 109.5     |
| $C_{12}$ $C_{11}$ $C_{12}$ $H_{12}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 120.0                    | H10D C10A H10E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 109.5     |
| $C_{11} = C_{12} = C_{13}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 120.0                    | H10D C10A H10E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 109.5     |
| $C_{11} - C_{12} - C_{13}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 120.0                    | H19D - C19A - H19F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 109.5     |
| $C_{13} - C_{12} - H_{12}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 120.0                    | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 109.5     |
| $C_{0} - C_{13} - H_{13}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 120.0                    | $C_{18}$ $C_{21A}$ $H_{21E}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 109.5     |
| $C_{12} = C_{13} = C_{8}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 120.0                    | C18 C21A H21E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 109.5     |
| C12—C13—H13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 120.0                    | $\begin{array}{c} C16 \\ \hline \\ C21A \\ \hline \\ D21D \\ \hline \\ C21A \\ \hline \\ D21E \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 109.5     |
| C15 - C14 - C2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 112.1(3)<br>107.6(2)     | $H_2ID = C_2IA = H_2IE$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 109.5     |
| $C_{13}$ $C_{14}$ $C_{17}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 107.0(3)                 | $\frac{1}{10} - \frac{1}{10} - \frac{1}{10} = \frac{1}{10} $ | 109.5     |
| $C_{13}$ $-C_{14}$ $C_{17}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 107.0(3)<br>100.4(2)     | $\Pi \angle I E = \bigcup \angle I A = \Pi \angle I F$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 109.5     |
| $C_{10}$ $-C_{14}$ $C_{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 109.4(3)                 | $C_{10}$ $C_{20A}$ $H_{20E}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 109.5     |
| C17 - C14 - C2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 109.0 (3)                | C18 C20A H20E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 109.5     |
| $C_{1}$ $C_{14}$ $C_{15}$ $U_{15}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 110.5 (5)                | $U_{10}$ $U_{20A}$ $H_{20F}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 109.5     |
| C14 = C15 = H15D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 109.3                    | $H_20D = C_20A = H_20E$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 109.5     |
| U14—U13—H13B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 109.5                    | HZUD—UZUA—HZUF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 109.5     |

| C14—C15—H15C                            | 109.5                 | H20E—C20A—H20F                               | 109.5                |
|-----------------------------------------|-----------------------|----------------------------------------------|----------------------|
| H15A—C15—H15B                           | 109.5                 | C18—C21B—H21G                                | 109.5                |
| H15A—C15—H15C                           | 109.5                 | C18—C21B—H21H                                | 109.5                |
| H15B—C15—H15C                           | 109.5                 | C18—C21B—H21I                                | 109.5                |
| C14—C16—H16A                            | 109.5                 | H21G—C21B—H21H                               | 109.5                |
| C14—C16—H16B                            | 109.5                 | H21G—C21B—H21I                               | 109.5                |
| C14—C16—H16C                            | 109.5                 | H21H—C21B—H21I                               | 109.5                |
| H16A—C16—H16B                           | 109.5                 | C18—C19B—H19G                                | 109.5                |
| H16A—C16—H16C                           | 109.5                 | C18—C19B—H19H                                | 109.5                |
| H16B—C16—H16C                           | 109.5                 | C18—C19B—H19I                                | 109.5                |
| C14—C17—H17A                            | 109.5                 | H19G—C19B—H19H                               | 109.5                |
| C14—C17—H17B                            | 109.5                 | H19G—C19B—H19I                               | 109.5                |
| C14—C17—H17C                            | 109.5                 | H19H—C19B—H19I                               | 109.5                |
| H17A—C17—H17B                           | 109.5                 | C18—C20B—H20G                                | 109.5                |
| H17A—C17—H17C                           | 109.5                 | C18—C20B—H20H                                | 109.5                |
| H17B—C17—H17C                           | 109.5                 | C18—C20B—H20I                                | 109.5                |
| C4—C18—C20                              | 113.4 (5)             | H20G—C20B—H20H                               | 109.5                |
| C4-C18-C21                              | 106.6 (5)             | H20G—C20B—H20I                               | 109.5                |
| C4-C18-C19A                             | 111.6 (5)             | H20H—C20B—H20I                               | 109.5                |
| C4-C18-C20A                             | 110.8 (5)             |                                              | 109.0                |
| 01 010 02011                            | 110.0 (0)             |                                              |                      |
| Br1—C11—C12—C13                         | -179.89(19)           | C3—C4—C18—C20B                               | -53.5 (12)           |
| O1—C1—C2—C3                             | 179.7 (3)             | C4—C5—C6—C1                                  | -1.5(5)              |
| Q1—C1—C2—C14                            | 0.0 (5)               | C4—C5—C6—C7                                  | 178.5 (3)            |
| 01-C1-C6-C5                             | -178.9(3)             | C5-C4-C18-C19                                | -69.2(9)             |
| 01                                      | 1.2 (5)               | C5-C4-C18-C20                                | 164.6 (9)            |
| N1-C8-C9-C10                            | -178.5(3)             | C5-C4-C18-C21                                | 48.1 (8)             |
| N1-C8-C13-C12                           | 178.6 (2)             | C5-C4-C18-C19A                               | -36.4(7)             |
| C1-C2-C3-C4                             | -0.2(5)               | C5-C4-C18-C21A                               | 86.4 (8)             |
| C1-C2-C14-C15                           | 177.9 (3)             | C5-C4-C18-C20A                               | -152.3(7)            |
| C1-C2-C14-C16                           | 58.6 (4)              | C5-C4-C18-C21B                               | 5.3 (13)             |
| C1-C2-C14-C17                           | -62.4(4)              | $C_{5}$ $C_{4}$ $C_{18}$ $C_{19B}$           | -1169(13)            |
| C1 - C6 - C7 - N1                       | 0.8 (6)               | $C_{5}$ $C_{4}$ $C_{18}$ $C_{20B}$           | 1266(12)             |
| $C_{2}$ $C_{1}$ $C_{6}$ $C_{5}$         | 1.7(5)                | $C_{5}$ $C_{6}$ $C_{7}$ $N_{1}$              | -1792(4)             |
| $C_2 - C_1 - C_6 - C_7$                 | -1783(3)              | C6-C1-C2-C3                                  | -0.9(5)              |
| $C_{2} - C_{3} - C_{4} - C_{5}$         | 0.4(5)                | C6-C1-C2-C14                                 | 1794(3)              |
| $C_2 - C_3 - C_4 - C_{18}$              | -1795(3)              | C7-N1-C8-C9                                  | 261(4)               |
| $C_{3}$ $C_{2}$ $C_{14}$ $C_{15}$       | -1.8(5)               | C7-N1-C8-C13                                 | -1525(3)             |
| $C_{3}$ $C_{2}$ $C_{14}$ $C_{16}$       | -1211(4)              | C8-N1-C7-C6                                  | 132.5(3)             |
| $C_{3}$ $C_{2}$ $C_{14}$ $C_{17}$       | 1179(4)               | C8-C9-C10-C11                                | 0.0                  |
| $C_{3}$ $C_{4}$ $C_{5}$ $C_{6}$         | 0.4(5)                | C9-C8-C13-C12                                | 0.0                  |
| $C_{3}$ $C_{4}$ $C_{18}$ $C_{19}$       | 110.7(9)              | $C_{9} = C_{10} = C_{11} = Br_{11}$          | 179 89 (19)          |
| $C_{3} - C_{4} - C_{18} - C_{20}$       | -15.7(9)              | $C_{0}$ $C_{10}$ $C_{11}$ $C_{12}$           | 0.0                  |
| $C_{3}$ $C_{4}$ $C_{18}$ $C_{21}$       | -1320(8)              | $C_{10}$ $C_{11}$ $C_{12}$ $C_{13}$          | 0.0                  |
| $C_{3} - C_{4} - C_{18} - C_{10}^{10}$  | 143.6 (6)             | $C_{11}$ $C_{12}$ $C_{13}$ $C_{23}$ $C_{23}$ | 0.0                  |
| $C_{3}$ $C_{4}$ $C_{18}$ $C_{21A}$      | -93.6(8)              | C13 - C12 - C13 - C0                         | 0.0                  |
| $C_{3} = C_{4} = C_{10} = C_{21A}$      | 95.0(0)               | $C_{13}$ $C_{2}$ $C_{3}$ $C_{4}$             | 170.5(2)             |
| $C_{2} = C_{4} = C_{10} = C_{20} C_{4}$ | 21.1(1)<br>-174.8(12) | $C_{14} - C_{2} - C_{3} - C_{4}$             | 1/9.3(3)<br>-1706(2) |
| C3-C4-C18-C21B                          | -1/4.8(13)            | 10 - 4 - 10 - 10                             | -1/9.0(3)            |

#### C3—C4—C18—C19B 63.1 (13)

Hydrogen-bond geometry (Å, °)

|          | D—H      | Н…А      | D····A    | <i>D</i> —H··· <i>A</i> |
|----------|----------|----------|-----------|-------------------------|
| 01—H1…N1 | 0.83 (5) | 1.84 (5) | 2.614 (4) | 154 (5)                 |

(*E*)-6-{[(4-Bromophenyl)imino]methyl}-2,4-di-*tert*-butylphenol (3\_250K)

#### Crystal data

| $C_{21}H_{26}BrNO$             | F(000) = 808                                          |
|--------------------------------|-------------------------------------------------------|
| $M_r = 388.34$                 | $D_{\rm x} = 1.320 {\rm ~Mg} {\rm ~m}^{-3}$           |
| Monoclinic, $P2_1/c$           | Mo <i>K</i> $\alpha$ radiation, $\lambda = 0.71073$ Å |
| a = 17.9642 (4)  Å             | Cell parameters from 8503 reflections                 |
| b = 10.5593 (2) Å              | $\theta = 3.0-26.0^{\circ}$                           |
| c = 10.3153 (2) Å              | $\mu = 2.11 \text{ mm}^{-1}$                          |
| $\beta = 92.535 \ (2)^{\circ}$ | T = 250  K                                            |
| V = 1954.79 (8) Å <sup>3</sup> | Needle, yellow                                        |
| Z = 4                          | $0.3 \times 0.05 \times 0.05$ mm                      |
| Data collection                |                                                       |

| Agilent SuperNova Dual Source                        | $T_{\min} = 0.690, \ T_{\max} = 1.000$                          |
|------------------------------------------------------|-----------------------------------------------------------------|
| diffractometer with an Atlas detector                | 29546 measured reflections                                      |
| Radiation source: SuperNova (Mo) X-ray               | 4650 independent reflections                                    |
| Source                                               | 3079 reflections with $I > 2\sigma(I)$                          |
| Mirror monochromator                                 | $R_{\rm int} = 0.048$                                           |
| Detector resolution: 10.3620 pixels mm <sup>-1</sup> | $\theta_{\rm max} = 27.9^\circ, \ \theta_{\rm min} = 3.0^\circ$ |
| $\omega$ and $\pi$ scans                             | $h = -23 \rightarrow 23$                                        |
| Absorption correction: multi-scan                    | $k = -9 \rightarrow 13$                                         |
| (CrysAlis PRO; Agilent, 2013)                        | $l = -13 \rightarrow 13$                                        |
| Refinement                                           |                                                                 |
| Refinement on $F^2$                                  | Hydrogen site location: mixed                                   |
| Least-squares matrix: full                           | H atoms treated by a mixture of independent                     |
| $R[F^2 > 2\sigma(F^2)] = 0.039$                      | and constrained refinement                                      |
| $wR(F^2) = 0.101$                                    | $w = 1/[\sigma^2(F_o^2) + (0.040P)^2 + 1.096P]$                 |

 $wR(F^2) = 0.101$  S = 1.024650 reflections 278 parameters 181 restraints Primary atom site location: iterative

#### Special details

**Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

where  $P = (F_0^2 + 2F_c^2)/3$ 

 $(\Delta/\sigma)_{\rm max} = 0.001$  $\Delta\rho_{\rm max} = 0.33 \text{ e} \text{ Å}^{-3}$ 

 $\Delta \rho_{\rm min} = -0.36 \ {\rm e} \ {\rm \AA}^{-3}$ 

**Refinement**. Occupancies of the disordered tBu carbon atoms refined with their sum set to equal 1. Restraints were applied to maintain sensible thermal and geometric parameters.

| Fractional atomic coordinates and isotrop | oic or equivalent isotro | pic displacement | parameters ( | $(A^2)$ | ) |
|-------------------------------------------|--------------------------|------------------|--------------|---------|---|
|-------------------------------------------|--------------------------|------------------|--------------|---------|---|

|     | x            | У           | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ | Occ. (<1) |
|-----|--------------|-------------|--------------|-----------------------------|-----------|
| Br1 | -0.13496 (2) | 0.44592 (3) | -0.28979 (3) | 0.05979 (13)                |           |

| 01         | 0.17999 (10)           | 0.01102 (17)                  | 0.15632 (19)   | 0.0470 (4)             |           |
|------------|------------------------|-------------------------------|----------------|------------------------|-----------|
| N1         | 0.11606 (11)           | 0.2045 (2)                    | 0.0395 (2)     | 0.0437 (5)             |           |
| C1         | 0.23214 (13)           | 0.0919 (2)                    | 0.2068 (2)     | 0.0364 (5)             |           |
| C2         | 0.28965 (13)           | 0.0477 (2)                    | 0.2919 (2)     | 0.0340 (5)             |           |
| C3         | 0.34126 (13)           | 0.1364 (2)                    | 0.3379 (2)     | 0.0364 (5)             |           |
| H3         | 0.379678               | 0.107782                      | 0.395500       | 0.044*                 |           |
| C4         | 0.34063 (13)           | 0.2651 (2)                    | 0.3054 (2)     | 0.0372 (5)             |           |
| C5         | 0.28305 (13)           | 0.3045 (2)                    | 0.2223 (2)     | 0.0409 (6)             |           |
| H5         | 0.280342               | 0.390299                      | 0.198077       | 0.049*                 |           |
| C6         | 0.22876 (13)           | 0.2212(2)                     | 0.1730 (2)     | 0.0383(5)              |           |
| C7         | 0 16905 (14)           | 0.2212(2)<br>0.2716(2)        | 0.0888(2)      | 0.0455 (6)             |           |
| Н7         | 0 169482               | 0.358642                      | 0.069565       | 0.055*                 |           |
| C8         | 0.05918(7)             | 0.26234(15)                   | -0.04062(16)   | 0.0416 (6)             |           |
| C9         | 0.03910(7)             | 0.2029 + (13)<br>0.37306 (17) | -0.10964(19)   | 0.0110(0)<br>0.0597(8) |           |
| но         | 0.118293               | 0.411270                      | -0.106226      | 0.072*                 |           |
| C10        | 0.110293<br>0.01284(0) | 0.411270<br>0.42728(15)       | -0.18370(18)   | 0.072                  |           |
| U10        | 0.01284 (9)            | 0.42728 (13)                  | -0.230370 (13) | 0.0399 (8)             |           |
| П10<br>С11 | 0.020822               | 0.302100<br>0.27070(15)       | -0.230379      | $0.072^{\circ}$        |           |
|            | -0.03712(8)            | 0.37079(13)<br>0.26007(15)    | -0.18873(10)   | 0.0423(0)              |           |
| U12        | -0.00893(7)            | 0.20007 (13)                  | -0.11975 (18)  | 0.0300(7)              |           |
| H12        | -0.116234              | 0.221801                      | -0.123144      | $0.061^{\circ}$        |           |
| U13        | -0.01078(9)            | 0.20584 (13)                  | -0.04566 (17)  | 0.0516(7)              |           |
| HI3        | -0.018763              | 0.130968                      | 0.001011       | 0.062*                 |           |
| C14        | 0.29481 (14)           | -0.0928 (2)                   | 0.3315 (2)     | 0.0405 (6)             |           |
| C15        | 0.36308 (16)           | -0.1194 (3)                   | 0.4214 (3)     | 0.0569 (7)             |           |
| H15A       | 0.359810               | -0.070153                     | 0.500328       | 0.085*                 |           |
| H15B       | 0.407899               | -0.096085                     | 0.378032       | 0.085*                 |           |
| H15C       | 0.364794               | -0.208829                     | 0.442804       | 0.085*                 |           |
| C16        | 0.30185 (17)           | -0.1755 (2)                   | 0.2097 (3)     | 0.0534 (7)             |           |
| H16A       | 0.347267               | -0.153661                     | 0.167372       | 0.080*                 |           |
| H16B       | 0.259302               | -0.160860                     | 0.150384       | 0.080*                 |           |
| H16C       | 0.303407               | -0.264080                     | 0.234574       | 0.080*                 |           |
| C17        | 0.22552 (16)           | -0.1310 (3)                   | 0.4038 (3)     | 0.0541 (7)             |           |
| H17A       | 0.181299               | -0.116478                     | 0.348362       | 0.081*                 |           |
| H17B       | 0.222751               | -0.080801                     | 0.482114       | 0.081*                 |           |
| H17C       | 0.228648               | -0.220086                     | 0.426479       | 0.081*                 |           |
| C18        | 0.40010 (14)           | 0.3568 (2)                    | 0.3593 (2)     | 0.0436 (6)             |           |
| C19        | 0.4486 (6)             | 0.3982 (12)                   | 0.2532 (8)     | 0.069 (3)              | 0.386 (3) |
| H19A       | 0.418279               | 0.438277                      | 0.184790       | 0.104*                 | 0.386 (3) |
| H19B       | 0.473708               | 0.325136                      | 0.218501       | 0.104*                 | 0.386 (3) |
| H19C       | 0.485412               | 0.458075                      | 0.287571       | 0.104*                 | 0.386 (3) |
| C20        | 0.4426 (7)             | 0.3056 (10)                   | 0.4780 (10)    | 0.077 (3)              | 0.386 (3) |
| H20A       | 0.472932               | 0.234315                      | 0.453319       | 0.116*                 | 0.386 (3) |
| H20B       | 0.407716               | 0.278311                      | 0.541453       | 0.116*                 | 0.386 (3) |
| H20C       | 0.474500               | 0.371539                      | 0.515415       | 0.116*                 | 0.386 (3) |
| C21        | 0.3573 (5)             | 0.4760 (8)                    | 0.4080(13)     | 0.075 (3)              | 0.386(3)  |
| H21A       | 0.318768               | 0.449214                      | 0.464980       | 0.113*                 | 0.386(3)  |
| H21B       | 0 334813               | 0 520824                      | 0 334202       | 0.113*                 | 0.386(3)  |
| H21C       | 0 391988               | 0 531590                      | 0.455070       | 0.113*                 | 0.386(3)  |
| 1141 V     | 0.071700               | 0.001070                      | 0.100010       | 0.115                  | 0.200 (2) |

| C19A | 0.4199 (5)  | 0.4574 (7)  | 0.2594 (7)  | 0.0543 (19) | 0.463 (3) |
|------|-------------|-------------|-------------|-------------|-----------|
| H19D | 0.377781    | 0.513752    | 0.243943    | 0.081*      | 0.463 (3) |
| H19E | 0.431789    | 0.416335    | 0.178771    | 0.081*      | 0.463 (3) |
| H19F | 0.462593    | 0.505742    | 0.292192    | 0.081*      | 0.463 (3) |
| C21A | 0.3752 (5)  | 0.4193 (11) | 0.4800 (8)  | 0.084 (3)   | 0.463 (3) |
| H21D | 0.365234    | 0.355196    | 0.544354    | 0.126*      | 0.463 (3) |
| H21E | 0.330251    | 0.467593    | 0.460185    | 0.126*      | 0.463 (3) |
| H21F | 0.414105    | 0.475547    | 0.513868    | 0.126*      | 0.463 (3) |
| C20A | 0.4755 (4)  | 0.2863 (7)  | 0.3895 (12) | 0.076 (2)   | 0.463 (3) |
| H20D | 0.489117    | 0.238728    | 0.313655    | 0.113*      | 0.463 (3) |
| H20E | 0.469901    | 0.228692    | 0.461698    | 0.113*      | 0.463 (3) |
| H20F | 0.514126    | 0.347620    | 0.411821    | 0.113*      | 0.463 (3) |
| C21B | 0.3856 (14) | 0.4933 (10) | 0.318 (3)   | 0.071 (5)   | 0.151 (3) |
| H21G | 0.339329    | 0.522207    | 0.353266    | 0.107*      | 0.151 (3) |
| H21H | 0.381979    | 0.498396    | 0.224338    | 0.107*      | 0.151 (3) |
| H21I | 0.426286    | 0.546409    | 0.351130    | 0.107*      | 0.151 (3) |
| C19B | 0.4755 (7)  | 0.312 (2)   | 0.313 (3)   | 0.075 (5)   | 0.151 (3) |
| H19G | 0.474217    | 0.311891    | 0.218683    | 0.112*      | 0.151 (3) |
| H19H | 0.485871    | 0.227726    | 0.345064    | 0.112*      | 0.151 (3) |
| H19I | 0.514275    | 0.369740    | 0.345124    | 0.112*      | 0.151 (3) |
| C20B | 0.4040 (16) | 0.349 (3)   | 0.5075 (7)  | 0.070 (5)   | 0.151 (3) |
| H20G | 0.411832    | 0.262314    | 0.534373    | 0.104*      | 0.151 (3) |
| H20H | 0.357589    | 0.380216    | 0.540583    | 0.104*      | 0.151 (3) |
| H20I | 0.444910    | 0.401318    | 0.541508    | 0.104*      | 0.151 (3) |
| H1   | 0.1498 (19) | 0.055 (3)   | 0.112 (3)   | 0.071 (11)* |           |
|      |             |             |             |             |           |

