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DNA methylation profiles have been used to develop biomarkers of aging known as epi-
genetic clocks, which predict chronological age with remarkable accuracy and show prom-
ise for inferring health status as an indicator of biological age. Epigenetic clocks were first
built to monitor human aging, but their underlying principles appear to be evolutionarily
conserved, as they have now been successfully developed for many mammalian species.
Here, we describe reliable and highly accurate epigenetic clocks shown to apply to 93
domestic dog breeds. The methylation profiles were generated using the mammalian
methylation array, which utilizes DNA sequences that are conserved across all mamma-
lian species. Canine epigenetic clocks were constructed to estimate age and also average
time to death. We also present two highly accurate human–dog dual species epigenetic
clocks (R = 0.97), which may facilitate the ready translation from canine to human use
(or vice versa) of antiaging treatments being developed for longevity and preventive medi-
cine. Finally, epigenome-wide association studies here reveal individual methylation sites
that may underlie the inverse relationship between breed weight and lifespan. Overall, we
describe robust biomarkers to measure aging and, potentially, health status in canines.
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Ideally, model species for antiaging research should be representative of human charac-
teristics such as size and genetic diversity, as well as shared environment. Domestic
dogs (Canis lupus familiaris) fulfill most of these criteria, offering a unique opportunity
to evaluate the effectiveness of emerging antiaging interventions (1–5). There is also a
significant need to develop health-monitoring tools for dogs, as there are more than 76
million companion dogs in the United States alone (6).
Over 340 dog breeds are recognized worldwide, which are each a closed breeding popu-

lation under strong selection for morphologic and behavioral traits. As a result, dogs share
extensive phenotypic and genetic homogeneity within breeds and increased heterogeneity
between breeds (7). Small breeds live considerably longer than large breeds (8), offering the
rare chance to understand the relationship between size and lifespan within a single mam-
malian species. Dogs also share a similar yet accelerated trajectory of development as
humans including infancy, puberty, adulthood, and senescence in about 20% of the
human lifespan (5, 9). As a result, dogs represent an ideal system for studies of comparative
aging, where intrabreed studies can be conducted on a background of limited diversity.
Our previous work on DNA-methylation-based age estimators (i.e., epigenetic clocks)

for dogs and wolves (10) described one of the first nonhuman epigenetic clocks. We deter-
mined that the age dependence of DNA methylation (DNAm) is conserved at syntenic
sites in the genomes of multiple mammalian species including humans. However, a small
sample size (n < 150) and technical limitations associated with the measurement platform
(reduced representation bisulfite sequencing) limited the generalizability of the results.
Furthermore, our initial study utilized only a few canine breeds, which prevented testing
the relationship between epigenetic aging and breed lifespan. Here, we report the develop-
ment of a canine epigenetic clock based on 93 recognized dog breeds (11) using a mamma-
lian array (HorvathMammalMethylChip40) that profiles highly conserved cytosines across
mammalian species (12).
In this study, we present dual-species epigenetic clocks that apply to both humans and dogs.

We test whether short-lived breeds exhibit faster epigenetic aging than long-lived breeds and
develop epigenetic predictors of the average time to death. Finally, we investigate the relation-
ship between breed size and lifespan and characterize 5'-C-phosphate-G-3' regions (CpGs) that
are correlated with age or breed characteristics such as median lifespan or average adult weight.

Results

DNAm Dataset Characteristics.We analyzed methylation profiles from 742 blood samples
derived from 93 dog breeds (Canis lupus familiaris). Primary characteristics (sex, age, aver-
age life expectancy) for the breeds utilized are presented in Dataset S1. Median lifespans of
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Author affiliations: aDepartment of Human Genetics,
David Geffen School of Medicine, University of California,
Los Angeles, CA 90095; bDepartment of Biostatistics,
Fielding School of Public Health, University of California,
Los Angeles, CA 90095; cEpigenetic Clock Development
Foundation, Los Angeles, CA 90502; dRadiation Effects
Department, Centre for Radiation, Chemical and
Environmental Hazards, Public Health England, Chilton,
Didcot OX11 0RQ, United Kingdom; and eNational
Human Genome Research Institute, NIH, Bethesda, MD
20892

Author contributions: S.H. and E.A.O. designed research;
A.T.L., A.H., C.Z.L., and A.R.L. performed research; D.L.D.,
A.N.H., and J.P. contributed new reagents/analytic tools;
S.H. and E.A.O. provided supervision; S.H., A.T.L., A.H.,
J.A.Z., C.Z.L., and A.S.-A. analyzed data; and S.H., A.T.L.,
A.H., A.R.L., R.T.B., K.R., and E.A.O. wrote the paper.

Reviewers: E.K., Eotvos Lorand Tudomanyegyetem
Etologia Tanszek; and P.L., Van Andel Institute.

Competing interest statement: S.H. is a founder of the
nonprofit Epigenetic Clock Development Foundation
who plans to license several patents from his employer
University of California (UC) Regents. These patents list
S.H. as an inventor. R.T.B. is the Executive Director of
the Epigenetic Clock Development Foundation.

Copyright © 2022 the Author(s). Published by PNAS.
This open access article is distributed under Creative
Commons Attribution License 4.0 (CC BY).
1S.H., A.T.L., and A.H. contributed equally to this work.
2To whom correspondence may be addressed. Email:
eostrand@mail.nih.gov.

This article contains supporting information online at
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.
2120887119/-/DCSupplemental.

Published May 17, 2022.

PNAS 2022 Vol. 119 No. 21 e2120887119 https://doi.org/10.1073/pnas.2120887119 1 of 12

RESEARCH ARTICLE | GENETICS OPEN ACCESS

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2120887119/-/DCSupplemental
https://orcid.org/0000-0002-4110-3589
https://orcid.org/0000-0002-3218-6431
https://orcid.org/0000-0001-6075-9738
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
mailto:eostrand@mail.nih.gov
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2120887119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2120887119/-/DCSupplemental
http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.2120887119&domain=pdf&date_stamp=2022-05-17


the 93 breeds ranged from 6.3 y (Great Dane, average adult breed
weight = 64 kg) to 14.6 y (Toy Poodle, average adult breed
weight = 2.3 kg). Median lifespan estimates were based on the
combined findings of multiple large-scale breed health publica-
tions, utilizing the median and maximum ages for each breed (SI
Appendix, Note S1). Similar to what has been observed for roe
deer (13), blood samples cluster by sex in unsupervised hierarchi-
cal cluster analysis (SI Appendix, Fig. S1). The clustering is due to
X chromosomal CpGs that are hypermethylated in females. By
contrast, an overlap between cluster structure and dog breeds
could only be observed when using higher order principal compo-
nents of the dataset (SI Appendix, Fig. S2A). Our attempts to
create a breed classifier based on specific CpG sites using multino-
mial penalized regression were met with a modest 54% average
correct classification rate (SI Appendix, Fig. S2 B and C).

Epigenetic Clocks for Dogs and Humans. We developed dog
and human–dog epigenetic clocks using dog samples derived

from blood (n = 742) and human samples derived from either
blood or multiple tissue types (n = 1,352) profiled on the same
mammalian array (Materials and Methods). Two distinct
human–dog clocks were developed to estimate 1) chronological
age in years (DNAmAge) or 2) relative age, which is the ratio
of age and maximum lifespan of the respective species, between
0 and 1 (DNAmRelativeAge). This ratio allows the alignment
and biologically meaningful comparison between species with
very different maximum lifespans (e.g., 24 y for dog versus
122.5 y for human), which is not afforded by the simple
measurement of chronological age.

We used cross-validation to arrive at unbiased estimates of
the age correlation R, defined as the Pearson correlation
between estimated DNAmAge and known chronological age, as
well as the median absolute error (MAE; in units of years). For
the pure dog clock, we observe high cross-validation estimates
of the correlation (R = 0.97) (Fig. 1 A, B, F, and H). Different
cross-validation schemes show that both the pure dog clock

Fig. 1. Three epigenetic clocks accurately estimate age in dogs. Evaluation of the accuracy of the pure dog clock for age (A–D), human–dog clock for chrono-
logical age (E, F, I), and human–dog clock for relative age (G, H, J). The panels differ by test set (human data, dog data, or both) and cross-validation schemes.
We report three types of cross-validation schemes, as follows: LOO (A), LOBO (B, I, J), and species-balanced (LOFO10Balance) analysis of human-dog clocks
for (E and F) chronological age and (G and H) relative age. Each panel reports the sample size (N), correlation coefficient (cor), and MAE.
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and the human–dog clock for chronological age exhibit a
median error of less than 0.58 y (i.e., 7 mo) when using blood
samples from dogs (Fig. 1 A, B, F, and I).
By definition, the pure dog clock is not expected to apply to

human tissues. However, we observe a remarkably high age cor-
relation of the dog clock using DNA from human blood sam-
ples (R = 0.91), albeit with a large median error of 34 y (Fig.
1D). The age correlation of the dog clock across all available
human tissues is lower (R = 0.49; Fig. 1C) that reflects substantial
confounding by tissue type.
Conversely, the human–dog clocks are designed to apply to

both species (Fig. 1 E–J). The human–dog clock for chronological
age has a high age correlation (R = 0.99) when both species are
analyzed together (Fig. 1E) and when the analysis is restricted to
dog samples alone (R = 0.97, Fig. 1F). Similarly, the human–dog
clock for relative age exhibits a high correlation regardless of
whether the analysis is done with samples from both species (R =
0.98; Fig. 1G) or only from dogs (R = 0.97; Fig. 1H).
To evaluate the predictive accuracy in breeds that are not

part of the training data, we used a “leave one breed out”
(LOBO) cross-validation strategy that divides the dataset into
93 breed groups. At each round, LOBO cross-validation
trained each model on all but one breed, which was “left out”
and used for validation at each iteration. LOBO cross-
validation corroborated the impressive accuracy of the chrono-
logical and relative age human–dog clocks (R = 0.97 for both;
Fig. 1 I and J).