Atomic displacement parameters  $(\mathring{A}^2)$ 

|     | $U^{11}$     | $U^{22}$     | $U^{33}$    | $U^{12}$     | $U^{13}$      | <i>U</i> <sup>23</sup> |
|-----|--------------|--------------|-------------|--------------|---------------|------------------------|
| Br1 | 0.05142 (18) | 0.05850 (19) | 0.0676 (2)  | 0.01114 (13) | -0.01808 (14) | 0.00286 (15)           |
| 01  | 0.0448 (10)  | 0.0370 (9)   | 0.0577 (12) | -0.0065 (8)  | -0.0160 (9)   | -0.0026 (9)            |
| N1  | 0.0388 (11)  | 0.0437 (12)  | 0.0475 (12) | 0.0004 (9)   | -0.0092 (9)   | -0.0021 (10)           |
| C1  | 0.0342 (12)  | 0.0359 (12)  | 0.0387 (13) | -0.0041 (10) | -0.0015 (10)  | -0.0065 (10)           |
| C2  | 0.0375 (12)  | 0.0332 (12)  | 0.0314 (11) | -0.0008 (10) | 0.0015 (9)    | -0.0042 (10)           |
| C3  | 0.0366 (12)  | 0.0397 (13)  | 0.0323 (12) | 0.0000 (10)  | -0.0042 (10)  | -0.0006 (10)           |
| C4  | 0.0406 (13)  | 0.0365 (12)  | 0.0340 (12) | -0.0054 (10) | -0.0044 (10)  | -0.0035 (10)           |
| C5  | 0.0446 (14)  | 0.0309 (12)  | 0.0463 (14) | -0.0028 (10) | -0.0086 (11)  | -0.0017 (10)           |
| C6  | 0.0374 (12)  | 0.0346 (12)  | 0.0422 (14) | 0.0015 (10)  | -0.0069 (10)  | -0.0033 (10)           |
| C7  | 0.0477 (15)  | 0.0362 (13)  | 0.0515 (16) | 0.0015 (11)  | -0.0106 (12)  | -0.0043 (11)           |
| C8  | 0.0366 (13)  | 0.0432 (14)  | 0.0443 (14) | 0.0013 (11)  | -0.0076 (11)  | -0.0021 (11)           |
| C9  | 0.0399 (15)  | 0.075 (2)    | 0.0626 (18) | -0.0172 (14) | -0.0110 (13)  | 0.0220 (16)            |
| C10 | 0.0523 (17)  | 0.0634 (18)  | 0.0623 (18) | -0.0147 (14) | -0.0159 (14)  | 0.0260 (15)            |
| C11 | 0.0397 (13)  | 0.0445 (14)  | 0.0422 (14) | 0.0018 (11)  | -0.0047 (11)  | -0.0030 (11)           |
| C12 | 0.0357 (13)  | 0.0524 (16)  | 0.0627 (18) | -0.0057 (12) | -0.0084 (12)  | 0.0023 (13)            |
| C13 | 0.0468 (15)  | 0.0446 (15)  | 0.0620 (18) | -0.0061 (12) | -0.0131 (13)  | 0.0075 (13)            |
| C14 | 0.0463 (14)  | 0.0335 (12)  | 0.0412 (14) | 0.0006 (11)  | -0.0030 (11)  | 0.0004 (10)            |
| C15 | 0.0627 (18)  | 0.0414 (15)  | 0.0649 (19) | 0.0038 (13)  | -0.0163 (15)  | 0.0113 (13)            |
| C16 | 0.0692 (19)  | 0.0375 (14)  | 0.0534 (17) | 0.0063 (13)  | 0.0024 (14)   | -0.0044 (12)           |

| C17  | 0.0650 (18) | 0.0431 (15) | 0.0544 (17) | -0.0053 (13) | 0.0061 (14)  | 0.0041 (13) |
|------|-------------|-------------|-------------|--------------|--------------|-------------|
| C18  | 0.0476 (14) | 0.0432 (14) | 0.0392 (14) | -0.0143 (11) | -0.0086 (11) | 0.0020 (11) |
| C19  | 0.059 (6)   | 0.090 (7)   | 0.059 (5)   | -0.033 (5)   | 0.006 (4)    | -0.007 (5)  |
| C20  | 0.080 (6)   | 0.085 (6)   | 0.062 (5)   | -0.051 (5)   | -0.040 (5)   | 0.019 (5)   |
| C21  | 0.077 (6)   | 0.067 (6)   | 0.080 (6)   | -0.022 (5)   | -0.005 (5)   | -0.040 (5)  |
| C19A | 0.052 (5)   | 0.059 (5)   | 0.052 (4)   | -0.020 (3)   | -0.001 (3)   | -0.002 (4)  |
| C21A | 0.084 (6)   | 0.116 (8)   | 0.053 (5)   | -0.056 (5)   | 0.015 (4)    | -0.037 (5)  |
| C20A | 0.051 (4)   | 0.066 (4)   | 0.106 (7)   | -0.025 (3)   | -0.033 (4)   | 0.021 (5)   |
| C21B | 0.075 (9)   | 0.073 (9)   | 0.063 (9)   | -0.043 (8)   | -0.018 (8)   | 0.003 (8)   |
| C19B | 0.064 (9)   | 0.090 (9)   | 0.070 (10)  | -0.039 (8)   | 0.007 (9)    | -0.012 (9)  |
| C20B | 0.069 (10)  | 0.069 (10)  | 0.070 (9)   | -0.037 (9)   | -0.008 (9)   | -0.019 (8)  |
|      |             |             |             |              |              |             |

Geometric parameters (Å, °)

| Br1—C11  | 1.8821 (11) | C17—H17C  | 0.9700    |
|----------|-------------|-----------|-----------|
| 01—C1    | 1.354 (3)   | C18—C19   | 1.494 (6) |
| 01—H1    | 0.84 (3)    | C18—C20   | 1.514 (6) |
| N1—C7    | 1.275 (3)   | C18—C21   | 1.569 (6) |
| N1—C8    | 1.423 (2)   | C18—C19A  | 1.533 (5) |
| C1—C2    | 1.405 (3)   | C18—C21A  | 1.495 (5) |
| C1—C6    | 1.410 (3)   | C18—C20A  | 1.564 (5) |
| С2—С3    | 1.386 (3)   | C18—C21B  | 1.522 (7) |
| C2-C14   | 1.541 (3)   | C18—C19B  | 1.531 (7) |
| С3—Н3    | 0.9400      | C18—C20B  | 1.529 (7) |
| C3—C4    | 1.401 (3)   | C19—H19A  | 0.9700    |
| C4—C5    | 1.378 (3)   | C19—H19B  | 0.9700    |
| C4—C18   | 1.528 (3)   | C19—H19C  | 0.9700    |
| С5—Н5    | 0.9400      | C20—H20A  | 0.9700    |
| C5—C6    | 1.393 (3)   | C20—H20B  | 0.9700    |
| С6—С7    | 1.451 (3)   | C20—H20C  | 0.9700    |
| С7—Н7    | 0.9400      | C21—H21A  | 0.9700    |
| С8—С9    | 1.3900      | C21—H21B  | 0.9700    |
| C8—C13   | 1.3900      | C21—H21C  | 0.9700    |
| С9—Н9    | 0.9400      | C19A—H19D | 0.9700    |
| C9—C10   | 1.3900      | C19A—H19E | 0.9700    |
| С10—Н10  | 0.9400      | C19A—H19F | 0.9700    |
| C10-C11  | 1.3900      | C21A—H21D | 0.9700    |
| C11—C12  | 1.3900      | C21A—H21E | 0.9700    |
| С12—Н12  | 0.9400      | C21A—H21F | 0.9700    |
| C12—C13  | 1.3900      | C20A—H20D | 0.9700    |
| С13—Н13  | 0.9400      | C20A—H20E | 0.9700    |
| C14—C15  | 1.530 (3)   | C20A—H20F | 0.9700    |
| C14—C16  | 1.540 (4)   | C21B—H21G | 0.9700    |
| C14—C17  | 1.533 (4)   | C21B—H21H | 0.9700    |
| C15—H15A | 0.9700      | C21B—H21I | 0.9700    |
| C15—H15B | 0.9700      | C19B—H19G | 0.9700    |
| C15—H15C | 0.9700      | C19B—H19H | 0.9700    |
| C16—H16A | 0.9700      | C19B—H19I | 0.9700    |
|          |             |           |           |

| C16—H16B        | 0.9700               | C20B—H20G                     | 0.9700    |
|-----------------|----------------------|-------------------------------|-----------|
| C16—H16C        | 0.9700               | C20B—H20H                     | 0.9700    |
| C17—H17A        | 0.9700               | C20B—H20I                     | 0.9700    |
| С17—Н17В        | 0.9700               |                               |           |
|                 |                      |                               |           |
| C1              | 106 (2)              | C4—C18—C20B                   | 109.4 (9) |
| C7—N1—C8        | 119.8 (2)            | C19—C18—C4                    | 109.9 (4) |
| 01—C1—C2        | 120.5 (2)            | C19—C18—C20                   | 114.0 (5) |
| 01—C1—C6        | 119.6 (2)            | C19—C18—C21                   | 108.0 (6) |
| C2-C1-C6        | 119.9 (2)            | C20—C18—C4                    | 112.8 (4) |
| C1-C2-C14       | 121.3 (2)            | C20—C18—C21                   | 105.3 (5) |
| C3—C2—C1        | 116.9 (2)            | C19A—C18—C20A                 | 103.9 (4) |
| C3—C2—C14       | 121.8 (2)            | C21A—C18—C4                   | 110.7 (3) |
| С2—С3—Н3        | 117.5                | C21A—C18—C19A                 | 109.9 (5) |
| C2—C3—C4        | 125.1 (2)            | C21A—C18—C20A                 | 109.4 (5) |
| С4—С3—Н3        | 117.5                | C21B—C18—C4                   | 113.0 (8) |
| C3—C4—C18       | 122.0 (2)            | C21B—C18—C19B                 | 110.2 (9) |
| C5—C4—C3        | 116.1 (2)            | C21B—C18—C20B                 | 109.0 (8) |
| C5—C4—C18       | 121.9 (2)            | C20B—C18—C19B                 | 107.2 (8) |
| С4—С5—Н5        | 119.0                | C18—C19—H19A                  | 109.5     |
| C4—C5—C6        | 122.0 (2)            | C18—C19—H19B                  | 109.5     |
| С6—С5—Н5        | 119.0                | C18—C19—H19C                  | 109.5     |
| C1—C6—C7        | 121.7 (2)            | H19A—C19—H19B                 | 109.5     |
| C5—C6—C1        | 120.0 (2)            | H19A—C19—H19C                 | 109.5     |
| C5—C6—C7        | 118.3 (2)            | H19B—C19—H19C                 | 109.5     |
| N1—C7—C6        | 123.6 (2)            | C18—C20—H20A                  | 109.5     |
| N1—C7—H7        | 118.2                | C18—C20—H20B                  | 109.5     |
| С6—С7—Н7        | 118.2                | C18—C20—H20C                  | 109.5     |
| C9—C8—N1        | 122.45 (13)          | H20A—C20—H20B                 | 109.5     |
| C9—C8—C13       | 120.0                | H20A—C20—H20C                 | 109.5     |
| C13—C8—N1       | 117.53 (13)          | H20B—C20—H20C                 | 109.5     |
| С8—С9—Н9        | 120.0                | C18—C21—H21A                  | 109.5     |
| C8—C9—C10       | 120.0                | C18—C21—H21B                  | 109.5     |
| С10—С9—Н9       | 120.0                | C18—C21—H21C                  | 109.5     |
| C9—C10—H10      | 120.0                | H21A—C21—H21B                 | 109.5     |
| C11—C10—C9      | 120.0                | H21A—C21—H21C                 | 109.5     |
| C11—C10—H10     | 120.0                | H21B-C21-H21C                 | 109.5     |
| C10—C11—Br1     | 119.22 (9)           | C18—C19A—H19D                 | 109.5     |
| C10-C11-C12     | 120.0                | C18—C19A—H19E                 | 109.5     |
| C12-C11-Br1     | 120.78 (9)           | C18—C19A—H19F                 | 109.5     |
| C11—C12—H12     | 120.0                | H19D—C19A—H19E                | 109.5     |
| C13 - C12 - C11 | 120.0                | H19D—C19A—H19F                | 109.5     |
| C13—C12—H12     | 120.0                | H19E— $C19A$ — $H19F$         | 109.5     |
| C8-C13-H13      | 120.0                | C18— $C21A$ — $H21D$          | 109.5     |
| C12 - C13 - C8  | 120.0                | C18 - C21A - H21E             | 109.5     |
| C12_C13_H13     | 120.0                | C18 - C21A - H21E             | 109.5     |
| C15 - C14 - C2  | 1120.0               | $H_{21D}$ $C_{21A}$ $H_{21E}$ | 109.5     |
| C15 - C14 - C16 | 112.0(2)<br>107.2(2) | $H_{21D} = C_{21A} = H_{21E}$ | 109.5     |
|                 | 107.3 (2)            | 1121D - 021A - 11211          | 107.5     |

| C15—C14—C17     | 107.7 (2)    | H21E—C21A—H21F | 109.5        |
|-----------------|--------------|----------------|--------------|
| C16—C14—C2      | 109.6 (2)    | C18—C20A—H20D  | 109.5        |
| C17—C14—C2      | 110.0 (2)    | C18—C20A—H20E  | 109.5        |
| C17—C14—C16     | 110.2 (2)    | C18—C20A—H20F  | 109.5        |
| C14—C15—H15A    | 109.5        | H20D—C20A—H20E | 109.5        |
| C14—C15—H15B    | 109.5        | H20D—C20A—H20F | 109.5        |
| C14—C15—H15C    | 109.5        | H20E—C20A—H20F | 109.5        |
| H15A—C15—H15B   | 109.5        | C18—C21B—H21G  | 109.5        |
| H15A—C15—H15C   | 109.5        | C18—C21B—H21H  | 109.5        |
| H15B—C15—H15C   | 109.5        | C18—C21B—H21I  | 109.5        |
| C14—C16—H16A    | 109.5        | H21G—C21B—H21H | 109.5        |
| C14—C16—H16B    | 109.5        | H21G—C21B—H21I | 109.5        |
| C14—C16—H16C    | 109.5        | H21H—C21B—H21I | 109.5        |
| H16A—C16—H16B   | 109.5        | C18—C19B—H19G  | 109.5        |
| H16A—C16—H16C   | 109.5        | C18—C19B—H19H  | 109.5        |
| H16B—C16—H16C   | 109.5        | C18—C19B—H19I  | 109.5        |
| C14—C17—H17A    | 109.5        | H19G—C19B—H19H | 109.5        |
| C14—C17—H17B    | 109.5        | H19G—C19B—H19I | 109.5        |
| C14—C17—H17C    | 109.5        | H19H—C19B—H19I | 109.5        |
| H17A—C17—H17B   | 109.5        | C18—C20B—H20G  | 109.5        |
| H17A—C17—H17C   | 109.5        | C18—C20B—H20H  | 109.5        |
| H17B—C17—H17C   | 109.5        | C18—C20B—H20I  | 109.5        |
| C4—C18—C21      | 106.3 (4)    | H20G—C20B—H20H | 109.5        |
| C4—C18—C19A     | 111.9 (3)    | H20G—C20B—H20I | 109.5        |
| C4—C18—C20A     | 110.8 (3)    | H20H—C20B—H20I | 109.5        |
| C4—C18—C19B     | 107.8 (9)    |                |              |
|                 |              |                |              |
| Br1-C11-C12-C13 | 179.96 (13)  | C3—C4—C18—C20B | -54.6 (13)   |
| O1—C1—C2—C3     | 179.2 (2)    | C4—C5—C6—C1    | -0.7 (4)     |
| O1—C1—C2—C14    | -0.7 (3)     | C4—C5—C6—C7    | 178.4 (2)    |
| O1—C1—C6—C5     | -178.6 (2)   | C5-C4-C18-C19  | -69.7 (6)    |
| O1—C1—C6—C7     | 2.3 (4)      | C5-C4-C18-C20  | 161.9 (7)    |
| N1-C8-C9-C10    | -178.29 (18) | C5-C4-C18-C21  | 47.0 (6)     |
| N1-C8-C13-C12   | 178.37 (17)  | C5-C4-C18-C19A | -36.3 (5)    |
| C1—C2—C3—C4     | -0.5 (4)     | C5-C4-C18-C21A | 86.7 (7)     |
| C1—C2—C14—C15   | 178.3 (2)    | C5-C4-C18-C20A | -151.7 (5)   |
| C1—C2—C14—C16   | 59.3 (3)     | C5-C4-C18-C21B | 3.6 (13)     |
| C1—C2—C14—C17   | -62.0 (3)    | C5-C4-C18-C19B | -118.5 (13)  |
| C1—C6—C7—N1     | -0.1 (4)     | C5-C4-C18-C20B | 125.2 (13)   |
| C2-C1-C6-C5     | 1.0 (4)      | C5-C6-C7-N1    | -179.2 (3)   |
| C2-C1-C6-C7     | -178.0(2)    | C6-C1-C2-C3    | -0.4 (3)     |
| C2—C3—C4—C5     | 0.9 (4)      | C6-C1-C2-C14   | 179.7 (2)    |
| C2—C3—C4—C18    | -179.4 (2)   | C7—N1—C8—C9    | 25.9 (3)     |
| C3—C2—C14—C15   | -1.6 (3)     | C7—N1—C8—C13   | -152.4 (2)   |
| C3—C2—C14—C16   | -120.6 (2)   | C8—N1—C7—C6    | 179.1 (2)    |
| C3—C2—C14—C17   | 118.1 (2)    | C8—C9—C10—C11  | 0.0          |
| C3—C4—C5—C6     | -0.2 (4)     | C9—C8—C13—C12  | 0.0          |
| C3—C4—C18—C19   | 110.6 (6)    | C9—C10—C11—Br1 | -179.96 (13) |
|                 |              |                |              |

| C3—C4—C18—C20<br>C3—C4—C18—C21<br>C3—C4—C18—C19A<br>C3—C4—C18—C21A<br>C3—C4—C18—C21A<br>C3—C4—C18—C20A<br>C3—C4—C18—C21B | -17.8 (7)<br>-132.7 (6)<br>144.0 (5)<br>-93.0 (6)<br>28.6 (6)<br>-176.2 (13) | C9—C10—C11—C12<br>C10—C11—C12—C13<br>C11—C12—C13—C8<br>C13—C8—C9—C10<br>C14—C2—C3—C4<br>C18—C4—C5—C6 | 0.0<br>0.0<br>0.0<br>179.4 (2)<br>-180.0 (2) |
|--------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|----------------------------------------------|
| C3—C4—C18—C21B<br>C3—C4—C18—C19B                                                                                         | -176.2 (13)<br>61.8 (13)                                                     | C18—C4—C5—C6                                                                                         | -180.0 (2)                                   |

#### Hydrogen-bond geometry (Å, °)

| D—H···A  | D—H      | H····A   | D····A    | D—H···A |
|----------|----------|----------|-----------|---------|
| 01—H1…N1 | 0.84 (3) | 1.83 (3) | 2.612 (3) | 154 (3) |

(E)-6-{[(4-Bromophenyl)imino]methyl}-2,4-di-tert-butylphenol (3\_200K)

#### Crystal data

C<sub>21</sub>H<sub>26</sub>BrNO  $M_r = 388.34$ Monoclinic, P2<sub>1</sub>/c a = 17.8944 (4) Å b = 10.54749 (18) Å c = 10.2693 (2) Å  $\beta = 92.1529$  (18)° V = 1936.88 (6) Å<sup>3</sup> Z = 4

#### Data collection

Agilent SuperNova Dual Source diffractometer with an Atlas detector Radiation source: SuperNova (Mo) X-ray Source Mirror monochromator Detector resolution: 10.3620 pixels mm<sup>-1</sup>  $\omega$  and  $\pi$  scans Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2013)

#### Refinement

Refinement on  $F^2$ Least-squares matrix: full  $R[F^2 > 2\sigma(F^2)] = 0.035$  $wR(F^2) = 0.083$ S = 1.024612 reflections 290 parameters 175 restraints F(000) = 808  $D_x = 1.332 \text{ Mg m}^{-3}$ Mo K $\alpha$  radiation,  $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9913 reflections  $\theta = 3.0-31.3^{\circ}$   $\mu = 2.13 \text{ mm}^{-1}$  T = 200 KNeedle, yellow  $0.3 \times 0.05 \times 0.05 \text{ mm}$ 

 $T_{\min} = 0.660, T_{\max} = 1.000$ 29301 measured reflections
4612 independent reflections
3377 reflections with  $I > 2\sigma(I)$   $R_{\text{int}} = 0.043$   $\theta_{\text{max}} = 27.9^{\circ}, \theta_{\text{min}} = 3.0^{\circ}$   $h = -23 \rightarrow 23$   $k = -9 \rightarrow 13$   $l = -13 \rightarrow 13$ 

Primary atom site location: structure-invariant direct methods Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement  $w = 1/[\sigma^2(F_o^2) + (0.0313P)^2 + 1.206P]$ where  $P = (F_o^2 + 2F_c^2)/3$  $(\Delta/\sigma)_{max} = 0.001$  $\Delta\rho_{max} = 0.37$  e Å<sup>-3</sup>  $\Delta\rho_{min} = -0.31$  e Å<sup>-3</sup>

#### Special details

**Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

**Refinement**. Occupancies of the disordered tBu carbon atoms refined with their sum set to equal 1. Restraints were applied to maintain sensible thermal and geometric parameters.

|      | x             | У             | Ζ            | $U_{ m iso}*/U_{ m eq}$ | Occ. (<1) |
|------|---------------|---------------|--------------|-------------------------|-----------|
| Br1  | -0.13556 (2)  | 0.44640 (2)   | -0.28995 (2) | 0.04650 (10)            |           |
| 01   | 0.17988 (9)   | 0.01054 (15)  | 0.15601 (16) | 0.0379 (4)              |           |
| N1   | 0.11607 (10)  | 0.20409 (17)  | 0.03889 (18) | 0.0354 (4)              |           |
| C1   | 0.23210 (11)  | 0.09160 (19)  | 0.2063 (2)   | 0.0287 (4)              |           |
| C2   | 0.28944 (11)  | 0.04716 (18)  | 0.29217 (19) | 0.0274 (4)              |           |
| C3   | 0.34128 (11)  | 0.13600 (19)  | 0.33857 (19) | 0.0291 (4)              |           |
| H3   | 0.379590      | 0.107416      | 0.396463     | 0.035*                  |           |
| C4   | 0.34078 (11)  | 0.26462 (19)  | 0.3057 (2)   | 0.0304 (4)              |           |
| C5   | 0.28338 (12)  | 0.3045 (2)    | 0.2222 (2)   | 0.0333 (5)              |           |
| H5   | 0.280858      | 0.390340      | 0.197999     | 0.040*                  |           |
| C6   | 0.22893 (11)  | 0.22103 (19)  | 0.1727 (2)   | 0.0312 (5)              |           |
| C7   | 0.16915 (12)  | 0.2718 (2)    | 0.0883 (2)   | 0.0365 (5)              |           |
| H7   | 0.169541      | 0.358974      | 0.069146     | 0.044*                  |           |
| C8   | 0.05886 (11)  | 0.2631 (2)    | -0.0404(2)   | 0.0330 (5)              |           |
| C9   | 0.07038 (13)  | 0.3723 (2)    | -0.1112 (2)  | 0.0464 (6)              |           |
| H9   | 0.118108      | 0.409612      | -0.109893    | 0.056*                  |           |
| C10  | 0.01246 (14)  | 0.4272 (2)    | -0.1839 (2)  | 0.0467 (6)              |           |
| H10  | 0.020302      | 0.502549      | -0.230238    | 0.056*                  |           |
| C11  | -0.05682 (12) | 0.3704 (2)    | -0.1877 (2)  | 0.0331 (5)              |           |
| C12  | -0.06943 (12) | 0.2601 (2)    | -0.1206 (2)  | 0.0392 (5)              |           |
| H12  | -0.116841     | 0.221578      | -0.124418    | 0.047*                  |           |
| C13  | -0.01093 (12) | 0.2067 (2)    | -0.0474 (2)  | 0.0399 (5)              |           |
| H13  | -0.018818     | 0.130938      | -0.001687    | 0.048*                  |           |
| C14  | 0.29444 (12)  | -0.09343 (19) | 0.3321 (2)   | 0.0318 (5)              |           |
| C15  | 0.36238 (14)  | -0.1201 (2)   | 0.4229 (2)   | 0.0450 (6)              |           |
| H15A | 0.358805      | -0.070217     | 0.501743     | 0.068*                  |           |
| H15B | 0.407693      | -0.097467     | 0.379397     | 0.068*                  |           |
| H15C | 0.363709      | -0.209488     | 0.444988     | 0.068*                  |           |
| C16  | 0.30236 (14)  | -0.1762 (2)   | 0.2099 (2)   | 0.0426 (6)              |           |
| H16A | 0.348326      | -0.154486     | 0.167973     | 0.064*                  |           |
| H16B | 0.260123      | -0.161363     | 0.149840     | 0.064*                  |           |
| H16C | 0.303615      | -0.264893     | 0.234842     | 0.064*                  |           |
| C17  | 0.22445 (14)  | -0.1320 (2)   | 0.4042 (2)   | 0.0422 (5)              |           |
| H17A | 0.180375      | -0.117900     | 0.348224     | 0.063*                  |           |
| H17B | 0.221044      | -0.081472     | 0.482708     | 0.063*                  |           |
| H17C | 0.227658      | -0.221052     | 0.427402     | 0.063*                  |           |
| C18  | 0.40043 (12)  | 0.3569 (2)    | 0.3594 (2)   | 0.0359 (5)              |           |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

| C19  | 0.4494 (4)  | 0.3964 (9)  | 0.2530 (6)  | 0.060 (2)   | 0.432 (3) |
|------|-------------|-------------|-------------|-------------|-----------|
| H19A | 0.419224    | 0.434554    | 0.183093    | 0.090*      | 0.432 (3) |
| H19B | 0.475182    | 0.322769    | 0.220151    | 0.090*      | 0.432 (3) |
| H19C | 0.485806    | 0.457503    | 0.286418    | 0.090*      | 0.432 (3) |
| C20  | 0.4421 (5)  | 0.3068 (7)  | 0.4791 (7)  | 0.067 (2)   | 0.432 (3) |
| H20A | 0.470873    | 0.232756    | 0.455985    | 0.100*      | 0.432 (3) |
| H20B | 0.406658    | 0.283778    | 0.544208    | 0.100*      | 0.432 (3) |
| H20C | 0.475598    | 0.371805    | 0.513983    | 0.100*      | 0.432 (3) |
| C21  | 0.3577 (4)  | 0.4777 (6)  | 0.4080 (10) | 0.068 (2)   | 0.432 (3) |
| H21A | 0.320273    | 0.452044    | 0.468704    | 0.101*      | 0.432 (3) |
| H21B | 0.333471    | 0.520176    | 0.334044    | 0.101*      | 0.432 (3) |
| H21C | 0.392980    | 0.535039    | 0.451171    | 0.101*      | 0.432 (3) |
| C19A | 0.4210 (4)  | 0.4572 (6)  | 0.2589 (6)  | 0.0447 (16) | 0.458 (3) |
| H19D | 0.378788    | 0.513469    | 0.242584    | 0.067*      | 0.458 (3) |
| H19E | 0.433633    | 0.415800    | 0.178287    | 0.067*      | 0.458 (3) |
| H19F | 0.463573    | 0.505865    | 0.292126    | 0.067*      | 0.458 (3) |
| C21A | 0.3759 (5)  | 0.4188 (10) | 0.4805 (7)  | 0.073 (3)   | 0.458 (3) |
| H21D | 0.365667    | 0.354421    | 0.544960    | 0.110*      | 0.458 (3) |
| H21E | 0.330954    | 0.467719    | 0.461465    | 0.110*      | 0.458 (3) |
| H21F | 0.415164    | 0.474521    | 0.514327    | 0.110*      | 0.458 (3) |
| C20A | 0.4763 (3)  | 0.2850 (6)  | 0.3889 (10) | 0.065 (2)   | 0.458 (3) |
| H20D | 0.490175    | 0.238337    | 0.312073    | 0.097*      | 0.458 (3) |
| H20E | 0.470260    | 0.226415    | 0.460567    | 0.097*      | 0.458 (3) |
| H20F | 0.515145    | 0.345868    | 0.412215    | 0.097*      | 0.458 (3) |
| C21B | 0.3904 (16) | 0.4917 (12) | 0.309 (3)   | 0.062 (5)   | 0.110 (3) |
| H21G | 0.343913    | 0.526115    | 0.339740    | 0.093*      | 0.110 (3) |
| H21H | 0.389010    | 0.491338    | 0.214826    | 0.093*      | 0.110 (3) |
| H21I | 0.431866    | 0.543554    | 0.341513    | 0.093*      | 0.110 (3) |
| C19B | 0.4768 (9)  | 0.306 (3)   | 0.322 (3)   | 0.061 (5)   | 0.110 (3) |
| H19G | 0.474575    | 0.280474    | 0.231122    | 0.091*      | 0.110 (3) |
| H19H | 0.489919    | 0.233159    | 0.376059    | 0.091*      | 0.110 (3) |
| H19I | 0.514310    | 0.371453    | 0.335079    | 0.091*      | 0.110 (3) |
| C20B | 0.3986 (19) | 0.356 (3)   | 0.5076 (8)  | 0.064 (6)   | 0.110 (3) |
| H20G | 0.405818    | 0.270324    | 0.539420    | 0.096*      | 0.110 (3) |
| H20H | 0.350545    | 0.387670    | 0.534274    | 0.096*      | 0.110 (3) |
| H20I | 0.438105    | 0.410158    | 0.543479    | 0.096*      | 0.110 (3) |
| H1   | 0.1506 (16) | 0.053 (3)   | 0.111 (3)   | 0.057 (9)*  |           |
|      |             |             |             |             |           |

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$     | $U^{22}$     | $U^{33}$     | $U^{12}$     | $U^{13}$      | $U^{23}$     |
|-----|--------------|--------------|--------------|--------------|---------------|--------------|
| Br1 | 0.04069 (14) | 0.04521 (15) | 0.05239 (16) | 0.00871 (11) | -0.01424 (10) | 0.00238 (11) |
| 01  | 0.0360 (9)   | 0.0294 (8)   | 0.0470 (10)  | -0.0040 (7)  | -0.0140 (7)   | -0.0028 (7)  |
| N1  | 0.0320 (9)   | 0.0352 (10)  | 0.0384 (10)  | 0.0016 (8)   | -0.0078 (8)   | -0.0019 (8)  |
| C1  | 0.0268 (10)  | 0.0290 (10)  | 0.0300 (11)  | -0.0029 (8)  | -0.0013 (8)   | -0.0059 (8)  |
| C2  | 0.0304 (10)  | 0.0269 (10)  | 0.0251 (10)  | -0.0010 (8)  | 0.0014 (8)    | -0.0031 (8)  |
| C3  | 0.0293 (10)  | 0.0316 (11)  | 0.0260 (10)  | 0.0003 (8)   | -0.0033 (8)   | -0.0002 (8)  |
| C4  | 0.0321 (11)  | 0.0298 (11)  | 0.0289 (11)  | -0.0053 (9)  | -0.0037 (8)   | -0.0025 (9)  |
|     |              |              |              |              |               |              |

| C5   | 0.0368 (12) | 0.0252 (10) | 0.0371 (12) | -0.0026 (9)  | -0.0071 (9)  | -0.0010 (9)  |
|------|-------------|-------------|-------------|--------------|--------------|--------------|
| C6   | 0.0309 (11) | 0.0291 (10) | 0.0332 (11) | 0.0023 (9)   | -0.0054 (9)  | -0.0033 (9)  |
| C7   | 0.0391 (12) | 0.0294 (11) | 0.0404 (13) | 0.0025 (9)   | -0.0086 (10) | -0.0038 (9)  |
| C8   | 0.0309 (11) | 0.0351 (11) | 0.0324 (11) | 0.0022 (9)   | -0.0068 (9)  | -0.0019 (9)  |
| C9   | 0.0314 (12) | 0.0574 (16) | 0.0494 (15) | -0.0131 (11) | -0.0088 (10) | 0.0163 (12)  |
| C10  | 0.0435 (13) | 0.0501 (14) | 0.0457 (14) | -0.0115 (11) | -0.0103 (11) | 0.0199 (11)  |
| C11  | 0.0313 (11) | 0.0355 (12) | 0.0322 (11) | 0.0031 (9)   | -0.0043 (9)  | -0.0018 (9)  |
| C12  | 0.0278 (11) | 0.0398 (12) | 0.0494 (14) | -0.0036 (9)  | -0.0061 (10) | 0.0015 (11)  |
| C13  | 0.0389 (13) | 0.0331 (12) | 0.0470 (14) | -0.0043 (10) | -0.0098 (10) | 0.0046 (10)  |
| C14  | 0.0364 (11) | 0.0262 (10) | 0.0325 (11) | -0.0003 (9)  | -0.0016 (9)  | 0.0003 (9)   |
| C15  | 0.0496 (14) | 0.0324 (12) | 0.0520 (15) | 0.0026 (11)  | -0.0128 (11) | 0.0088 (11)  |
| C16  | 0.0553 (15) | 0.0298 (11) | 0.0428 (13) | 0.0051 (11)  | 0.0016 (11)  | -0.0052 (10) |
| C17  | 0.0512 (14) | 0.0336 (12) | 0.0421 (13) | -0.0040 (10) | 0.0047 (11)  | 0.0037 (10)  |
| C18  | 0.0400 (12) | 0.0354 (11) | 0.0317 (11) | -0.0123 (10) | -0.0075 (9)  | 0.0023 (9)   |
| C19  | 0.050 (5)   | 0.083 (6)   | 0.049 (4)   | -0.031 (4)   | 0.006 (3)    | -0.009 (4)   |
| C20  | 0.080 (5)   | 0.069 (5)   | 0.049 (4)   | -0.044 (4)   | -0.036 (4)   | 0.015 (4)    |
| C21  | 0.065 (4)   | 0.055 (4)   | 0.082 (5)   | -0.020 (4)   | -0.005 (4)   | -0.036 (4)   |
| C19A | 0.042 (4)   | 0.050 (4)   | 0.042 (3)   | -0.019 (3)   | 0.000 (3)    | -0.004 (3)   |
| C21A | 0.074 (5)   | 0.101 (7)   | 0.046 (4)   | -0.052 (5)   | 0.016 (4)    | -0.035 (4)   |
| C20A | 0.040 (3)   | 0.053 (4)   | 0.098 (6)   | -0.021 (3)   | -0.034 (4)   | 0.021 (4)    |
| C21B | 0.064 (10)  | 0.066 (9)   | 0.055 (9)   | -0.038 (8)   | -0.010 (8)   | -0.002 (9)   |
| C19B | 0.054 (9)   | 0.071 (9)   | 0.058 (10)  | -0.032 (8)   | 0.008 (9)    | -0.008 (9)   |
| C20B | 0.070 (11)  | 0.065 (12)  | 0.056 (10)  | -0.037 (10)  | 0.001 (10)   | -0.037 (9)   |
|      |             |             |             |              |              |              |