Epigenetic Age Acceleration Versus Breed Characteristics.
Adjusting a DNAmAge estimate for chronological age results in
a measure of epigenetic age acceleration that is not correlated
with chronological age (Materials and Methods). We investi-
gated whether epigenetic age acceleration correlates with breed
characteristics such as median lifespan, upper limit of lifespan,
average breed weight, and average breed height, but we found
no significant results (SI Appendix, Fig. S3). These insignificant
results prompted us to develop a different type of clock that is
negatively correlated with median lifespan as detailed below.

An Epigenetic Clock Predicts Average Time to Death. We
could not develop a mortality risk predictor for dogs since we
did not have follow-up information available for the individual
dogs. However, we developed an epigenetic predictor of average
time to death (DNAmAverageTimeToDeath) in two steps.
First, we defined average time to death for individual dogs by
calculating the difference between the median lifespan of the
respective breed and the chronological age of the individual at
the time of blood draw (AverageTimeToDeath = Lifespan
Median � Age) (Materials and Methods). Second, we used
elastic net regression to regress AverageTimeToDeath on
DNAm across dog blood samples. LOBO analysis revealed a
high correlation (R = 0.92; Fig. 2A) between AverageTimeTo-
Death and its DNAm-derived estimate, with an MAE of 1.14
y. We expect that this model can be extrapolated to breeds not
included in our dataset as the LOBO analysis was successful
across 93 distinct breeds.
We observe that age-adjusted DNAmAverageTimeToDeath

correlates in the expected direction with median lifespan
(R = 0.57 and P = 2.5 × 10�9; Fig. 2B) and average adult
breed weight (R = �0.57 and P = 2.5 × 10�9; Fig. 2C). Simi-
larly, relationships can be observed even after adjusting for phy-
logeny (Fig. 2 E and F). As expected from its construction,
DNAmAverageTimeToDeath has a strong negative correlation
with chronological age (R = �0.93; Fig. 2D).

This is consistent with the fact that younger dogs are further
from the median lifespan of their respective breed than older
dogs. A multivariate regression model shows that the associa-
tion of DNAmAverageTimeToDeath with median lifespan is
retained even after adjusting for chronological age, sex, and
average adult weight of the breed (P = 1.5 × 10�10; Table 1).
The association remained significant after adjusting for phylo-
genic relationships using the phylogenetic independent contrast
method (P = 1.1 × 10�4; Table 1) (Materials and Methods).

As an additional validation step, we split the blood samples
into two sets, namely, the training set consisted of n = 571
dogs (77%) and a test set consisted of n = 171 (23%) dogs,
which were balanced by breed (Materials and Methods). The
training data were used to define DNAmAverageTimeToDeath
as outlined above. In the test data, we observed a high correla-
tion (R = 0.95) and a relatively low MAE (0.82 y) between
AverageTimeToDeath and its DNAm-based estimate (SI
Appendix, Fig. S4A). To address the concern that our analysis
was biased by a disproportionate number of Portuguese water
dogs (PWDs; n = 95 in our entire dataset), we randomly
downsampled the breed to only 5 dogs, resulting in a smaller
training set (n = 505 including 5 PWDs). Again, we found
comparable results (SI Appendix, Fig. S5).

Epigenome-Wide Association Study (EWAS) of Age in Dogs and
Humans. In total, 31,911 CpG probes on the mammalian
methylation array (5,021 genes) map to the genome assembly
of the Great Dane (CanFam_GreatDane.UMICH_-
Zoey_3.1.100) (14). The mammalian array has high interspe-
cies conservation and is expected to apply to all dog breeds
(12). For the human–dog analysis, we limited the probes to
20,622 CpGs that map to orthologous genes between both spe-
cies. As expected, age had a strong effect on DNAm levels in
dogs; 9,625 (46% of total) CpGs significantly correlated with
age (Bonferroni-corrected P < 1 × 10�6) (Fig. 3A and Dataset
S2). Top age-related dog CpGs are located in an intron of
SLC12A5 (correlation test Z statistic, z = 46), an intron of
LHX2 (z = 36), and an exon of OSR2 (z = 36). In general,
CpGs that gained methylation with age were located near poly-
comb repressive complex 2 (PRC2) targets (e.g., genes with the
trimethylated H3K27 mark in their promoters in human
embryonic stem cells) and enriched with genes that play a role
in development (Fig. 3D and Dataset S3).