### Geometric parameters (Å, °)

| Br1—C11 | 1.902 (2) | C17—H17C  | 0.9700    |
|---------|-----------|-----------|-----------|
| 01—C1   | 1.355 (2) | C18—C19   | 1.485 (5) |
| 01—H1   | 0.82 (3)  | C18—C20   | 1.509 (5) |
| N1—C7   | 1.278 (3) | C18—C21   | 1.576 (5) |
| N1-C8   | 1.427 (3) | C18—C19A  | 1.533 (5) |
| C1—C2   | 1.408 (3) | C18—C21A  | 1.486 (5) |
| C1—C6   | 1.409 (3) | C18—C20A  | 1.574 (5) |
| C2—C3   | 1.390 (3) | C18—C21B  | 1.520 (7) |
| C2—C14  | 1.540 (3) | C18—C19B  | 1.531 (7) |
| С3—Н3   | 0.9400    | C18—C20B  | 1.524 (7) |
| C3—C4   | 1.398 (3) | C19—H19A  | 0.9700    |
| C4—C5   | 1.378 (3) | C19—H19B  | 0.9700    |
| C4—C18  | 1.532 (3) | C19—H19C  | 0.9700    |
| С5—Н5   | 0.9400    | C20—H20A  | 0.9700    |
| C5—C6   | 1.395 (3) | C20—H20B  | 0.9700    |
| С6—С7   | 1.454 (3) | C20—H20C  | 0.9700    |
| С7—Н7   | 0.9400    | C21—H21A  | 0.9700    |
| С8—С9   | 1.382 (3) | C21—H21B  | 0.9700    |
| C8—C13  | 1.383 (3) | C21—H21C  | 0.9700    |
| С9—Н9   | 0.9400    | C19A—H19D | 0.9700    |
| C9—C10  | 1.381 (3) | C19A—H19E | 0.9700    |
| С10—Н10 | 0.9400    | C19A—H19F | 0.9700    |
|         |           |           |           |

| C10—C11                    | 1.376 (3)                | C21A—H21D                              | 0.9700               |
|----------------------------|--------------------------|----------------------------------------|----------------------|
| C11—C12                    | 1.376 (3)                | C21A—H21E                              | 0.9700               |
| С12—Н12                    | 0.9400                   | C21A—H21F                              | 0.9700               |
| C12—C13                    | 1.385 (3)                | C20A—H20D                              | 0.9700               |
| C13—H13                    | 0.9400                   | C20A—H20E                              | 0.9700               |
| C14—C15                    | 1.530 (3)                | C20A—H20F                              | 0.9700               |
| C14—C16                    | 1.540 (3)                | C21B—H21G                              | 0.9700               |
| C14—C17                    | 1.534 (3)                | C21B—H21H                              | 0.9700               |
| C15—H15A                   | 0.9700                   | C21B—H21I                              | 0.9700               |
| C15—H15B                   | 0.9700                   | C19B—H19G                              | 0.9700               |
| C15—H15C                   | 0.9700                   | C19B—H19H                              | 0.9700               |
| C16—H16A                   | 0.9700                   | C19B—H19I                              | 0.9700               |
| C16—H16B                   | 0.9700                   | C20B—H20G                              | 0.9700               |
| C16—H16C                   | 0.9700                   | C20B—H20H                              | 0.9700               |
| C17 H17A                   | 0.9700                   | C20B H20I                              | 0.9700               |
| C17 H17B                   | 0.9700                   | C20B—11201                             | 0.9700               |
|                            | 0.9700                   |                                        |                      |
| C1 O1 U1                   | 106 (2)                  | $C_{10}$ $C_{18}$ $C_{20}$             | 114.2(5)             |
| $CI = 0I = \Pi I$          | 100(2)                   | C19 - C18 - C20                        | 114.2(3)<br>108.2(5) |
| $C = N = C \delta$         | 119.31(19)<br>120.22(19) | C19 - C18 - C21                        | 108.3(3)             |
| 01 - 01 - 02               | 120.32(18)               | $C_{20}$ $C_{18}$ $C_{21}$             | 112.8(3)             |
| 01 - 01 - 00               | 119.82 (18)              | $C_{20}$ $-C_{10}$ $-C_{21}$ $C_{20A}$ | 104.8(4)             |
| $C_2 - C_1 - C_0$          | 119.80 (18)              | C19A - C18 - C20A                      | 103.0 (4)            |
| C1 - C2 - C14              | 121.40(17)               | $C_{21A} - C_{18} - C_{4}$             | 110.9 (3)            |
| $C_3 - C_2 - C_1$          | 116.84 (18)              | $C_{21A}$ $C_{18}$ $C_{19A}$           | 110.3 (4)            |
| $C_{3}$ $-C_{2}$ $-C_{14}$ | 121.75 (18)              | $C_{21}A - C_{18} - C_{20}A$           | 109.3 (5)            |
| С2—С3—Н3                   | 117.5                    | $C_{21B} - C_{18} - C_{4}$             | 113.6 (9)            |
| $C_2 - C_3 - C_4$          | 124.96 (19)              | $C_{21B} - C_{18} - C_{19B}$           | 109.8 (9)            |
| C4—C3—H3                   | 117.5                    | C21B—C18—C20B                          | 109.6 (9)            |
| C3—C4—C18                  | 122.10 (18)              | C19B-C18-C4                            | 107.6 (11)           |
| C5—C4—C3                   | 116.36 (18)              | C20B—C18—C4                            | 108.4 (12)           |
| C5—C4—C18                  | 121.54 (18)              | C20B—C18—C19B                          | 107.6 (9)            |
| C4—C5—H5                   | 119.1                    | C18—C19—H19A                           | 109.5                |
| C4—C5—C6                   | 121.90 (19)              | C18—C19—H19B                           | 109.5                |
| С6—С5—Н5                   | 119.1                    | C18—C19—H19C                           | 109.5                |
| C1—C6—C7                   | 121.69 (18)              | H19A—C19—H19B                          | 109.5                |
| C5—C6—C1                   | 120.07 (19)              | H19A—C19—H19C                          | 109.5                |
| C5—C6—C7                   | 118.24 (19)              | H19B—C19—H19C                          | 109.5                |
| N1—C7—C6                   | 123.4 (2)                | C18—C20—H20A                           | 109.5                |
| N1—C7—H7                   | 118.3                    | C18—C20—H20B                           | 109.5                |
| С6—С7—Н7                   | 118.3                    | C18—C20—H20C                           | 109.5                |
| C9—C8—N1                   | 123.07 (19)              | H20A—C20—H20B                          | 109.5                |
| C9—C8—C13                  | 118.9 (2)                | H20A—C20—H20C                          | 109.5                |
| C13—C8—N1                  | 118.0 (2)                | H20B—C20—H20C                          | 109.5                |
| С8—С9—Н9                   | 119.7                    | C18—C21—H21A                           | 109.5                |
| С10—С9—С8                  | 120.6 (2)                | C18—C21—H21B                           | 109.5                |
| С10—С9—Н9                  | 119.7                    | C18—C21—H21C                           | 109.5                |
| С9—С10—Н10                 | 120.3                    | H21A—C21—H21B                          | 109.5                |
| C11—C10—C9                 | 119.4 (2)                | H21A—C21—H21C                          | 109.5                |

| C11—C10—H10                    | 120.3                | H21B—C21—H21C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 109.5      |
|--------------------------------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| C10-C11-Br1                    | 118.72 (17)          | C18—C19A—H19D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 109.5      |
| C12—C11—Br1                    | 120.06 (16)          | C18—C19A—H19E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 109.5      |
| C12—C11—C10                    | 121.2 (2)            | C18—C19A—H19F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 109.5      |
| C11—C12—H12                    | 120.6                | H19D—C19A—H19E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 109.5      |
| C11—C12—C13                    | 118.7 (2)            | H19D—C19A—H19F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 109.5      |
| C13—C12—H12                    | 120.6                | H19E—C19A—H19F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 109.5      |
| C8—C13—C12                     | 121.1 (2)            | C18—C21A—H21D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 109.5      |
| C8—C13—H13                     | 119.5                | C18—C21A—H21E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 109.5      |
| C12—C13—H13                    | 119.5                | C18—C21A—H21F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 109.5      |
| C15—C14—C2                     | 112.09 (17)          | H21D—C21A—H21E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 109.5      |
| C15—C14—C16                    | 107.28 (19)          | H21D—C21A—H21F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 109.5      |
| C15—C14—C17                    | 107.55 (19)          | H21E—C21A—H21F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 109.5      |
| C16—C14—C2                     | 109.58 (17)          | C18—C20A—H20D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 109.5      |
| C17—C14—C2                     | 110.09 (17)          | C18—C20A—H20E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 109.5      |
| C17 - C14 - C16                | 110.19 (18)          | C18— $C20A$ — $H20F$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 109.5      |
| C14— $C15$ — $H15A$            | 109 5                | $H_{20}D - C_{20}A - H_{20}E$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 109.5      |
| C14— $C15$ — $H15B$            | 109.5                | $H_{20}D = C_{20}A = H_{20}E$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 109.5      |
| C14— $C15$ — $H15C$            | 109.5                | H20E C20A H20E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 109.5      |
| H15A - C15 - H15B              | 109.5                | C18 - C21B - H21G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 109.5      |
| H15A - C15 - H15C              | 109.5                | C18— $C21B$ — $H21H$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 109.5      |
| H15B-C15-H15C                  | 109.5                | C18— $C21B$ — $H21I$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 109.5      |
| C14-C16-H16A                   | 109.5                | $H_{21}G_{}C_{21}B_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{21}H_{}H_{-$ | 109.5      |
| C14— $C16$ — $H16B$            | 109.5                | $H_{21G}$ $C_{21B}$ $H_{21I}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 109.5      |
| C14 $C16$ $H16C$               | 109.5                | H21H_C21B_H21I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 109.5      |
| $H_{16A}$ $C_{16}$ $H_{16B}$   | 109.5                | C18 - C19B - H19G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 109.5      |
| $H_{16A}$ $-C_{16}$ $-H_{16C}$ | 109.5                | C18 $C19B$ $H19H$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 109.5      |
| $H_{16B}$ $-C_{16}$ $-H_{16C}$ | 109.5                | C18 $C19B$ $H19I$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 109.5      |
| C14— $C17$ — $H17A$            | 109.5                | H19G-C19B-H19H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 109.5      |
| C14 $C17$ $H17R$               | 109.5                | H19G-C19B-H19I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 109.5      |
| C14— $C17$ — $H17C$            | 109.5                | H19H $C19B$ $H19I$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 109.5      |
| H17A - C17 - H17B              | 109.5                | $C_{18}$ $C_{20B}$ $H_{20G}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 109.5      |
| H17A - C17 - H17C              | 109.5                | C18—C20B—H20H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 109.5      |
| H17B-C17-H17C                  | 109.5                | $C_{18}$ $C_{20B}$ $H_{20I}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 109.5      |
| C4-C18-C21                     | 105.5                | H20G-C20B-H20H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 109.5      |
| $C_{4} = C_{18} = C_{194}$     | 100.7(3)<br>112.2(3) | H20G_C20B_H20I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 109.5      |
| C4-C18-C20A                    | 112.2(3)<br>110.3(3) | H20H—C20B—H20I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 109.5      |
| C19-C18-C4                     | 110.5(3)             | 112011 C20D 11201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 109.5      |
|                                | 109.0 (5)            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |
| Br1—C11—C12—C13                | 179.74 (17)          | C3—C4—C18—C20B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -59.0 (14) |
| O1—C1—C2—C3                    | 179.38 (18)          | C4—C5—C6—C1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.8(3)    |
| O1—C1—C2—C14                   | -0.4(3)              | C4—C5—C6—C7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 178.2 (2)  |
| O1—C1—C6—C5                    | -178.8(2)            | C5—C4—C18—C19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -70.2(5)   |
| O1—C1—C6—C7                    | 2.2 (3)              | C5—C4—C18—C20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 161.3 (5)  |
| N1-C8-C9-C10                   | -178.3 (2)           | C5-C4-C18-C21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 46.8 (5)   |
| N1-C8-C13-C12                  | 178.8 (2)            | C5—C4—C18—C19A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -36.5 (4)  |
| C1—C2—C3—C4                    | -0.5 (3)             | C5-C4-C18-C21A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 87.4 (6)   |
| C1—C2—C14—C15                  | 178.41 (19)          | C5-C4-C18-C20A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -151.4 (4) |
|                                |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |

| C1—C2—C14—C16  | 59.4 (3)     | C5-C4-C18-C21B  | -1.3 (14)    |
|----------------|--------------|-----------------|--------------|
| C1—C2—C14—C17  | -61.9 (2)    | C5-C4-C18-C19B  | -123.2 (13)  |
| C1-C6-C7-N1    | -0.2 (4)     | C5-C4-C18-C20B  | 120.8 (14)   |
| C2-C1-C6-C5    | 1.4 (3)      | C5—C6—C7—N1     | -179.2 (2)   |
| C2-C1-C6-C7    | -177.67 (19) | C6—C1—C2—C3     | -0.7 (3)     |
| C2—C3—C4—C5    | 1.0 (3)      | C6-C1-C2-C14    | 179.51 (19)  |
| C2-C3-C4-C18   | -179.23 (19) | C7—N1—C8—C9     | 27.6 (3)     |
| C3—C2—C14—C15  | -1.3 (3)     | C7—N1—C8—C13    | -153.2 (2)   |
| C3—C2—C14—C16  | -120.3 (2)   | C8—N1—C7—C6     | 178.5 (2)    |
| C3—C2—C14—C17  | 118.3 (2)    | C8—C9—C10—C11   | -1.5 (4)     |
| C3—C4—C5—C6    | -0.3 (3)     | C9—C8—C13—C12   | -1.9 (4)     |
| C3—C4—C18—C19  | 110.0 (5)    | C9-C10-C11-Br1  | -179.26 (19) |
| C3—C4—C18—C20  | -18.4 (5)    | C9-C10-C11-C12  | -0.1 (4)     |
| C3—C4—C18—C21  | -133.0 (4)   | C10-C11-C12-C13 | 0.6 (4)      |
| C3—C4—C18—C19A | 143.7 (4)    | C11—C12—C13—C8  | 0.5 (4)      |
| C3—C4—C18—C21A | -92.4 (5)    | C13—C8—C9—C10   | 2.4 (4)      |
| C3—C4—C18—C20A | 28.8 (5)     | C14—C2—C3—C4    | 179.3 (2)    |
| C3—C4—C18—C21B | 178.9 (13)   | C18—C4—C5—C6    | 179.9 (2)    |
| C3—C4—C18—C19B | 57.0 (13)    |                 |              |
|                |              |                 |              |

Hydrogen-bond geometry (Å, °)

| D—H···A  | <i>D</i> —Н | H···A    | D····A    | <i>D</i> —H··· <i>A</i> |
|----------|-------------|----------|-----------|-------------------------|
| 01—H1…N1 | 0.82 (3)    | 1.85 (3) | 2.611 (2) | 153 (3)                 |

(E)-6-{[(4-Bromophenyl)imino]methyl}-2,4-di-tert-butylphenol (3\_150K)

Crystal data

| $C_{21}H_{26}BrNO$ $M_r = 388.34$ Monoclinic, $P2_1/c$ $a = 17.8028$ (3) Å<br>b = 10.55679 (16) Å<br>c = 10.21910 (18) Å<br>$\beta = 91.6950$ (16)°<br>V = 1919.74 (6) Å <sup>3</sup><br>Z = 4                                                                                                               | F(000) = 808<br>$D_x = 1.344 \text{ Mg m}^{-3}$<br>Mo <i>Ka</i> radiation, $\lambda = 0.71073 \text{ Å}$<br>Cell parameters from 11397 reflections<br>$\theta = 3.0-31.4^{\circ}$<br>$\mu = 2.15 \text{ mm}^{-1}$<br>T = 150  K<br>Needle, yellow<br>$0.3 \times 0.05 \times 0.05 \text{ mm}$ |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Agilent SuperNova Dual Source<br>diffractometer with an Atlas detector<br>Radiation source: SuperNova (Mo) X-ray<br>Source<br>Mirror monochromator<br>Detector resolution: 10.3620 pixels mm <sup>-1</sup><br>$\omega$ and $\pi$ scans<br>Absorption correction: multi-scan<br>(CrysAlis PRO; Agilent, 2013) | $T_{\min} = 0.660, T_{\max} = 1.000$ 28980 measured reflections 4570 independent reflections 3604 reflections with $I > 2\sigma(I)$ $R_{int} = 0.040$ $\theta_{\max} = 27.9^{\circ}, \theta_{\min} = 3.0^{\circ}$ $h = -23 \rightarrow 23$ $k = -9 \rightarrow 13$ $l = -13 \rightarrow 13$   |
Refinement

| Refinement on $F^2$             | Primary atom site location: structure-invariant          |
|---------------------------------|----------------------------------------------------------|
| Least-squares matrix: full      | direct methods                                           |
| $R[F^2 > 2\sigma(F^2)] = 0.031$ | Hydrogen site location: mixed                            |
| $wR(F^2) = 0.073$               | H atoms treated by a mixture of independent              |
| <i>S</i> = 1.03                 | and constrained refinement                               |
| 4570 reflections                | $w = 1/[\sigma^2(F_o^2) + (0.0278P)^2 + 1.2083P]$        |
| 258 parameters                  | where $P = (F_o^2 + 2F_c^2)/3$                           |
| 67 restraints                   | $(\Delta/\sigma)_{\rm max} = 0.001$                      |
|                                 | $\Delta  ho_{ m max} = 0.45 \ { m e} \ { m \AA}^{-3}$    |
|                                 | $\Delta \rho_{\rm min} = -0.36 \text{ e} \text{ Å}^{-3}$ |
| Special details                 |                                                          |

**Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

**Refinement**. Occupancies of the disordered tBu carbon atoms refined with their sum set to equal 1. Restraints were applied to maintain sensible thermal and geometric parameters.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

|      | x             | у             | Ζ             | $U_{ m iso}$ */ $U_{ m eq}$ | Occ. (<1) |
|------|---------------|---------------|---------------|-----------------------------|-----------|
| Br1  | -0.13644 (2)  | 0.44578 (2)   | -0.29000 (2)  | 0.03480 (8)                 |           |
| 01   | 0.18011 (8)   | 0.01007 (13)  | 0.15556 (14)  | 0.0295 (3)                  |           |
| N1   | 0.11607 (9)   | 0.20340 (15)  | 0.03813 (16)  | 0.0277 (4)                  |           |
| C1   | 0.23231 (10)  | 0.09145 (17)  | 0.20655 (18)  | 0.0230 (4)                  |           |
| C2   | 0.28925 (10)  | 0.04754 (16)  | 0.29343 (17)  | 0.0217 (4)                  |           |
| C3   | 0.34096 (10)  | 0.13632 (17)  | 0.34049 (17)  | 0.0232 (4)                  |           |
| Н3   | 0.379382      | 0.107662      | 0.399830      | 0.028*                      |           |
| C4   | 0.34061 (10)  | 0.26494 (17)  | 0.30686 (18)  | 0.0247 (4)                  |           |
| C5   | 0.28326 (11)  | 0.30457 (17)  | 0.22279 (19)  | 0.0271 (4)                  |           |
| Н5   | 0.280656      | 0.391310      | 0.198318      | 0.032*                      |           |
| C6   | 0.22892 (10)  | 0.22080 (17)  | 0.17262 (18)  | 0.0247 (4)                  |           |
| C7   | 0.16923 (11)  | 0.27128 (18)  | 0.08793 (19)  | 0.0291 (4)                  |           |
| H7   | 0.169624      | 0.359268      | 0.068451      | 0.035*                      |           |
| C8   | 0.05884 (10)  | 0.26217 (18)  | -0.04112 (18) | 0.0261 (4)                  |           |
| C9   | 0.07027 (11)  | 0.3727 (2)    | -0.1113 (2)   | 0.0353 (5)                  |           |
| Н9   | 0.118509      | 0.411234      | -0.109202     | 0.042*                      |           |
| C10  | 0.01216 (12)  | 0.4273 (2)    | -0.1843 (2)   | 0.0350 (5)                  |           |
| H10  | 0.020081      | 0.503480      | -0.231393     | 0.042*                      |           |
| C11  | -0.05743 (10) | 0.36977 (18)  | -0.18789 (18) | 0.0259 (4)                  |           |
| C12  | -0.07008 (11) | 0.25848 (19)  | -0.1214 (2)   | 0.0298 (4)                  |           |
| H12  | -0.118098     | 0.219178      | -0.125727     | 0.036*                      |           |
| C13  | -0.01139 (11) | 0.20496 (19)  | -0.0481 (2)   | 0.0305 (4)                  |           |
| H13  | -0.019370     | 0.128141      | -0.002171     | 0.037*                      |           |
| C14  | 0.29426 (11)  | -0.09316 (17) | 0.33386 (18)  | 0.0249 (4)                  |           |
| C15  | 0.36176 (12)  | -0.11911 (19) | 0.4261 (2)    | 0.0350 (5)                  |           |
| H15A | 0.356928      | -0.069418     | 0.506412      | 0.052*                      |           |
| H15B | 0.408107      | -0.095073     | 0.383036      | 0.052*                      |           |

| H15C | 0.363476     | -0.209480     | 0.447938     | 0.052*      |           |
|------|--------------|---------------|--------------|-------------|-----------|
| C16  | 0.30344 (12) | -0.17599 (18) | 0.2111 (2)   | 0.0333 (5)  |           |
| H16A | 0.350575     | -0.154139     | 0.169403     | 0.050*      |           |
| H16B | 0.261165     | -0.160990     | 0.149506     | 0.050*      |           |
| H16C | 0.304431     | -0.265514     | 0.236523     | 0.050*      |           |
| C17  | 0.22318 (12) | -0.13215 (19) | 0.4055 (2)   | 0.0324 (4)  |           |
| H17A | 0.178929     | -0.118533     | 0.347883     | 0.049*      |           |
| H17B | 0.218775     | -0.080873     | 0.484829     | 0.049*      |           |
| H17C | 0.226510     | -0.221911     | 0.429418     | 0.049*      |           |
| C18  | 0.40013 (11) | 0.35767 (18)  | 0.36040 (18) | 0.0291 (4)  |           |
| C19  | 0.4498 (3)   | 0.3960 (7)    | 0.2547 (5)   | 0.0518 (15) | 0.535 (6) |
| H19A | 0.419730     | 0.434848      | 0.183550     | 0.078*      | 0.535 (6) |
| H19B | 0.475817     | 0.321328      | 0.221553     | 0.078*      | 0.535 (6) |
| H19C | 0.486796     | 0.457267      | 0.288735     | 0.078*      | 0.535 (6) |
| C20  | 0.4414 (3)   | 0.3089 (5)    | 0.4809 (5)   | 0.060 (2)   | 0.535 (6) |
| H20A | 0.475916     | 0.374283      | 0.514732     | 0.091*      | 0.535 (6) |
| H20B | 0.470091     | 0.233045      | 0.458459     | 0.091*      | 0.535 (6) |
| H20C | 0.405219     | 0.287585      | 0.547793     | 0.091*      | 0.535 (6) |
| C21  | 0.3570 (3)   | 0.4798 (5)    | 0.4092 (7)   | 0.0605 (17) | 0.535 (6) |
| H21A | 0.318837     | 0.454594      | 0.471226     | 0.091*      | 0.535 (6) |
| H21B | 0.332704     | 0.522462      | 0.334007     | 0.091*      | 0.535 (6) |
| H21C | 0.392898     | 0.537745      | 0.452383     | 0.091*      | 0.535 (6) |
| C19A | 0.4198 (4)   | 0.4608 (6)    | 0.2615 (5)   | 0.0440 (15) | 0.465 (6) |
| H19D | 0.377474     | 0.519708      | 0.250993     | 0.066*      | 0.465 (6) |
| H19E | 0.429930     | 0.421559      | 0.176886     | 0.066*      | 0.465 (6) |
| H19F | 0.464424     | 0.506986      | 0.293242     | 0.066*      | 0.465 (6) |
| C21A | 0.3786 (4)   | 0.4101 (8)    | 0.4865 (6)   | 0.066 (2)   | 0.465 (6) |
| H21D | 0.419622     | 0.462612      | 0.522576     | 0.099*      | 0.465 (6) |
| H21E | 0.368431     | 0.340814      | 0.547262     | 0.099*      | 0.465 (6) |
| H21F | 0.333324     | 0.462071      | 0.474067     | 0.099*      | 0.465 (6) |
| C20A | 0.4783 (3)   | 0.2852 (5)    | 0.3802 (8)   | 0.057 (2)   | 0.465 (6) |
| H20D | 0.517875     | 0.346325      | 0.403387     | 0.086*      | 0.465 (6) |
| H20E | 0.490672     | 0.242011      | 0.298699     | 0.086*      | 0.465 (6) |
| H20F | 0.474232     | 0.222698      | 0.450517     | 0.086*      | 0.465 (6) |
| H1   | 0.1492 (12)  | 0.054 (2)     | 0.109 (2)    | 0.058 (8)*  |           |
|      |              |               |              |             |           |

Atomic displacement parameters  $(\mathring{A}^2)$ 

|     | $U^{11}$     | $U^{22}$     | $U^{33}$     | $U^{12}$    | $U^{13}$     | $U^{23}$    |
|-----|--------------|--------------|--------------|-------------|--------------|-------------|
| Br1 | 0.03124 (12) | 0.03363 (12) | 0.03882 (13) | 0.00648 (9) | -0.01060 (8) | 0.00195 (9) |
| 01  | 0.0294 (7)   | 0.0224 (7)   | 0.0360 (8)   | -0.0032 (6) | -0.0114 (6)  | -0.0015 (6) |
| N1  | 0.0259 (8)   | 0.0276 (8)   | 0.0293 (9)   | 0.0015 (7)  | -0.0061 (7)  | -0.0015 (7) |
| C1  | 0.0223 (9)   | 0.0227 (9)   | 0.0240 (9)   | -0.0020(7)  | -0.0004 (7)  | -0.0043 (7) |
| C2  | 0.0243 (9)   | 0.0209 (8)   | 0.0200 (8)   | 0.0004 (7)  | 0.0014 (7)   | -0.0023 (7) |
| C3  | 0.0244 (9)   | 0.0241 (9)   | 0.0209 (9)   | -0.0003 (7) | -0.0024 (7)  | 0.0011 (7)  |
| C4  | 0.0268 (9)   | 0.0245 (9)   | 0.0226 (9)   | -0.0037 (8) | -0.0030 (7)  | -0.0013 (7) |
| C5  | 0.0320 (10)  | 0.0195 (9)   | 0.0293 (10)  | -0.0012 (8) | -0.0053 (8)  | -0.0004 (7) |
| C6  | 0.0243 (9)   | 0.0238 (9)   | 0.0256 (9)   | 0.0029 (7)  | -0.0050 (7)  | -0.0027 (7) |
|     |              |              |              |             |              |             |

| C7   | 0.0325 (10) | 0.0226 (9)  | 0.0319 (10) | 0.0030 (8)  | -0.0070 (8) | -0.0039 (8) |
|------|-------------|-------------|-------------|-------------|-------------|-------------|
| C8   | 0.0254 (9)  | 0.0274 (10) | 0.0253 (9)  | 0.0021 (8)  | -0.0048 (8) | -0.0015 (8) |
| C9   | 0.0250 (10) | 0.0437 (12) | 0.0370 (11) | -0.0105 (9) | -0.0057 (9) | 0.0103 (10) |
| C10  | 0.0334 (11) | 0.0368 (11) | 0.0343 (11) | -0.0071 (9) | -0.0072 (9) | 0.0133 (9)  |
| C11  | 0.0263 (9)  | 0.0265 (9)  | 0.0246 (9)  | 0.0034 (8)  | -0.0034 (7) | -0.0027 (8) |
| C12  | 0.0225 (9)  | 0.0304 (10) | 0.0361 (11) | -0.0032 (8) | -0.0036 (8) | -0.0007 (8) |
| C13  | 0.0313 (10) | 0.0253 (10) | 0.0344 (11) | -0.0018 (8) | -0.0067 (8) | 0.0024 (8)  |
| C14  | 0.0285 (10) | 0.0203 (8)  | 0.0257 (9)  | 0.0005 (8)  | -0.0019 (8) | 0.0004 (7)  |
| C15  | 0.0379 (11) | 0.0258 (10) | 0.0407 (12) | 0.0024 (9)  | -0.0101 (9) | 0.0074 (9)  |
| C16  | 0.0440 (12) | 0.0227 (9)  | 0.0331 (11) | 0.0039 (9)  | 0.0016 (9)  | -0.0034 (8) |
| C17  | 0.0381 (11) | 0.0265 (10) | 0.0326 (11) | -0.0037 (9) | 0.0032 (9)  | 0.0024 (8)  |
| C18  | 0.0333 (10) | 0.0283 (10) | 0.0254 (10) | -0.0108 (8) | -0.0066 (8) | 0.0021 (8)  |
| C19  | 0.045 (3)   | 0.071 (4)   | 0.039 (3)   | -0.031 (3)  | 0.006 (2)   | -0.005 (3)  |
| C20  | 0.072 (4)   | 0.057 (3)   | 0.050 (3)   | -0.042 (3)  | -0.039 (3)  | 0.020 (3)   |
| C21  | 0.051 (3)   | 0.045 (3)   | 0.085 (4)   | -0.014 (2)  | -0.004 (3)  | -0.038 (3)  |
| C19A | 0.044 (3)   | 0.042 (3)   | 0.046 (3)   | -0.019 (3)  | -0.010 (3)  | -0.001 (3)  |
| C21A | 0.059 (4)   | 0.093 (5)   | 0.045 (3)   | -0.046 (4)  | 0.012 (3)   | -0.034 (4)  |
| C20A | 0.031 (3)   | 0.039 (3)   | 0.100 (5)   | -0.015 (2)  | -0.025 (3)  | 0.010 (3)   |
|      |             |             |             |             |             |             |

## Geometric parameters (Å, °)

| Br1—C11 | 1.9039 (18) | C15—H15C  | 0.9800    |
|---------|-------------|-----------|-----------|
| 01—C1   | 1.358 (2)   | C16—H16A  | 0.9800    |
| O1—H1   | 0.855 (10)  | C16—H16B  | 0.9800    |
| N1—C7   | 1.280 (2)   | C16—H16C  | 0.9800    |
| N1—C8   | 1.425 (2)   | C17—H17A  | 0.9800    |
| C1—C2   | 1.406 (2)   | C17—H17B  | 0.9800    |
| C1—C6   | 1.410 (3)   | C17—H17C  | 0.9800    |
| C2—C3   | 1.390 (2)   | C18—C19   | 1.472 (4) |
| C2—C14  | 1.544 (2)   | C18—C20   | 1.506 (4) |
| С3—Н3   | 0.9500      | C18—C21   | 1.588 (4) |
| C3—C4   | 1.401 (3)   | C18—C19A  | 1.533 (5) |
| C4—C5   | 1.380 (3)   | C18—C21A  | 1.464 (5) |
| C4—C18  | 1.532 (2)   | C18—C20A  | 1.595 (4) |
| С5—Н5   | 0.9500      | C19—H19A  | 0.9800    |
| C5—C6   | 1.397 (3)   | C19—H19B  | 0.9800    |
| C6—C7   | 1.452 (2)   | C19—H19C  | 0.9800    |
| С7—Н7   | 0.9500      | C20—H20A  | 0.9800    |
| C8—C9   | 1.388 (3)   | C20—H20B  | 0.9800    |
| C8—C13  | 1.388 (3)   | С20—Н20С  | 0.9800    |
| С9—Н9   | 0.9500      | C21—H21A  | 0.9800    |
| C9—C10  | 1.383 (3)   | C21—H21B  | 0.9800    |
| C10—H10 | 0.9500      | C21—H21C  | 0.9800    |
| C10—C11 | 1.379 (3)   | C19A—H19D | 0.9800    |
| C11—C12 | 1.379 (3)   | C19A—H19E | 0.9800    |
| C12—H12 | 0.9500      | C19A—H19F | 0.9800    |
| C12—C13 | 1.388 (3)   | C21A—H21D | 0.9800    |
| С13—Н13 | 0.9500      | C21A—H21E | 0.9800    |
|         |             |           |           |

| C14—C15                    | 1.530 (3)                 | C21A—H21F                           | 0.9800               |
|----------------------------|---------------------------|-------------------------------------|----------------------|
| C14—C16                    | 1.541 (3)                 | C20A—H20D                           | 0.9800               |
| C14—C17                    | 1.537 (3)                 | C20A—H20E                           | 0.9800               |
| C15—H15A                   | 0.9800                    | C20A—H20F                           | 0.9800               |
| C15—H15B                   | 0.9800                    |                                     |                      |
|                            |                           |                                     |                      |
| C1—01—H1                   | 107.2 (18)                | H16A—C16—H16C                       | 109.5                |
| C7—N1—C8                   | 119.33 (17)               | H16B—C16—H16C                       | 109.5                |
| O1—C1—C2                   | 120.40 (16)               | C14—C17—H17A                        | 109.5                |
| O1—C1—C6                   | 119.64 (16)               | C14—C17—H17B                        | 109.5                |
| C2—C1—C6                   | 119.96 (16)               | C14—C17—H17C                        | 109.5                |
| C1—C2—C14                  | 121.40 (15)               | H17A—C17—H17B                       | 109.5                |
| C3—C2—C1                   | 117.00 (16)               | H17A—C17—H17C                       | 109.5                |
| C3—C2—C14                  | 121.59 (16)               | H17B—C17—H17C                       | 109.5                |
| C2—C3—H3                   | 117.6                     | C4—C18—C21                          | 107.2 (2)            |
| $C_2 - C_3 - C_4$          | 124.81 (17)               | C4—C18—C19A                         | 112.8 (2)            |
| C4-C3-H3                   | 117.6                     | C4-C18-C20A                         | 109.3(2)             |
| $C_{3}$ $C_{4}$ $C_{18}$   | 122 27 (16)               | C19-C18-C4                          | 109.3(2)<br>109.7(2) |
| $C_{5} - C_{4} - C_{3}$    | 122.27(10)<br>116 40 (16) | C19 - C18 - C20                     | 109.7(2)<br>113.8(3) |
| $C_{5} - C_{4} - C_{18}$   | 121 33 (16)               | C19 - C18 - C21                     | 108.3(4)             |
| C4-C5-H5                   | 119.1                     | $C_{20}$ $C_{18}$ $C_{4}$           | 100.5(1)<br>112.9(2) |
| C4-C5-C6                   | 121.89 (17)               | $C_{20}$ $C_{10}$ $C_{11}$ $C_{21}$ | 1045(3)              |
| C6-C5-H5                   | 119.1                     | C19A - C18 - C20A                   | 107.3(3)             |
| C1 - C6 - C7               | 121.83 (16)               | $C^{21}A - C^{18} - C^{4}$          | 102.1(3)             |
| $C_{5}$                    | 110.02 (16)               | $C_{21A} - C_{18} - C_{19A}$        | 111.1(5)<br>112.5(4) |
| $C_{5} - C_{6} - C_{7}$    | 119.92 (10)               | $C_{21A}$ $C_{18}$ $C_{20A}$        | 108.7(4)             |
| N1 - C7 - C6               | 173.24(17)<br>123.42(18)  | $C_{18}$ $C_{19}$ $H_{194}$         | 100.7 (4)            |
| N1-C7-H7                   | 118 3                     | C18 $C19$ $H19B$                    | 109.5                |
| C6-C7-H7                   | 118.3                     | C18 - C19 - H19C                    | 109.5                |
| C9 - C8 - N1               | 123 13 (17)               | H19A - C19 - H19B                   | 109.5                |
| C9 - C8 - C13              | 125.15(17)<br>118.99(17)  | H19A - C19 - H19C                   | 109.5                |
| $C_{13} - C_{8} - N_{1}$   | 117.89(17)                | H19B-C19-H19C                       | 109.5                |
| C8 - C9 - H9               | 119.7                     | $C_{18}$ $C_{20}$ $H_{20A}$         | 109.5                |
| $C_{10} - C_{9} - C_{8}$   | 120.68 (18)               | $C_{18}$ $C_{20}$ $H_{20R}$         | 109.5                |
| C10-C9-H9                  | 119 7                     | $C_{18} - C_{20} - H_{20C}$         | 109.5                |
| C9-C10-H10                 | 120.4                     | $H_{20}A - C_{20} - H_{20}B$        | 109.5                |
| $C_{11}$ $C_{10}$ $C_{9}$  | 119 19 (19)               | H20A-C20-H20C                       | 109.5                |
| $C_{11} - C_{10} - H_{10}$ | 120.4                     | H20R C20 H20C                       | 109.5                |
| C10-C11-Br1                | 118 52 (15)               | $C_{18}$ $C_{21}$ $H_{21A}$         | 109.5                |
| C12— $C11$ — $Br1$         | 120.01(14)                | $C_{18}$ $C_{21}$ $H_{21R}$         | 109.5                |
| $C_{12}$ $C_{11}$ $C_{10}$ | 120.01(14)<br>121.45(18)  | $C_{18}$ $C_{21}$ $H_{21C}$         | 109.5                |
| C11 - C12 - H12            | 121.45 (10)               | $H_{21}A = C_{21} = H_{21}C$        | 109.5                |
| C11 - C12 - C13            | 120.0                     | $H_{21}A - C_{21} - H_{21}C$        | 109.5                |
| $C_{13}$ $C_{12}$ $H_{12}$ | 120.6                     | H21B_C21_H21C                       | 109.5                |
| C8_C13_H13                 | 119.6                     | C18 - C194 - H10D                   | 109.5                |
| C12-C13-C8                 | 120 89 (18)               | C18— $C19A$ — $H19F$                | 109.5                |
| C12_C13_H13                | 119.6                     | C18 - C19A - H10F                   | 109.5                |
| C15-C14-C2                 | 112.05 (15)               | H19D-C19A-H19F                      | 109.5                |
| 010 011 04                 | 112.00 (10)               | 1117D $017M$ $-1117D$               | 107.0                |