Age effects on individual cytosine methylation in dog blood
correlate only weakly with those of human blood (R = 0.051;
Fig. 3B). The low correlation may reflect true species differ-
ences or differences in the distribution of chronological age
with respect to very young ages; human samples ranged from
0.1 to 0.75 relative age (12.5 to 92 actual human years, relative
to a maximum human lifespan of 122.5 y), whereas dog sam-
ples ranged from 0.0044 to 0.73 relative age (0.1 to 17.5 actual
dog years, relative to a maximum dog lifespan of 24 y). Com-
paring the age effects on dog blood to aggregated human tissues
resulted in a stronger (albeit still mild) correlation (R = 0.21;
SI Appendix, Fig. S6A). Despite the low correlation between
EWAS results, a small subset (40 CpGs) of the most significant
1,000 CpGs displays a similar aging pattern between dogs and
humans (Fig. 3C). Interestingly, the top CpG-associated gene
in dogs (SLC12A5) is also related to age in humans (z = 19.5).
Shared CpGs positively associated with aging are found in the
following genes: SLC12A5, FAM181B, LHFPL4, BARHL2,
KCNG3, and ADRB1. Shared CpGs negatively associated with
aging are found in genes including FGF8, TRPS1, SOX6,
ZNF536, MEIS2, and ADAMTS6. Genomic region enrichment
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annotation (GREAT) analysis of EWAS of age in humans
implicated that genes whose methylation associates with aging
in either direction relate to mRNA processing (Fig. 3D).

EWAS of Breed Characteristics. Dog breeds have a unique and
intriguing inverse relationship between average adult weight
and life expectancy, with smaller dogs living up to twice as long
as larger breeds (16). This contradicts observations about size

and lifespan at the species level and may be due in part to
domestication and artificial selection (8). We hypothesized that
an EWAS of lifespan, weight, and height could reveal the iden-
tities of determinant genes and biological processes that couple
growth with lifespan in domestic dogs.

Considering the unbalanced number of dogs per breed in
the dataset, we averaged the methylation levels of each CpG by
breed. We carried out two statistical modeling approaches, as

Table 1. Linear regression analysis for dog breed lifespan

β SE P

Model 1: Dependent variable–median lifespan
Intercept 12.377 0.114 <2.0E-16
Age-adjusted DNAmAverageTimeToDeath 0.248 0.038 1.5E-10
Weight (kg) �0.060 0.004 3.2E-48
Female �0.029 0.101 0.8

Model 2: Dependent variable–PIC median lifespan
Intercept 11.795 0.309 <2.0E-16
PIC Age-adjusted DNAmAverageTimeToDeath 0.719 0.178 1.1E-4
PIC Weight (kg) �0.035 0.011 2.0E-3

Model 1 presents the results from linear regression model analysis of dog breed median lifespan (dependent variable) on age-adjusted DNAm average time to death (in years), sex, and
breed weight (kg) at individual dog level. Model 2 presents the results from the PIC regression analysis that accounts for phylogenetic relationships between breeds. PIC median breed
lifespan (dependent variable) was regressed on PIC age-adjusted DNAm average time-to-death and PIC breed weight. Columns indicate the covariate name, regression coefficient, SE,
and two-sided Wald test P value.

Fig. 2. Epigenetic clocks predict average time to death. (A) LOBO estimates of DNAm average time to death (in years) versus average time to death in years.
For each dog, the average time to death was defined as the difference between the median lifespan of the respective breed (LifespanMedian) and chrono-
logical age. (B and C) Mean of LOBO DNAm average time to death adjusted for age at breed level versus median lifespan (B) or weight (C). (D) LOBO DNAm
average time to death versus chronological age. The association between LOBO DNAm average time to death adjusted for age and the lifespan remains sig-
nificant (P = 1.5 × 10�10) even after adjusting for average adult weight in a multivariate regression model. (E and F) Phylogenetically independent (Indep.)
contrast (PIC)-generated LOBO DNAm average time to death adjusted for age level versus PIC generated lifespan (E) or adult weight (F), at the breed level.
For each panel, we report the sample size (n = 742 blood samples or n = 93 dog breeds), Pearson correlation estimate (cor), and Student’s t test P value.
Individual dogs are colored by breed as listed in the legend of Fig. 1.
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follows: 1) a primary analysis relating CpGs to breed character-
istics without accounting for phylogenetic relationships
between breeds and 2) a secondary analysis that adjusts for phy-
logenetic relations between breeds and/or breed weight. In our
primary EWAS analysis, we found 16 CpGs that associate
with median lifespan (Bonferroni-corrected P < 1 × 10�6),
67 CpGs that relate to adult breed weight, and 10 CpGs that
relate to adult breed height (Fig. 4A). Details on these CpGs

are presented in Dataset S4. Top CpGs for each EWAS include
median lifespan, SF1 exon (z = �6.3); breed weight, TTC8
intron (z = 7.2); and breed height, TTC8 intron (z = 6.2).

Since larger sets of input CpGs are needed to properly power
enrichment analyses, we lowered the significance threshold to
P < 1 × 10�3. Most CpGs that associate with lifespan
(P < 1 × 10�3) exhibit decreased methylation regardless of
their genomic location (Fig. 4B). In contrast, CpGs associated

A

B

D

C

Fig. 3. EWAS of chronological age in humans and dogs. (A) Manhattan plots of EWAS of age in humans (n = 508, 12.5 to 92.04 chronological y) and dogs
(n = 742, 0.1 to 17.5 chronological y). The analysis was limited to 20,622 CpGs that aligned to orthologous genes in both species. The EWAS was carried out
using a correlation test (Fisher transformation of Pearson correlation) between cytosine methylation and age. The red and blue dashed lines correspond to
significance levels of P = 0.001 and P = 10�6, respectively. (B) Scatter plot of aging effects (correlation test Z statistics) in humans versus dogs. The Z statistics
was calculated by applying the Fisher z-transformation to the Pearson correlation between CpG methylation and age for each species. Positive and negative
values of the Z statistic indicate an age-related increase or decrease in methylation, respectively. Red dots indicate shared CpGs, black dots indicate species-
specific CpGs, and blue dots indicate divergent changes. (C) Venn diagram of the overlap of top 1,000 CpGs (500 per direction) in both species. (D) GREAT
enrichment analysis (15) of top 500 age-related CpGs per direction in each species. Column headings specify age-related decrease or increase in methyla-
tion. GREAT analysis was limited to 20,622 probes conserved between humans (Hg19) and dogs (CanFam_Great Dane v.3.1). We provide justification for the
use of the GREAT analysis framework in the SI Appendix, Notes S4 and S5. The reported terms are significant at P < 1 × 10�5. Analyzed datasets were gene
ontology biological processes and MsigDB perturbation.
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with either breed weight or height exhibit increased methyla-
tion (Fig. 4B). Nineteen significant CpGs are shared among
breed lifespan, breed weight, breed height, and chronological
age (Fig. 4C).
EWAS results for median lifespan negatively correlate with

those for breed weight (R = �0.77, Fig. 4D), reflecting
the inverse relationship between breed weight and median life-
span. Hence, a CpG that correlates positively with lifespan is
expected to exhibit a negative correlation with weight (and vice
versa) (SI Appendix, Fig. S7). As expected, adjusting for phylog-
eny or breed weight led to fewer significant findings (SI
Appendix, Fig. S8).

Dog EWAS Versus Human GWAS. To uncover correlations
between evolutionarily conserved cytosine variants in dogs and
known human traits, the proximal genomic regions of the top
positive and negative CpGs (up to 500 in each direction) iden-
tified via EWAS were intersected with the top 2.5% of genes
associated with several human traits according to genome-wide
association studies (GWASs; Materials and Methods and SI
Appendix, Fig. S3). A hypergeometric test analysis was per-
formed at the level of genomic regions (as opposed to CpGs) to
avoid confounding due to gene size or number of CpGs within
a gene in our methylation array. The proximal genes of age-
related CpGs significantly overlapped with human genes

A

B

C D

Fig. 4. EWAS of breed characteristics. (A) Manhattan plots of the EWAS results. Coordinates were estimated based on the alignment of the mammalian array
probes to the CanFam_GreatDane.UMICH_Zoey_3.1.100 genome assembly. Red dots correspond to a positive association between DNAm at a given CpG and
each breed trait, whereas blue dots represent a negative correlation. The red dashed line indicates a significance threshold of P < 10�3; the blue line corre-
sponds to the Bonferroni-corrected significance level of P < 1 × 10�6. The top 15 CpGs were labeled according to their neighboring genes. (B) Location of the
top CpGs in each tissue relative to the closest gene transcriptional start site. Enrichment per location type was compared to the assay background using Fish-
er’s exact test. The numbers on bars indicate proportion change OR. P < 0.05 (*negative OR, #positive OR), ***P < 0.001, ####P < 0.0001. (C) The Venn diagram
shows the overlap of top CpGs associated with chronological age, breed median lifespan, average weight, and average height. Student’s t test statistic for age
was used to select the top 500 positively and top 500 negatively age-related CpGs. (D) Sector plot of EWAS of breed lifespan versus weight. Red dots mark
shared significant CpGs; black dots indicate significant trait-specific CpGs. Dashed lines indicate the significance threshold: P < 1 × 10�3 (red) and P > 0.05
(blue). The Z scores are Fisher’s z-transformation of Pearson correlation coefficients for each outcome.
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identified in GWAS of human epigenetic age acceleration
according to the blood-based clock by Hannum et al. (17) and
the DNAm-based mortality risk predictor GrimAge clock (18),
age-related macular degeneration (19), and age at menarche
(20, 21) (Fig. 5 and Dataset S5). EWAS of dog breed lifespan,
breed weight, and breed height did not overlap strongly with
human GWAS results, except for EWAS of breed weight and
human GWAS of leukocyte telomere length (P = 1.2 × 10�6).
Further similarity between the epigenetics of dogs and

humans is evident by the overlap of age-related canine genes
and those implicated in human maternal longevity, age at men-
arche, educational attainment, frontotemporal dementia, age-
related macular degeneration, and mortality risk as measured
by GrimAge clock (12). We observed a nominally significant
overlap (P = 0.01) between genes implicated by the EWAS of
dog breed lifespan with those implicated by GWAS of human
parental lifespan, based on the following shared genes: TUBG1,
FAM134C, BCL11A, PRPF40B, HIPK1, DYNLRB2, FIGN,
PGS1, and TOX (Dataset S5).