| C15—C14—C16                        | 107.42 (16)  | H19D—C19A—H19F                   | 109.5        |
|------------------------------------|--------------|----------------------------------|--------------|
| C15—C14—C17                        | 107.54 (16)  | H19E—C19A—H19F                   | 109.5        |
| C16—C14—C2                         | 109.56 (15)  | C18—C21A—H21D                    | 109.5        |
| C17—C14—C2                         | 110.08 (15)  | C18—C21A—H21E                    | 109.5        |
| C17—C14—C16                        | 110.13 (16)  | C18—C21A—H21F                    | 109.5        |
| C14—C15—H15A                       | 109.5        | H21D-C21A-H21E                   | 109.5        |
| C14—C15—H15B                       | 109.5        | H21D—C21A—H21F                   | 109.5        |
| C14—C15—H15C                       | 109.5        | H21E—C21A—H21F                   | 109.5        |
| H15A—C15—H15B                      | 109.5        | C18—C20A—H20D                    | 109.5        |
| H15A—C15—H15C                      | 109.5        | C18—C20A—H20E                    | 109.5        |
| H15B—C15—H15C                      | 109.5        | C18—C20A—H20F                    | 109.5        |
| C14—C16—H16A                       | 109.5        | H20D-C20A-H20E                   | 109.5        |
| C14—C16—H16B                       | 109.5        | H20D-C20A-H20F                   | 109.5        |
| C14—C16—H16C                       | 109.5        | H20E-C20A-H20F                   | 109.5        |
| H16A—C16—H16B                      | 109.5        |                                  |              |
|                                    |              |                                  |              |
| Br1-C11-C12-C13                    | 179.77 (15)  | C3—C4—C18—C20A                   | 32.9 (4)     |
| O1—C1—C2—C3                        | 179.43 (16)  | C4—C5—C6—C1                      | -0.7(3)      |
| O1—C1—C2—C14                       | -0.2 (3)     | C4—C5—C6—C7                      | 178.15 (18)  |
| O1—C1—C6—C5                        | -178.80 (17) | C5—C4—C18—C19                    | -70.7 (4)    |
| O1—C1—C6—C7                        | 2.4 (3)      | C5—C4—C18—C20                    | 161.2 (3)    |
| N1—C8—C9—C10                       | -178.48 (19) | C5—C4—C18—C21                    | 46.7 (4)     |
| N1—C8—C13—C12                      | 178.72 (18)  | C5—C4—C18—C19A                   | -34.6 (4)    |
| C1—C2—C3—C4                        | -0.5 (3)     | C5—C4—C18—C21A                   | 92.7 (4)     |
| C1—C2—C14—C15                      | 178.53 (17)  | C5—C4—C18—C20A                   | -147.4(3)    |
| C1—C2—C14—C16                      | 59.4 (2)     | C5—C6—C7—N1                      | -179.02 (19) |
| C1—C2—C14—C17                      | -61.8 (2)    | C6—C1—C2—C3                      | -1.0(3)      |
| C1—C6—C7—N1                        | -0.2 (3)     | C6-C1-C2-C14                     | 179.39 (17)  |
| C2—C1—C6—C5                        | 1.6 (3)      | C7—N1—C8—C9                      | 27.0 (3)     |
| C2—C1—C6—C7                        | -177.22 (17) | C7—N1—C8—C13                     | -153.34 (19) |
| C2—C3—C4—C5                        | 1.4 (3)      | C8—N1—C7—C6                      | 178.35 (17)  |
| C2-C3-C4-C18                       | -178.92 (17) | C8—C9—C10—C11                    | -0.7 (3)     |
| C3—C2—C14—C15                      | -1.1 (2)     | C9—C8—C13—C12                    | -1.6(3)      |
| C3—C2—C14—C16                      | -120.19 (19) | C9—C10—C11—Br1                   | -179.53 (16) |
| C3—C2—C14—C17                      | 118.56 (19)  | C9—C10—C11—C12                   | -0.7 (3)     |
| C3-C4-C5-C6                        | -0.7(3)      | C10-C11-C12-C13                  | 0.9 (3)      |
| C3—C4—C18—C19                      | 109.7 (4)    | C11—C12—C13—C8                   | 0.2 (3)      |
| C3—C4—C18—C20                      | -18.5 (4)    | C13—C8—C9—C10                    | 1.8 (3)      |
| C3-C4-C18-C21                      | -133.0 (3)   | C14-C2-C3-C4                     | 179.08 (17)  |
| C3-C4-C18-C19A                     | 145.7 (4)    | $C_{18} - C_{4} - C_{5} - C_{6}$ | 179.59 (18)  |
| $C_{3}$ $C_{4}$ $C_{18}$ $C_{21A}$ | -86.9 (4)    |                                  |              |
|                                    |              |                                  |              |

## Hydrogen-bond geometry (Å, °)

| D—H···A  | <i>D</i> —Н | H···A    | D····A    | <i>D</i> —H··· <i>A</i> |
|----------|-------------|----------|-----------|-------------------------|
| 01—H1…N1 | 0.86 (1)    | 1.83 (2) | 2.612 (2) | 152 (3)                 |

(E)-6-{[(4-Bromophenyl)imino]methyl}-2,4-di-tert-butylphenol (3\_120K)

### Crvstal data

C<sub>21</sub>H<sub>26</sub>BrNO  $M_r = 388.34$ Monoclinic,  $P2_1/c$ a = 17.5364(3) Å *b* = 10.65933 (19) Å c = 10.1718 (2) Å  $\beta = 90.6047 (16)^{\circ}$ V = 1901.26 (6) Å<sup>3</sup> Z = 4

### Data collection

| Agilent SuperNova Dual Source                        | $T_{\min} = 0.683, \ T_{\max} = 1.000$                         |
|------------------------------------------------------|----------------------------------------------------------------|
| diffractometer with an Atlas detector                | 44888 measured reflections                                     |
| Radiation source: SuperNova (Mo) X-ray               | 4509 independent reflections                                   |
| Source                                               | 3697 reflections with $I > 2\sigma(I)$                         |
| Mirror monochromator                                 | $R_{\rm int} = 0.045$                                          |
| Detector resolution: 10.3620 pixels mm <sup>-1</sup> | $\theta_{\rm max} = 27.9^\circ,  \theta_{\rm min} = 3.0^\circ$ |
| $\omega$ and $\pi$ scans                             | $h = -23 \rightarrow 23$                                       |
| Absorption correction: multi-scan                    | $k = -10 \rightarrow 14$                                       |
| (CrysAlis PRO; Agilent, 2013)                        | $l = -13 \rightarrow 13$                                       |
| Refinement                                           |                                                                |
| Refinement on $F^2$                                  | Primary atom site location: structure-invariar                 |

F(000) = 808

 $\theta = 3.0 - 33.7^{\circ}$ 

 $\mu = 2.17 \text{ mm}^{-1}$ 

Needle, yellow

 $0.3 \times 0.05 \times 0.05$  mm

T = 120 K

 $D_{\rm x} = 1.357 {\rm Mg} {\rm m}^{-3}$ 

Mo *K* $\alpha$  radiation,  $\lambda = 0.71073$  Å

Cell parameters from 19498 reflections

| Refinement on $F^2$             | Primary atom site location: structure-invariant  |
|---------------------------------|--------------------------------------------------|
| Least-squares matrix: full      | direct methods                                   |
| $R[F^2 > 2\sigma(F^2)] = 0.032$ | Hydrogen site location: mixed                    |
| $wR(F^2) = 0.074$               | H atoms treated by a mixture of independent      |
| <i>S</i> = 1.05                 | and constrained refinement                       |
| 4509 reflections                | $w = 1/[\sigma^2(F_o^2) + (0.0272P)^2 + 1.846P]$ |
| 258 parameters                  | where $P = (F_0^2 + 2F_c^2)/3$                   |
| 103 restraints                  | $(\Delta/\sigma)_{\rm max} = 0.001$              |
|                                 | $\Delta  ho_{ m max} = 0.47$ e Å $^{-3}$         |
|                                 | $\Delta  ho_{ m min} = -0.42$ e Å <sup>-3</sup>  |

### Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Occupancies of the disordered tBu carbon atoms refined with their sum set to equal 1. Restraints were applied to maintain sensible thermal and geometric parameters.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(\hat{A}^2)$ 

|     | x            | У            | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ | Occ. (<1) |
|-----|--------------|--------------|--------------|-----------------------------|-----------|
| Br1 | -0.13844 (2) | 0.43829 (2)  | -0.28813 (2) | 0.02634 (7)                 |           |
| 01  | 0.18335 (8)  | 0.01013 (13) | 0.15526 (14) | 0.0234 (3)                  |           |
| N1  | 0.11721 (9)  | 0.19964 (16) | 0.03565 (16) | 0.0216 (4)                  |           |
| C1  | 0.23349 (11) | 0.09331 (18) | 0.20854 (19) | 0.0189 (4)                  |           |
| C2  | 0.28966 (11) | 0.05260 (18) | 0.29902 (18) | 0.0176 (4)                  |           |
| C3  | 0.33929 (11) | 0.14357 (18) | 0.34904 (18) | 0.0184 (4)                  |           |

| Н3   | 0.377226      | 0.117353      | 0.410491      | 0.022*     |           |
|------|---------------|---------------|---------------|------------|-----------|
| C4   | 0.33707 (11)  | 0.27097 (18)  | 0.31492 (18)  | 0.0191 (4) |           |
| C5   | 0.28065 (11)  | 0.30691 (18)  | 0.22702 (19)  | 0.0202 (4) |           |
| Н5   | 0.277174      | 0.392520      | 0.201705      | 0.024*     |           |
| C6   | 0.22861 (11)  | 0.22112 (19)  | 0.17431 (19)  | 0.0198 (4) |           |
| C7   | 0.16847 (11)  | 0.26895 (19)  | 0.0887 (2)    | 0.0223 (4) |           |
| H7   | 0.167154      | 0.356474      | 0.071266      | 0.027*     |           |
| C8   | 0.05922 (11)  | 0.25697 (19)  | -0.04310(19)  | 0.0205 (4) |           |
| C9   | 0.07049 (12)  | 0.3685 (2)    | -0.1113 (2)   | 0.0269 (5) |           |
| Н9   | 0.119013      | 0.408120      | -0.108253     | 0.032*     |           |
| C10  | 0.01170 (12)  | 0.4224 (2)    | -0.1835(2)    | 0.0268 (5) |           |
| H10  | 0.019426      | 0.499010      | -0.229147     | 0.032*     |           |
| C11  | -0.05848(11)  | 0.36318 (19)  | -0.18819 (19) | 0.0201 (4) |           |
| C12  | -0.07077 (11) | 0.25090 (19)  | -0.1236 (2)   | 0.0226 (4) |           |
| H12  | -0.119082     | 0.210756      | -0.128412     | 0.027*     |           |
| C13  | -0.01115 (11) | 0.19778 (19)  | -0.0515(2)    | 0.0237 (4) |           |
| H13  | -0.018687     | 0.120171      | -0.007623     | 0.028*     |           |
| C14  | 0.29587 (11)  | -0.08585(18)  | 0.34107 (19)  | 0.0199 (4) |           |
| C15  | 0.36147 (12)  | -0.1077 (2)   | 0.4390 (2)    | 0.0268 (5) |           |
| H15A | 0.352459      | -0.059068     | 0.519060      | 0.040*     |           |
| H15B | 0.409560      | -0.080971     | 0.399533      | 0.040*     |           |
| H15C | 0.364385      | -0.197117     | 0.460950      | 0.040*     |           |
| C16  | 0.31050(13)   | -0.16864 (19) | 0.2197 (2)    | 0.0273 (5) |           |
| H16A | 0.359236      | -0.145097     | 0.180394      | 0.041*     |           |
| H16B | 0.269274      | -0.156519     | 0.155142      | 0.041*     |           |
| H16C | 0.312291      | -0.256948     | 0.246356      | 0.041*     |           |
| C17  | 0.22224 (12)  | -0.1278 (2)   | 0.4088 (2)    | 0.0256 (4) |           |
| H17A | 0.178983      | -0.117698     | 0.347927      | 0.038*     |           |
| H17B | 0.214040      | -0.076414     | 0.487233      | 0.038*     |           |
| H17C | 0.226738      | -0.216188     | 0.434369      | 0.038*     |           |
| C18  | 0.39480 (11)  | 0.36655 (18)  | 0.36816 (18)  | 0.0220 (4) |           |
| C19  | 0.45276 (15)  | 0.3956 (3)    | 0.2635 (2)    | 0.0325 (7) | 0.866 (4) |
| H19A | 0.426705      | 0.429933      | 0.185801      | 0.049*     | 0.866 (4) |
| H19B | 0.479678      | 0.318507      | 0.239477      | 0.049*     | 0.866 (4) |
| H19C | 0.489486      | 0.457189      | 0.297504      | 0.049*     | 0.866 (4) |
| C20  | 0.43448 (16)  | 0.3215 (3)    | 0.4933 (3)    | 0.0357 (7) | 0.866 (4) |
| H20A | 0.467578      | 0.388141      | 0.527699      | 0.054*     | 0.866 (4) |
| H20B | 0.465249      | 0.247148      | 0.473742      | 0.054*     | 0.866 (4) |
| H20C | 0.396146      | 0.300037      | 0.559027      | 0.054*     | 0.866 (4) |
| C21  | 0.35248 (15)  | 0.4905 (2)    | 0.4045 (3)    | 0.0345 (7) | 0.866 (4) |
| H21A | 0.313289      | 0.472481      | 0.469819      | 0.052*     | 0.866 (4) |
| H21B | 0.328427      | 0.525905      | 0.325396      | 0.052*     | 0.866 (4) |
| H21C | 0.389148      | 0.550822      | 0.441016      | 0.052*     | 0.866 (4) |
| C19A | 0.4165 (10)   | 0.4668 (13)   | 0.2667 (13)   | 0.037 (4)  | 0.134 (4) |
| H19D | 0.375157      | 0.528297      | 0.258655      | 0.056*     | 0.134 (4) |
| H19E | 0.424704      | 0.426767      | 0.181219      | 0.056*     | 0.134 (4) |
| H19F | 0.463361      | 0.509153      | 0.295317      | 0.056*     | 0.134 (4) |
| C21A | 0.3726 (10)   | 0.4232 (17)   | 0.4984 (11)   | 0.050 (5)  | 0.134 (4) |

| H21D | 0.408437    | 0.490241    | 0.521756    | 0.075*     | 0.134 (4) |
|------|-------------|-------------|-------------|------------|-----------|
| H21E | 0.373903    | 0.358192    | 0.566514    | 0.075*     | 0.134 (4) |
| H21F | 0.320915    | 0.457808    | 0.491313    | 0.075*     | 0.134 (4) |
| C20A | 0.4711 (6)  | 0.2925 (13) | 0.3923 (18) | 0.046 (5)  | 0.134 (4) |
| H20D | 0.510831    | 0.350588    | 0.422946    | 0.070*     | 0.134 (4) |
| H20E | 0.487149    | 0.253026    | 0.310116    | 0.070*     | 0.134 (4) |
| H20F | 0.463040    | 0.227653    | 0.459071    | 0.070*     | 0.134 (4) |
| H1   | 0.1518 (13) | 0.051 (2)   | 0.107 (2)   | 0.052 (9)* |           |
|      |             |             |             |            |           |

Atomic displacement parameters  $(\mathring{A}^2)$ 

|      | $U^{11}$     | $U^{22}$     | $U^{33}$     | $U^{12}$     | $U^{13}$     | U <sup>23</sup> |
|------|--------------|--------------|--------------|--------------|--------------|-----------------|
| Br1  | 0.02311 (11) | 0.02777 (12) | 0.02797 (12) | 0.00560 (9)  | -0.00830 (8) | 0.00102 (9)     |
| 01   | 0.0233 (7)   | 0.0183 (7)   | 0.0285 (8)   | -0.0029 (6)  | -0.0093 (6)  | -0.0009 (6)     |
| N1   | 0.0192 (8)   | 0.0235 (9)   | 0.0220 (8)   | 0.0005 (7)   | -0.0051 (7)  | -0.0004 (7)     |
| C1   | 0.0174 (9)   | 0.0204 (10)  | 0.0189 (9)   | -0.0020 (7)  | -0.0010 (7)  | -0.0048 (8)     |
| C2   | 0.0184 (9)   | 0.0181 (9)   | 0.0163 (9)   | 0.0008 (8)   | 0.0013 (7)   | -0.0006 (7)     |
| C3   | 0.0175 (9)   | 0.0212 (10)  | 0.0165 (9)   | -0.0008 (8)  | -0.0027 (7)  | 0.0022 (7)      |
| C4   | 0.0192 (9)   | 0.0207 (10)  | 0.0173 (9)   | -0.0020 (8)  | -0.0018 (7)  | -0.0016 (8)     |
| C5   | 0.0229 (10)  | 0.0163 (9)   | 0.0212 (10)  | -0.0022 (8)  | -0.0027 (8)  | 0.0007 (8)      |
| C6   | 0.0191 (9)   | 0.0204 (10)  | 0.0199 (10)  | 0.0016 (8)   | -0.0035 (7)  | -0.0014 (8)     |
| C7   | 0.0233 (10)  | 0.0182 (10)  | 0.0251 (10)  | 0.0019 (8)   | -0.0058 (8)  | -0.0026 (8)     |
| C8   | 0.0198 (9)   | 0.0228 (10)  | 0.0186 (9)   | 0.0016 (8)   | -0.0039 (7)  | -0.0014 (8)     |
| C9   | 0.0201 (10)  | 0.0330 (12)  | 0.0274 (11)  | -0.0074 (9)  | -0.0047 (8)  | 0.0048 (9)      |
| C10  | 0.0273 (11)  | 0.0285 (12)  | 0.0245 (10)  | -0.0050 (9)  | -0.0048 (8)  | 0.0084 (9)      |
| C11  | 0.0201 (9)   | 0.0225 (10)  | 0.0178 (9)   | 0.0035 (8)   | -0.0046 (7)  | -0.0031 (8)     |
| C12  | 0.0171 (9)   | 0.0240 (10)  | 0.0267 (10)  | -0.0016 (8)  | -0.0033 (8)  | -0.0017 (8)     |
| C13  | 0.0252 (10)  | 0.0200 (10)  | 0.0258 (11)  | -0.0006 (8)  | -0.0051 (8)  | 0.0016 (8)      |
| C14  | 0.0226 (9)   | 0.0167 (10)  | 0.0203 (9)   | 0.0003 (8)   | -0.0006 (8)  | 0.0003 (7)      |
| C15  | 0.0285 (11)  | 0.0219 (10)  | 0.0300 (11)  | 0.0019 (9)   | -0.0054 (9)  | 0.0074 (9)      |
| C16  | 0.0373 (12)  | 0.0181 (10)  | 0.0264 (11)  | 0.0045 (9)   | 0.0019 (9)   | -0.0011 (8)     |
| C17  | 0.0285 (11)  | 0.0225 (11)  | 0.0259 (11)  | -0.0028 (9)  | 0.0017 (8)   | 0.0020 (9)      |
| C18  | 0.0250 (10)  | 0.0221 (10)  | 0.0189 (10)  | -0.0074 (8)  | -0.0053 (8)  | 0.0015 (8)      |
| C19  | 0.0294 (14)  | 0.0411 (16)  | 0.0271 (13)  | -0.0159 (13) | 0.0017 (11)  | -0.0037 (12)    |
| C20  | 0.0416 (16)  | 0.0350 (15)  | 0.0300 (15)  | -0.0172 (13) | -0.0176 (12) | 0.0068 (12)     |
| C21  | 0.0318 (14)  | 0.0272 (14)  | 0.0443 (17)  | -0.0040 (11) | -0.0037 (12) | -0.0151 (12)    |
| C19A | 0.037 (8)    | 0.035 (8)    | 0.040 (8)    | -0.006 (7)   | -0.006 (7)   | -0.003 (7)      |
| C21A | 0.043 (8)    | 0.058 (9)    | 0.048 (9)    | -0.021 (8)   | -0.012 (7)   | -0.012 (8)      |
| C20A | 0.040 (8)    | 0.036 (8)    | 0.062 (9)    | -0.023 (7)   | -0.025 (7)   | 0.001 (7)       |