DNAm Patterns in Genes Identified by GWAS of Dog Body
Weight and Lifespan. Previous GWAS studies highlighted a
small number of genes including IGSF1, IGF1R, ASCL4,
IGF1, LCORL, HMGA2, GHR, CD36, SMAD2, IGF2BP2,
and ESR1 with variants that explain 64 to 95% of body weight
variability in breeds tested (3, 22–24). Doherty et al. (24)
describe a genetic variant within PRDX1 that was marginally
significantly associated with longevity residuals that had been
corrected for the effects of body weight. Of these genes of inter-
est, the mammalian methylation array contains 47 probes adja-
cent to different regions of IGF1, ESR1, SMAD2, HMGA2,
IGF1, IGF2BP2, IGSF1, and IGF1R (Dataset S2). Only four
CpGs located downstream of SMAD2 and one CpG in exon 2
of IGF1R positively correlate with adult weight and negatively
correlate with breed lifespan (Dataset S2), suggesting a modest
epigenetic regulation of the inverse relationship between size
and lifespan in adult dogs, at least in these GWAS-implicated
genes (25).

Chromatin State Analysis and PRC Targets. Finally, we inter-
pret our EWAS results in light of a universal chromatin state
map, which defined 16 groups of chromatin states from 1,032
experiments mapping chromatin marks across 127 human cell
and tissue types, including active and weak enhancers (EnhA,
EnhW), bivalent states associated with promoters (BivProm),
flanking promoter states (PromF), polycomb repressed states
associated with H3K27me3 (ReprPC), and states associated
with exons and transcription (TxEx). (Dataset S6) (26). We
analyzed up to 500 CpGs with the top positive and negative Z
scores (P < 0.01) from our EWAS results with chromatin state
as well as polycomb repressive complex 1 (PRC1) and PRC2
(Materials and Methods). Enrichment was first noted for the
overlap between positively age-related CpGs and PRC2 binding
sites (odds ratio [OR] = 31.2, P = 2.1 × 10�266, Fig. 6 and
Dataset S7).
PRC2 is a transcriptional repressor complex best known as a

writer of H3K27 methylation, a chromatin mark associated with
transcriptional repression (28). Previous studies showed its associ-
ation with gain of methylation across different tissue types in
human tissues (29, 30) and in more than 110 mammalian species
(31). Interestingly, chromatin states that significantly overlapped
with positively age-related CpGs contained a high proportion of
CpGs in PRC2 binding sites, such as BivProm2 (OR = 15.6,
P = 4.2 × 10�118), BivProm1 (OR = 4.9, P = 1.1 × 10�21),

and ReprPC1 (OR = 16.9, P = 1.4 × 10�109). The bivalent
chromatin state BivProm2 is associated with the active promoter
mark H3K4me3 and the repressive mark H3K27me3, in addi-
tion to being located in a PRC2 binding region (26). In contrast,
the CpGs exhibiting a negative correlation with breed lifespans
are enriched with BivProm4 (OR = 5.2, P = 3.9 × 10�17),
TxEx4 (OR = 4.9, P = 9.7 × 10�08), PromF6 (OR = 5.3,
P = 1.8 × 10�6), and EnhA1 (OR = 6.5, P = 5.4 × 10�10).
Echoing the negative correlation between breed lifespan and
body size (25), the chromatin state overlap patterns of CpGs
associated with breed weight and height inversely mirror the over-
lap patterns of breed lifespan (Fig. 6). For instance, PromF6
enrichment is associated with the CpGs positively correlated with
dog weight (OR = 5.7, P = 3.1 × 10�7) and height (OR = 6.2,
P = 5.1 × 10�8) and CpGs negatively correlated with lifespan
(OR = 5.3, P = 1.8 × 10�6) and further lacks CpGs targeted by
PRC2 binding.

Discussion

Epigenetic aging clocks were first developed for humans (17, 32,
33). In a short time, their reported use covered a large swath of
medical and scientific research areas (34, 35). It quickly became
clear that these clocks capture many important features of the
biological aging process. They readily found their way into bio-
medical applications including human clinical trials (36). More
recent human epigenetic clocks are able to predict mortality risk
in a manner believed to be independent of all other established
aging biomarkers (34). Several mouse epigenetic clocks have
since been developed and successfully validated against putative
longevity treatments or genetic interventions such as rapamycin,
caloric restriction, and growth hormone receptor knockout mod-
els (37–42). Each of these treatments demonstrates a significant
regression of epigenetic aging in mice, supporting the notion
that epigenetic clocks can be used to rapidly test the effectiveness
of antiaging interventions.

There is no guarantee that an intervention that reverses epi-
genetic age in an animal model will successfully translate to
humans. However, the likelihood of success increases substan-
tially if a suitable animal model like the dog is used to measure
a conserved biomarker of aging, such as a human–dog clock.
To create such a third generation epigenetic clock that crosses
the species barrier, we used the mammalian DNAm array that
profiles CpGs embedded within sequences that are conserved
across mammals (12). This array platform has been used to
develop epigenetic clocks for cats, sheep, elephants, primates,
and many other mammalian species (43–46). Our prior work
on dogs, wolves, and humans demonstrated that age associa-
tions of syntenic CpGs were conserved between canids and
humans, even though the data were generated on different plat-
forms (10). Here, we developed dual-species human–dog clocks
that relate relative age to cytosine methylation. These dual-
species clocks accurately estimate chronological age of dogs and
humans using the same mathematical formula, highlighting yet
again the common underlying mechanisms of aging between
mammals.

Recently, Wang et al. (5) developed an oligo-capture system to
characterize the canine DNA methylome, targeting syntenic
regions of the genome. The authors present an epigenetic clock
that was trained in one species, dog, but leads to a moderately high
correlation in another species (i.e., mouse–dog clock, age correla-
tion R = 0.73). In contrast, our human–dog clocks were trained in
both species (humans and dogs) simultaneously, which may
explain the substantially higher age correlation (R = 0.97). Other
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factors such as validation schemes, sample sizes, sample preparation
methods, and technical variability may impact results as well.
The chronological age clocks are not associated with breed

characteristics such as median lifespan or breed weight. To
address this limitation, we also developed an epigenetic estima-
tor of average time to death, which potentially estimates mor-
tality risk for individual dogs based on blood methylation
profiles. However, this predictor requires validation.

While our clocks were trained in blood, we expect that they
produce high age correlations with saliva or buccal samples as
well. However, a constant offset term (difference between
DNAmAge and age) may need to be derived for these sample
types and other alternative sources of DNA to enable a more
routine and convenient sample collection.

Breed identity is not accurately recapitulated by DNAm and
has a much weaker effect on methylation compared with sex

Fig. 5. Gene set enrichment analysis of CpGs related to age, breed lifespan, and breed weight of dogs. Gene set enrichment analysis was conducted on
20,622 CpGs that map to orthologous genes of the human Hg19 and Great Dane genome assembly using the GREAT tool (15). Each panel represents the
top two enriched datasets from each category (gene ontology, mouse phenotypes, promoter motifs, and MsigDB perturbation) (P < 10�10). P values were
log-transformed for easier visualization. The panel for human GWAS enrichment represents the significant results from the genomic-region-based enrich-
ment analysis between 1) the top 2.5% genomic regions involved in GWAS of complex traits-associated genes and 2) up to the top 500 increased/decreased
CpGs for each EWAS.
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and age. However, we note that breeds with more samples tend
to cluster together more tightly (SI Appendix, Fig. S2A), sug-
gesting that increasing the sample size could lead to a better
breed classification. Moreover, unaccounted confounders such
as cell fraction proportions could preclude breed identification.
The inverse relationship between size and lifespan, an

intriguing feature of dogs, could prove enlightening for humans
if it were understood at the molecular level (8). Disappoint-
ingly, our epigenetic clocks for chronological age (Fig. 1) did
not relate to breed weight or breed lifespan. This motivated us
to build an another epigenetic biomarker (DNAmAverageTi-
meToDeath) that predicts average time to death and exhibits
positive and negative correlations with breed lifespan and
weight, respectively (Fig. 2). CpGs that correlate with breed
average weight were found in close proximity to genes involved
in human adipogenesis, and age-related CpGs overlapped with
waist-to-hip ratio genes in humans (Dataset S5). The finding
that canine CpGs that gain methylation with age are located in
CpG islands near targets of PRC2 and developmental genes is
also consistent with findings in humans (29, 30, 47). This
highlights the increasingly frequent observation that the process
of development is connected to epigenetic aging. There is no
further empirical data to develop a focused hypothesis, but the
availability of epigenetic clocks promises to remedy this.
Of previously highlighted canine weight and lifespan-related

genes (3, 22–24), SMAD2, and IGF1R-associated methylation

positively related to average breed weight but inversely related to
breed lifespan. Several studies have shown that aging effects on
methylation are conserved at specific locations that play a role in
mammalian development (reviewed in 34, 48). The substantial
number of methylated loci with opposing correlations between
breed weight and breed lifespan in these and novel genes provide
an opportunity to investigate this phenomenon. Beyond our
application to aging, the methylation data may lend themselves
for studying the epigenetic effects of domestication (49).

Collectively, the successful development of epigenetic clocks
for dogs and the dual-species clocks, in particular, underlie the
universality of the epigenetic aging process. It demonstrates
that, at least at the DNA level, there are remarkable similarities
in the aging process between dogs and humans. Finally, our
EWAS results highlight gene regions that may underlie the
inverse relationship between breed weight and lifespan.

Materials and Methods

Materials. DNA samples from n = 742 dog blood samples from 93 breeds
(Dataset S1) were provided by researchers at the National Human Genome
Research Institute (NHGRI). The weight of individual dogs was unknown. The col-
lection was approved by the Animal Care and Use Committee of the Intramural
Program of NHGRI at the National Institutes of Health (protocol #8329254).