## Geometric parameters (Å, °)

| Br1—C11 | 1.9001 (19) | C15—H15C | 0.9800 |
|---------|-------------|----------|--------|
| 01—C1   | 1.358 (2)   | C16—H16A | 0.9800 |
| 01—H1   | 0.858 (10)  | C16—H16B | 0.9800 |
| N1—C7   | 1.279 (3)   | C16—H16C | 0.9800 |
| N1—C8   | 1.425 (2)   | C17—H17A | 0.9800 |
| C1—C2   | 1.409 (3)   | C17—H17B | 0.9800 |
|         |             |          |        |

| C1—C6     | 1.409 (3)   | C17—H17C      | 0.9800      |
|-----------|-------------|---------------|-------------|
| C2—C3     | 1.396 (3)   | C18—C19       | 1.511 (3)   |
| C2—C14    | 1.540 (3)   | C18—C20       | 1.522 (3)   |
| С3—Н3     | 0.9500      | C18—C21       | 1.561 (3)   |
| C3—C4     | 1.402 (3)   | C18—C19A      | 1.536 (7)   |
| C4—C5     | 1.381 (3)   | C18—C21A      | 1.510(7)    |
| C4—C18    | 1.531 (3)   | C18—C20A      | 1.571 (7)   |
| С5—Н5     | 0.9500      | C19—H19A      | 0.9800      |
| C5—C6     | 1.395 (3)   | C19—H19B      | 0.9800      |
| С6—С7     | 1.453 (3)   | C19—H19C      | 0.9800      |
| С7—Н7     | 0.9500      | C20—H20A      | 0.9800      |
| C8—C9     | 1.392 (3)   | C20—H20B      | 0.9800      |
| C8—C13    | 1.388 (3)   | C20—H20C      | 0.9800      |
| С9—Н9     | 0.9500      | C21—H21A      | 0.9800      |
| C9—C10    | 1.384 (3)   | C21—H21B      | 0.9800      |
| C10—H10   | 0.9500      | C21—H21C      | 0.9800      |
| C10—C11   | 1.383 (3)   | C19A—H19D     | 0.9800      |
| C11—C12   | 1.383 (3)   | C19A—H19E     | 0.9800      |
| C12—H12   | 0.9500      | C19A—H19F     | 0.9800      |
| C12—C13   | 1.391 (3)   | C21A—H21D     | 0.9800      |
| С13—Н13   | 0.9500      | C21A—H21E     | 0.9800      |
| C14—C15   | 1.531 (3)   | C21A—H21F     | 0.9800      |
| C14—C16   | 1.541 (3)   | C20A—H20D     | 0.9800      |
| C14—C17   | 1.536 (3)   | C20A—H20E     | 0.9800      |
| C15—H15A  | 0.9800      | C20A—H20F     | 0.9800      |
| C15—H15B  | 0.9800      |               |             |
|           |             |               |             |
| C1—01—H1  | 108 (2)     | H16A—C16—H16C | 109.5       |
| C7—N1—C8  | 118.93 (18) | H16B—C16—H16C | 109.5       |
| 01—C1—C2  | 120.33 (17) | С14—С17—Н17А  | 109.5       |
| 01        | 119.70 (17) | C14—C17—H17B  | 109.5       |
| C6—C1—C2  | 119.97 (17) | C14—C17—H17C  | 109.5       |
| C1—C2—C14 | 121.56 (17) | H17A—C17—H17B | 109.5       |
| C3—C2—C1  | 116.94 (17) | H17A—C17—H17C | 109.5       |
| C3—C2—C14 | 121.50 (17) | H17B—C17—H17C | 109.5       |
| С2—С3—Н3  | 117.7       | C4—C18—C21    | 109.41 (17) |
| C2—C3—C4  | 124.55 (18) | C4—C18—C19A   | 113.1 (7)   |
| С4—С3—Н3  | 117.7       | C4—C18—C20A   | 106.3 (6)   |
| C3—C4—C18 | 122.70 (17) | C19—C18—C4    | 109.53 (17) |
| C5—C4—C3  | 116.54 (17) | C19—C18—C20   | 110.4 (2)   |
| C5—C4—C18 | 120.73 (17) | C19—C18—C21   | 108.6 (2)   |
| C4—C5—H5  | 119.1       | C20—C18—C4    | 112.36 (17) |
| C4—C5—C6  | 121.90 (18) | C20—C18—C21   | 106.5 (2)   |
| С6—С5—Н5  | 119.1       | C19A—C18—C20A | 103.8 (7)   |
| C1—C6—C7  | 121.97 (17) | C21A—C18—C4   | 113.6 (7)   |
| C5—C6—C1  | 120.07 (17) | C21A—C18—C19A | 112.3 (8)   |
| C5—C6—C7  | 117.91 (18) | C21A—C18—C20A | 106.9 (7)   |
| N1—C7—C6  | 123.57 (19) | C18—C19—H19A  | 109.5       |

| N1H7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 118.2                    | C18_C19_H19B                 | 109.5       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|------------------------------|-------------|
| C6-C7-H7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 118.2                    | C18 - C19 - H19C             | 109.5       |
| C9-C8-N1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 122 83 (18)              | H19A - C19 - H19B            | 109.5       |
| $C_{13}$ $C_{8}$ $N_{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 122.03(18)<br>117.03(18) | $H_{10A} C_{10} H_{10C}$     | 109.5       |
| $C_{13} = C_{8} = C_{9}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 117.93(18)<br>110.24(18) | H10B C10 H10C                | 109.5       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 110.7                    | $C_{18} C_{20} H_{20}$       | 109.5       |
| $C_{0} = C_{0} = C_{0}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 119.7                    | $C_{18} = C_{20} = H_{20R}$  | 109.5       |
| $C_{10} = C_{9} = C_{8}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 120.00 (19)              | $C_{18} = C_{20} = H_{20C}$  | 109.5       |
| $C_{10} - C_{9} - H_{9}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 119.7                    | $H_{20A} = C_{20} = H_{20B}$ | 109.5       |
| $C_{9}$ $C_{10}$ $C_$ | 120.4                    | $H_{20A} = C_{20} = H_{20B}$ | 109.5       |
| $C_{11} = C_{10} = C_{9}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 119.11 (19)              | $H_{20}A = C_{20} = H_{20}C$ | 109.5       |
| C10 - C11 - Dr1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 120.4                    | $H_{20}B = C_{20} = H_{20}C$ | 109.5       |
| C10 - C11 - Br1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 118.52(15)               | C18 - C21 - H21A             | 109.5       |
| CI2—CII—Bri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 120.06 (15)              | C18—C21—H21B                 | 109.5       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 121.42 (18)              | C18—C21—H21C                 | 109.5       |
| C11—C12—H12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 120.6                    | H21A—C21—H21B                | 109.5       |
| C11—C12—C13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 118.85 (18)              | H21A—C21—H21C                | 109.5       |
| C13—C12—H12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 120.6                    | H21B—C21—H21C                | 109.5       |
| C8—C13—C12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 120.69 (19)              | C18—C19A—H19D                | 109.5       |
| C8—C13—H13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 119.7                    | C18—C19A—H19E                | 109.5       |
| С12—С13—Н13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 119.7                    | C18—C19A—H19F                | 109.5       |
| C2—C14—C16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 109.76 (16)              | H19D—C19A—H19E               | 109.5       |
| C15—C14—C2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 112.14 (16)              | H19D—C19A—H19F               | 109.5       |
| C15—C14—C16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 107.67 (17)              | H19E—C19A—H19F               | 109.5       |
| C15—C14—C17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 107.06 (16)              | C18—C21A—H21D                | 109.5       |
| C17—C14—C2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 110.26 (16)              | C18—C21A—H21E                | 109.5       |
| C17—C14—C16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 109.88 (17)              | C18—C21A—H21F                | 109.5       |
| C14—C15—H15A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 109.5                    | H21D-C21A-H21E               | 109.5       |
| C14—C15—H15B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 109.5                    | H21D—C21A—H21F               | 109.5       |
| C14—C15—H15C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 109.5                    | H21E—C21A—H21F               | 109.5       |
| H15A—C15—H15B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 109.5                    | C18—C20A—H20D                | 109.5       |
| H15A—C15—H15C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 109.5                    | C18—C20A—H20E                | 109.5       |
| H15B—C15—H15C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 109.5                    | C18—C20A—H20F                | 109.5       |
| C14—C16—H16A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 109.5                    | H20D-C20A-H20E               | 109.5       |
| C14—C16—H16B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 109.5                    | H20D-C20A-H20F               | 109.5       |
| C14—C16—H16C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 109.5                    | H20E—C20A—H20F               | 109.5       |
| H16A—C16—H16B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 109.5                    |                              |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                              |             |
| Br1-C11-C12-C13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 179.78 (15)              | C3—C4—C18—C20A               | 30.2 (7)    |
| O1—C1—C2—C3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 179.74 (17)              | C4—C5—C6—C1                  | -1.1(3)     |
| O1—C1—C2—C14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -0.4 (3)                 | C4—C5—C6—C7                  | 176.38 (18) |
| O1—C1—C6—C5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -179.00 (18)             | C5—C4—C18—C19                | -75.6 (3)   |
| O1—C1—C6—C7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.6 (3)                  | C5—C4—C18—C20                | 161.3 (2)   |
| N1-C8-C9-C10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -178.1(2)                | C5-C4-C18-C21                | 43.2 (3)    |
| N1-C8-C13-C12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 178.08 (18)              | C5-C4-C18-C19A               | -35.0(8)    |
| C1—C2—C3—C4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -0.3 (3)                 | C5-C4-C18-C21A               | 94.6 (8)    |
| C1-C2-C14-C15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 179.49 (17)              | C5-C4-C18-C20A               | -148.2(7)   |
| C1 - C2 - C14 - C16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 59.9 (2)                 | C5-C6-C7-N1                  | -179.40(19) |
| C1 - C2 - C14 - C17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -61 3 (2)                | C6-C1-C2-C3                  | -11(3)      |
| $C_1 C_2 C_1 + C_1 /$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 01.3 (2)                 | $00 \ 01 \ 02 \ 03$          | 1.1 (3)     |

| C1—C6—C7—N1    | -1.9 (3)     | C6-C1-C2-C14    | 178.78 (17)  |
|----------------|--------------|-----------------|--------------|
| C2-C1-C6-C5    | 1.8 (3)      | C7—N1—C8—C9     | 28.2 (3)     |
| C2-C1-C6-C7    | -175.62 (18) | C7—N1—C8—C13    | -152.0 (2)   |
| C2—C3—C4—C5    | 1.0 (3)      | C8—N1—C7—C6     | 177.84 (18)  |
| C2-C3-C4-C18   | -177.46 (18) | C8—C9—C10—C11   | -0.7 (3)     |
| C3—C2—C14—C15  | -0.7 (3)     | C9—C8—C13—C12   | -2.1 (3)     |
| C3—C2—C14—C16  | -120.3 (2)   | C9—C10—C11—Br1  | -179.84 (16) |
| C3—C2—C14—C17  | 118.5 (2)    | C9-C10-C11-C12  | -0.7 (3)     |
| C3—C4—C5—C6    | -0.2 (3)     | C10-C11-C12-C13 | 0.7 (3)      |
| C3—C4—C18—C19  | 102.7 (2)    | C11—C12—C13—C8  | 0.8 (3)      |
| C3—C4—C18—C20  | -20.3 (3)    | C13—C8—C9—C10   | 2.0 (3)      |
| C3—C4—C18—C21  | -138.4 (2)   | C14—C2—C3—C4    | 179.82 (18)  |
| C3—C4—C18—C19A | 143.4 (8)    | C18—C4—C5—C6    | 178.26 (18)  |
| C3—C4—C18—C21A | -87.1 (8)    |                 |              |
|                |              |                 |              |

#### Hydrogen-bond geometry (Å, °)

| D—H···A  | D—H      | H···A    | D···A     | D—H···A |
|----------|----------|----------|-----------|---------|
| O1—H1…N1 | 0.86 (1) | 1.84 (2) | 2.622 (2) | 151 (3) |

(E)-6-{[(4-Bromophenyl)imino]methyl}-2,4-di-tert-butylphenol (3\_100K)

### Crystal data

C<sub>21</sub>H<sub>26</sub>BrNO  $M_r = 388.34$ Monoclinic,  $P2_1/c$  a = 17.4450 (3) Å b = 10.69412 (16) Å c = 10.15010 (17) Å  $\beta = 90.1557$  (16)° V = 1893.58 (5) Å<sup>3</sup> Z = 4

### Data collection

Agilent SuperNova Dual Source diffractometer with an Atlas detector Radiation source: SuperNova (Mo) X-ray Source Mirror monochromator Detector resolution: 10.3620 pixels mm<sup>-1</sup>  $\omega$  and  $\pi$  scans Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012)

### Refinement

Refinement on  $F^2$ Least-squares matrix: full  $R[F^2 > 2\sigma(F^2)] = 0.026$  $wR(F^2) = 0.060$ S = 1.044491 reflections 227 parameters F(000) = 808  $D_x = 1.362 \text{ Mg m}^{-3}$ Mo K\alpha radiation,  $\lambda = 0.71073 \text{ Å}$ Cell parameters from 13594 reflections  $\theta = 3.0-34.3^{\circ}$   $\mu = 2.18 \text{ mm}^{-1}$  T = 100 KNeedle, yellow  $0.3 \times 0.05 \times 0.05 \text{ mm}$ 

 $T_{\min} = 0.692, T_{\max} = 1.000$ 28200 measured reflections
4491 independent reflections
3799 reflections with  $I > 2\sigma(I)$   $R_{\text{int}} = 0.036$   $\theta_{\text{max}} = 27.9^{\circ}, \theta_{\text{min}} = 3.0^{\circ}$   $h = -22 \rightarrow 22$   $k = -9 \rightarrow 14$   $l = -13 \rightarrow 13$ 

22 restraints Primary atom site location: iterative Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement  $w = 1/[\sigma^2(F_o^2) + (0.0215P)^2 + 1.2915P]$ where  $P = (F_o^2 + 2F_c^2)/3$   $(\Delta/\sigma)_{\rm max} = 0.001$  $\Delta\rho_{\rm max} = 0.46 \text{ e} \text{ Å}^{-3}$ 

### Special details

**Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

 $\Delta \rho_{\rm min} = -0.22 \ {\rm e} \ {\rm \AA}^{-3}$ 

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

|      |              | 1 1           |               |                             |  |
|------|--------------|---------------|---------------|-----------------------------|--|
|      | x            | У             | Ζ             | $U_{ m iso}$ */ $U_{ m eq}$ |  |
| Br1  | -0.13933 (2) | 0.43538 (2)   | -0.28775 (2)  | 0.02035 (6)                 |  |
| 01   | 0.18475 (7)  | 0.01027 (11)  | 0.15496 (11)  | 0.0181 (2)                  |  |
| N1   | 0.11754 (8)  | 0.19817 (13)  | 0.03472 (13)  | 0.0166 (3)                  |  |
| C1   | 0.23415 (9)  | 0.09407 (15)  | 0.20904 (15)  | 0.0146 (3)                  |  |
| C2   | 0.29006 (9)  | 0.05468 (14)  | 0.30067 (15)  | 0.0138 (3)                  |  |
| C3   | 0.33886 (9)  | 0.14656 (15)  | 0.35168 (15)  | 0.0144 (3)                  |  |
| Н3   | 0.376570     | 0.121268      | 0.413895      | 0.017*                      |  |
| C4   | 0.33593 (9)  | 0.27321 (15)  | 0.31735 (15)  | 0.0142 (3)                  |  |
| C5   | 0.27967 (9)  | 0.30790 (15)  | 0.22833 (16)  | 0.0154 (3)                  |  |
| Н5   | 0.275740     | 0.393149      | 0.202869      | 0.019*                      |  |
| C6   | 0.22853 (9)  | 0.22134 (15)  | 0.17486 (15)  | 0.0150 (3)                  |  |
| C7   | 0.16834 (9)  | 0.26823 (15)  | 0.08879 (16)  | 0.0174 (3)                  |  |
| H7   | 0.166524     | 0.355509      | 0.071650      | 0.021*                      |  |
| C8   | 0.05948 (9)  | 0.25507 (15)  | -0.04414 (15) | 0.0158 (3)                  |  |
| C9   | 0.07046 (10) | 0.36729 (16)  | -0.11150 (17) | 0.0208 (4)                  |  |
| H9   | 0.118968     | 0.407533      | -0.107976     | 0.025*                      |  |
| C10  | 0.01145 (10) | 0.42060 (16)  | -0.18335 (16) | 0.0205 (4)                  |  |
| H10  | 0.019048     | 0.497335      | -0.228634     | 0.025*                      |  |
| C11  | -0.05873 (9) | 0.36073 (15)  | -0.18841 (15) | 0.0160 (3)                  |  |
| C12  | -0.07095 (9) | 0.24801 (15)  | -0.12469 (16) | 0.0181 (3)                  |  |
| H12  | -0.119309    | 0.207431      | -0.129914     | 0.022*                      |  |
| C13  | -0.01112(9)  | 0.19534 (15)  | -0.05293 (16) | 0.0179 (3)                  |  |
| H13  | -0.018570    | 0.117663      | -0.009402     | 0.021*                      |  |
| C14  | 0.29671 (9)  | -0.08308 (14) | 0.34338 (15)  | 0.0153 (3)                  |  |
| C15  | 0.36162 (10) | -0.10331 (16) | 0.44310 (17)  | 0.0206 (4)                  |  |
| H15A | 0.351478     | -0.054064     | 0.522594      | 0.031*                      |  |
| H15B | 0.410326     | -0.076645     | 0.404282      | 0.031*                      |  |
| H15C | 0.364567     | -0.192154     | 0.466219      | 0.031*                      |  |
| C16  | 0.31359 (10) | -0.16574 (15) | 0.22250 (17)  | 0.0204 (4)                  |  |
| H16A | 0.362649     | -0.140865     | 0.183675      | 0.031*                      |  |
| H16B | 0.272616     | -0.155370     | 0.157158      | 0.031*                      |  |
| H16C | 0.316225     | -0.253535     | 0.249797      | 0.031*                      |  |
| C17  | 0.22203 (10) | -0.12617 (16) | 0.40988 (17)  | 0.0205 (4)                  |  |
| H17A | 0.179111     | -0.116069     | 0.348292      | 0.031*                      |  |
| H17B | 0.212820     | -0.075515     | 0.488723      | 0.031*                      |  |
| H17C | 0.226611     | -0.214355     | 0.434947      | 0.031*                      |  |
| C18  | 0.39307 (9)  | 0.36988 (14)  | 0.37038 (15)  | 0.0152 (3)                  |  |
|      |              |               |               |                             |  |

| C19  | 0.45373 (10) | 0.39566 (18) | 0.26508 (17) | 0.0239 (4) |
|------|--------------|--------------|--------------|------------|
| H19A | 0.428702     | 0.426618     | 0.184911     | 0.036*     |
| H19B | 0.481412     | 0.318215     | 0.245215     | 0.036*     |
| H19C | 0.489891     | 0.458656     | 0.297712     | 0.036*     |
| C20  | 0.43335 (11) | 0.32435 (17) | 0.49562 (17) | 0.0252 (4) |
| H20A | 0.467029     | 0.390454     | 0.529255     | 0.038*     |
| H20B | 0.463885     | 0.249890     | 0.475419     | 0.038*     |
| H20C | 0.394933     | 0.303543     | 0.562384     | 0.038*     |
| C21  | 0.35161 (10) | 0.49285 (16) | 0.40367 (19) | 0.0253 (4) |
| H21A | 0.311491     | 0.476559     | 0.468845     | 0.038*     |
| H21B | 0.328419     | 0.527413     | 0.323523     | 0.038*     |
| H21C | 0.388530     | 0.552878     | 0.439846     | 0.038*     |
| H1   | 0.1539 (11)  | 0.051 (2)    | 0.106 (2)    | 0.048 (7)* |

Atomic displacement parameters  $(\mathring{A}^2)$ 

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$    | $U^{13}$     | $U^{23}$    |
|-----|-------------|-------------|-------------|-------------|--------------|-------------|
| Br1 | 0.01862 (9) | 0.02097 (9) | 0.02144 (9) | 0.00471 (7) | -0.00577 (6) | 0.00085 (7) |
| 01  | 0.0184 (6)  | 0.0135 (6)  | 0.0223 (6)  | -0.0024 (5) | -0.0070 (5)  | -0.0010 (5) |
| N1  | 0.0146 (6)  | 0.0178 (7)  | 0.0174 (7)  | 0.0007 (6)  | -0.0028 (5)  | -0.0008 (6) |
| C1  | 0.0137 (7)  | 0.0150 (8)  | 0.0151 (7)  | -0.0018 (6) | 0.0002 (6)   | -0.0030 (6) |
| C2  | 0.0158 (7)  | 0.0120 (7)  | 0.0136 (7)  | 0.0000 (6)  | 0.0012 (6)   | -0.0012 (6) |
| C3  | 0.0140 (7)  | 0.0159 (8)  | 0.0132 (7)  | 0.0008 (6)  | -0.0006 (6)  | 0.0006 (6)  |
| C4  | 0.0150 (7)  | 0.0141 (7)  | 0.0136 (7)  | -0.0007 (6) | 0.0007 (6)   | -0.0011 (6) |
| C5  | 0.0177 (8)  | 0.0111 (7)  | 0.0174 (8)  | -0.0005 (6) | -0.0016 (6)  | 0.0003 (6)  |
| C6  | 0.0150 (7)  | 0.0151 (8)  | 0.0150 (8)  | 0.0013 (6)  | -0.0011 (6)  | -0.0002 (6) |
| C7  | 0.0195 (8)  | 0.0140 (8)  | 0.0186 (8)  | 0.0023 (6)  | -0.0025 (6)  | -0.0014 (6) |
| C8  | 0.0162 (8)  | 0.0172 (8)  | 0.0141 (7)  | 0.0024 (6)  | -0.0022 (6)  | -0.0022 (6) |
| C9  | 0.0168 (8)  | 0.0251 (9)  | 0.0206 (8)  | -0.0057 (7) | -0.0030 (7)  | 0.0035 (7)  |
| C10 | 0.0221 (8)  | 0.0207 (9)  | 0.0186 (8)  | -0.0030 (7) | -0.0020 (7)  | 0.0055 (7)  |
| C11 | 0.0163 (8)  | 0.0180 (8)  | 0.0137 (7)  | 0.0033 (6)  | -0.0030 (6)  | -0.0024 (6) |
| C12 | 0.0149 (8)  | 0.0181 (8)  | 0.0212 (8)  | -0.0020 (7) | -0.0020 (6)  | -0.0022 (7) |
| C13 | 0.0200 (8)  | 0.0141 (8)  | 0.0196 (8)  | 0.0003 (7)  | -0.0021 (6)  | 0.0008 (6)  |
| C14 | 0.0182 (8)  | 0.0117 (7)  | 0.0159 (8)  | -0.0006 (6) | -0.0002 (6)  | 0.0008 (6)  |
| C15 | 0.0248 (9)  | 0.0151 (8)  | 0.0219 (9)  | 0.0014 (7)  | -0.0036 (7)  | 0.0046 (7)  |
| C16 | 0.0275 (9)  | 0.0127 (8)  | 0.0210 (9)  | 0.0018 (7)  | -0.0001 (7)  | -0.0007 (7) |
| C17 | 0.0246 (9)  | 0.0160 (8)  | 0.0210 (8)  | -0.0032 (7) | 0.0019 (7)   | 0.0014 (7)  |
| C18 | 0.0182 (8)  | 0.0139 (8)  | 0.0136 (7)  | -0.0030 (6) | -0.0025 (6)  | 0.0001 (6)  |
| C19 | 0.0230 (9)  | 0.0278 (9)  | 0.0209 (9)  | -0.0098 (8) | 0.0005 (7)   | -0.0032 (7) |
| C20 | 0.0305 (10) | 0.0228 (9)  | 0.0224 (9)  | -0.0092 (8) | -0.0116 (7)  | 0.0029 (7)  |
| C21 | 0.0255 (9)  | 0.0191 (9)  | 0.0314 (10) | -0.0014 (7) | -0.0030 (8)  | -0.0084 (8) |

## Geometric parameters (Å, °)

| Br1—C11 | 1.9034 (15) | С13—Н13 | 0.9500    |
|---------|-------------|---------|-----------|
| O1—C1   | 1.3581 (19) | C14—C15 | 1.532 (2) |
| O1—H1   | 0.854 (10)  | C14—C16 | 1.541 (2) |
| N1—C7   | 1.283 (2)   | C14—C17 | 1.540 (2) |

| N1                        | 1426(2)                   | C15—H15A                                             | 0.9800      |
|---------------------------|---------------------------|------------------------------------------------------|-------------|
| C1-C2                     | 1.120(2)<br>1 410(2)      | C15—H15B                                             | 0.9800      |
| C1 $C6$                   | 1.410(2)<br>1.408(2)      | C15 H15D                                             | 0.9800      |
| $C_1 = C_0$               | 1.400(2)<br>1.300(2)      | C16 H16A                                             | 0.9800      |
| $C_2 = C_1 A$             | 1.599(2)<br>1.540(2)      | C16 H16R                                             | 0.9800      |
| $C_2 = C_1 + C_2$         | 1.340(2)                  |                                                      | 0.9800      |
| $C_{2}$                   | 1,200 (2)                 |                                                      | 0.9800      |
| $C_{3}$                   | 1.399 (2)                 | C17H17A                                              | 0.9800      |
| C4 - C3                   | 1.383 (2)                 | С17—Н1/В                                             | 0.9800      |
|                           | 1.535 (2)                 |                                                      | 0.9800      |
| C5—H5                     | 0.9500                    | C18—C19                                              | 1.531 (2)   |
| C5—C6                     | 1.394 (2)                 | C18—C20                                              | 1.530 (2)   |
| C6—C7                     | 1.453 (2)                 | C18—C21                                              | 1.539 (2)   |
| С7—Н7                     | 0.9500                    | С19—Н19А                                             | 0.9800      |
| C8—C9                     | 1.395 (2)                 | C19—H19B                                             | 0.9800      |
| C8—C13                    | 1.390 (2)                 | C19—H19C                                             | 0.9800      |
| С9—Н9                     | 0.9500                    | C20—H20A                                             | 0.9800      |
| C9—C10                    | 1.383 (2)                 | C20—H20B                                             | 0.9800      |
| C10—H10                   | 0.9500                    | C20—H20C                                             | 0.9800      |
| C10—C11                   | 1.383 (2)                 | C21—H21A                                             | 0.9800      |
| C11—C12                   | 1.385 (2)                 | C21—H21B                                             | 0.9800      |
| C12—H12                   | 0.9500                    | C21—H21C                                             | 0.9800      |
| C12—C13                   | 1.390 (2)                 |                                                      |             |
|                           |                           |                                                      |             |
| C1—O1—H1                  | 107.4 (16)                | C17—C14—C2                                           | 110.28 (13) |
| C7—N1—C8                  | 118.68 (14)               | C17—C14—C16                                          | 109.94 (13) |
| O1—C1—C2                  | 120.42 (14)               | C14—C15—H15A                                         | 109.5       |
| 01                        | 119.65 (14)               | C14—C15—H15B                                         | 109.5       |
| C6-C1-C2                  | 119.92 (14)               | C14—C15—H15C                                         | 109.5       |
| C1-C2-C14                 | 121.53(13)                | H15A—C15—H15B                                        | 109.5       |
| $C_{3}$ $-C_{2}$ $-C_{1}$ | 116 97 (14)               | H15A - C15 - H15C                                    | 109.5       |
| $C_{3}$ $C_{2}$ $C_{14}$  | 121 51 (14)               | H15B-C15-H15C                                        | 109.5       |
| C2_C3_H3                  | 117.8                     | C14-C16-H16A                                         | 109.5       |
| $C_2 - C_3 - C_4$         | 124 48 (15)               | C14 - C16 - H16B                                     | 109.5       |
| $C_{4}$ $C_{3}$ $H_{3}$   | 117.8                     |                                                      | 109.5       |
| $C_{4} = C_{5} = 115$     | 117.0<br>122.83(14)       | $H_{16A} = C_{16} = H_{16B}$                         | 109.5       |
| $C_{5} = C_{4} = C_{18}$  | 122.03(14)<br>116 50 (14) | H16A = C16 = H16C                                    | 109.5       |
| $C_{5} = C_{4} = C_{5}$   | 110.39(14)<br>120.55(14)  | H10A - C10 - H10C                                    | 109.5       |
| $C_3 = C_4 = C_{18}$      | 120.33 (14)               | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 109.5       |
| C4—C5—H5                  | 119.1                     | C14 - C17 - H17A                                     | 109.5       |
| C4 - C5 - C6              | 121.90 (15)               | C14 - C17 - H17B                                     | 109.5       |
| C6—C5—H5                  | 119.1                     | С14—С17—Н17С                                         | 109.5       |
| C1—C6—C7                  | 122.09 (14)               | H17A—C17—H17B                                        | 109.5       |
| C5—C6—C1                  | 120.12 (14)               | H17A—C17—H17C                                        | 109.5       |
| C5—C6—C7                  | 117.73 (14)               | H17B—C17—H17C                                        | 109.5       |
| N1—C7—C6                  | 123.57 (15)               | C4—C18—C21                                           | 110.36 (13) |
| N1—C7—H7                  | 118.2                     | C19—C18—C4                                           | 109.05 (13) |
| С6—С7—Н7                  | 118.2                     | C19—C18—C21                                          | 109.00 (14) |
| C9—C8—N1                  | 122.97 (14)               | C20—C18—C4                                           | 111.95 (13) |
| C13—C8—N1                 | 117.90 (14)               | C20-C18-C19                                          | 108.70 (14) |

| G12 G0 G0                         |              |                                  |              |
|-----------------------------------|--------------|----------------------------------|--------------|
| C13—C8—C9                         | 119.13 (15)  | C20—C18—C21                      | 107.73 (14)  |
| С8—С9—Н9                          | 119.7        | C18—C19—H19A                     | 109.5        |
| C10—C9—C8                         | 120.68 (15)  | C18—C19—H19B                     | 109.5        |
| С10—С9—Н9                         | 119.7        | C18—C19—H19C                     | 109.5        |
| C9—C10—H10                        | 120.4        | H19A—C19—H19B                    | 109.5        |
| C11—C10—C9                        | 119.11 (16)  | H19A—C19—H19C                    | 109.5        |
| C11—C10—H10                       | 120.4        | H19B—C19—H19C                    | 109.5        |
| C10-C11-Br1                       | 118.57 (12)  | C18—C20—H20A                     | 109.5        |
| C10-C11-C12                       | 121.55 (15)  | C18—C20—H20B                     | 109.5        |
| C12—C11—Br1                       | 119.87 (12)  | C18—C20—H20C                     | 109.5        |
| C11—C12—H12                       | 120.6        | H20A—C20—H20B                    | 109.5        |
| C11—C12—C13                       | 118.75 (15)  | H20A—C20—H20C                    | 109.5        |
| C13—C12—H12                       | 120.6        | H20B-C20-H20C                    | 109.5        |
| C8—C13—C12                        | 120.75 (15)  | C18—C21—H21A                     | 109.5        |
| C8—C13—H13                        | 119.6        | C18—C21—H21B                     | 109.5        |
| C12—C13—H13                       | 119.6        | C18—C21—H21C                     | 109.5        |
| C2—C14—C16                        | 109.81 (13)  | H21A—C21—H21B                    | 109.5        |
| C15—C14—C2                        | 112.09 (13)  | H21A—C21—H21C                    | 109.5        |
| C15—C14—C16                       | 107.61 (13)  | H21B—C21—H21C                    | 109.5        |
| C15—C14—C17                       | 107.03 (13)  |                                  |              |
|                                   |              |                                  |              |
| Br1-C11-C12-C13                   | 179.90 (12)  | C3-C4-C18-C21                    | -139.68 (16) |
| O1—C1—C2—C3                       | 179.87 (14)  | C4—C5—C6—C1                      | -1.3 (2)     |
| O1—C1—C2—C14                      | -0.6 (2)     | C4—C5—C6—C7                      | 176.08 (15)  |
| O1—C1—C6—C5                       | -179.06 (14) | C5—C4—C18—C19                    | -77.25 (19)  |
| O1—C1—C6—C7                       | 3.7 (2)      | C5-C4-C18-C20                    | 162.43 (15)  |
| N1-C8-C9-C10                      | -177.94 (16) | C5—C4—C18—C21                    | 42.4 (2)     |
| N1—C8—C13—C12                     | 177.87 (15)  | C5—C6—C7—N1                      | -179.34 (16) |
| C1—C2—C3—C4                       | -0.4(2)      | C6—C1—C2—C3                      | -1.2 (2)     |
| C1—C2—C14—C15                     | 179.83 (14)  | C6-C1-C2-C14                     | 178.39 (14)  |
| C1—C2—C14—C16                     | 60.27 (19)   | C7—N1—C8—C9                      | 28.0 (2)     |
| C1—C2—C14—C17                     | -61.03 (19)  | C7—N1—C8—C13                     | -151.64 (16) |
| C1-C6-C7-N1                       | -2.1 (3)     | C8—N1—C7—C6                      | 177.74 (14)  |
| C2-C1-C6-C5                       | 2.0 (2)      | C8—C9—C10—C11                    | -0.4 (3)     |
| C2-C1-C6-C7                       | -175.24 (15) | C9—C8—C13—C12                    | -1.8(2)      |
| C2—C3—C4—C5                       | 1.1 (2)      | C9—C10—C11—Br1                   | 180.00 (13)  |
| C2—C3—C4—C18                      | -176.87 (15) | C9—C10—C11—C12                   | -0.9 (3)     |
| C3—C2—C14—C15                     | -0.6 (2)     | C10-C11-C12-C13                  | 0.8 (2)      |
| C3—C2—C14—C16                     | -120.18 (16) | C11—C12—C13—C8                   | 0.6 (2)      |
| C3—C2—C14—C17                     | 118.52 (16)  | C13—C8—C9—C10                    | 1.7 (3)      |
| C3—C4—C5—C6                       | -0.2 (2)     | $C_{14} - C_{2} - C_{3} - C_{4}$ | -179.94 (15) |
| C3—C4—C18—C19                     | 100.62 (18)  | $C_{18} - C_{4} - C_{5} - C_{6}$ | 177.76 (14)  |
| $C_{3}$ $C_{4}$ $C_{18}$ $C_{20}$ | -19.7 (2)    |                                  |              |
|                                   | ··· (-)      |                                  |              |

## Hydrogen-bond geometry (Å, °)

| D—H···A  | D—H      | H····A   | D····A      | <i>D</i> —H··· <i>A</i> |
|----------|----------|----------|-------------|-------------------------|
| O1—H1…N1 | 0.85 (1) | 1.84 (1) | 2.6257 (18) | 152 (2)                 |

| Compound | Temperatu | re (K) <i>D</i> —H…A | <i>D</i> —Н | $H \cdots A$ | $D \cdots A$ | D—H··· $A$ |
|----------|-----------|----------------------|-------------|--------------|--------------|------------|
| 1A       | 100       | 01—H1…N1             | 0.94 (3)    | 1.72 (3)     | 2.587 (2)    | 151 (2)    |
| 1B       | 120       | 01—H1…N1             | 0.96 (3)    | 1.64 (3)     | 2.544 (2)    | 155 (2)    |
| 2        | 300       | 01—H1…N1             | 0.84 (4)    | 1.84 (4)     | 2.612 (4)    | 151 (4)    |
|          | 250       | 01—H1…N1             | 0.91 (3)    | 1.76 (4)     | 2.615 (4)    | 155 (3)    |
|          | 200       | 01—H1…N1             | 0.90 (3)    | 1.78 (3)     | 2.611 (3)    | 153 (3)    |
|          | 150       | 01—H1…N1             | 0.92 (3)    | 1.77 (3)     | 2.615 (3)    | 151 (3)    |
|          | 120       | 01—H1…N1             | 0.86 (4)    | 1.82 (4)     | 2.633 (3)    | 157 (4)    |
|          | 100       | 01—H1…N1             | 0.94 (4)    | 1.77 (4)     | 2.626 (3)    | 150 (3)    |
| 3        | 300       | 01—H1…N1             | 0.83 (5)    | 1.84 (5)     | 2.614 (4)    | 154 (5)    |
|          | 250       | 01—H1…N1             | 0.84 (3)    | 1.83 (3)     | 2.612 (3)    | 154 (3)    |
|          | 200       | 01—H1…N1             | 0.82 (3)    | 1.85 (3)     | 2.611 (2)    | 153 (3)    |
|          | 150       | 01—H1…N1             | 0.86(1)     | 1.83 (2)     | 2.612 (2)    | 152 (3)    |
|          | 120       | 01—H1…N1             | 0.86(1)     | 1.84 (2)     | 2.622 (2)    | 151 (3)    |
|          | 100       | 01—H1…N1             | 0.85(1)     | 1.84 (1)     | 2.6257 (18)  | 152 (2)    |

Hydrogen-bond geometry (Å, °)