Lifespan and Breed Characteristics. Standard breed weight (SBW), standard
breed height (SBH), and lifespan were aggregated from several sources. SBW

Fig. 6. Hypergeometric overlap analysis between the top CpGs identified in our EWAS studies (columns) and two panels of CpGs (rows), as follows: 1) uni-
versal chromatin state analysis (26) and 2) PRC1 and PRC2 binding from ENCODE ChipSeq datasets (27). We display 18 universal chromatin states that show
significant enrichment/depletion in EWAS of age, median breed lifespan, breed weight, or breed height (hypergeometric P < 1.0 × 10�6) and the PRC annota-
tions. For each EWAS, we annotated up to the top 500 CpGs with positive and negative Z scores, respectively (P < 0.01). Each cell indicates the OR (Top value)
and P value (Bottom value). The cell color is based on �log10 (P value) multiplied by the sign of OR > 1. Red denotes OR > 1; blue denotes OR < 1. The bar-
plot (at y axis) depicts the proportion of PRC2 binding ranges from zero to one. The legend indicates chromatin states based on their group category and
PRC group. The y axis lists chromatin state or PRC binding category with the number of mammalian array CpGs inside parentheses.
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and SBH were taken from previously reported values (23, 50), which were
updated if American Kennel Club (AKC) values differed (16). If the AKC did not
specify SBW or SBH, we used data from Atlas of Dog Breeds of the World (51).
Lifespan estimates were calculated as the average of the standard breed across
sexes, compiled from numerous publications consisting primarily of multibreed
surveys of age and cause of death from veterinary clinics and large-scale breed-
specific surveys, which are often conducted by purebred dog associations. Sour-
ces for lifespan are reported in SI Appendix, Note S1. When available, data were
combined across surveys for the number of dogs and minimum, maximum,
mean, and median age at death. The minimums, maximums, and medians
were averaged across studies to produce a representative lifespan expectation
for each breed. For three breeds (American hairless terrier, sloughi, and Ibizan
hound), no published survey data were available. For these breeds, the maxi-
mum age expectation was obtained from the AKC website.

Human Tissue Samples. To build the human–dog clock, we analyzed previ-
ously generated methylation data from n = 1,352 human tissue samples (adi-
pose, blood, bone marrow, dermis, epidermis, heart, keratinocytes, fibroblasts,
kidney, liver, lung, lymph node, muscle, pituitary, skin, spleen) from individuals
aged 0 to 93 y old. Samples came from three sources, namely, tissue and organ
samples came from the National NeuroAIDS Tissue Consortium (NNTC) (52, 53);
blood samples from the Cape Town Adolescent Antiretroviral Cohort study (54);
and blood, skin and other primary cells were provided by Kenneth Raj (55). All
were obtained with Institutional Review Board (IRB) approval (IRB#18-000315).

DNAm Data. Both dog and human data were generated on the same platform
(HorvathMammalMethylChip40) (12). The mammalian array provides high cover-
age of up to 36K highly conserved CpGs in mammals (12). A total of 31,911 CpGs
that map to the Great Dane assembly (CanFam_GreatDane.UMICH_Zoey_3.1.100)
were used in the analysis. Genome coordinates for different dog breeds are posted
on the Mammalian Methylation Consortium Github (Data Availability). The chip
manifest file can be found at Gene Expression Omnibus at National Center for Bio-
technology Information (NCBI) as platform GPL28271. The SeSaMe normalization
method was used to define beta values for each probe (56).

Penalized Regression Models. Technical details and R software code are pre-
sented in SI Appendix, Note S3. We developed four different epigenetic clocks
for dogs by regressing the outcome (chronological age, relative age, or average
time to death) on all CpGs that map to the Great Dane assembly. All tissues
were used for the pantissue clock, whereas the analysis for the tissue-specific
clocks (blood, liver, and brain) was restricted to the respective tissue only. Penal-
ized regression models were created with the R function “glmnet” (57). By defi-
nition, the α-value for the elastic net regression was set to 0.5 (midpoint
between Ridge and Lasso type regression) and was not optimized for model per-
formance. The optimal penalty parameters in all cases were determined auto-
matically by using 10-fold internal cross-validation (cv.glmnet) on the training
set. We performed a cross-validation scheme for arriving at unbiased or least
biased estimates of the accuracy of the epigenetic clocks, consisting of leaving
out a single sample from the regression (leave-one-out [LOO]), predicting an age
for that sample, and iterating over all samples. The covariates (CpGs) and coeffi-
cient values of the different multivariate regression models can be found in
Dataset S8. The latter also specifies the genomic locations of the CpGs in two
genomes, as follows: GreatDane.UMICH_Zoey_3.1.100 and Canis familiaris 3.1.

Relative Age Estimation. To enable a comparison of species with very differ-
ent lifespans, as well as to overcome the inevitable skewing due to unequal dis-
tribution of data points from dogs and humans across age range, relative age
estimation was made using the formula relative age = age/max lifespan, where
the maximum lifespan for dogs and humans were set to 24 y and 122.5 y,
respectively (AnAge) (58). The oldest dog ever verified lived 29 y and 5 mo
according to the Guinness Book of World Records. For our purposes, there is no
difference between a maximum lifespan of 24 or 29 or lower. For the sake of
consistency with other studies from the Mammalian Methylation Consortium,
we are using the value (24 y) reported in the database anAge.

Measures of Epigenetic Age Acceleration. The predicted value resulting
from an elastic net regression model of age is denoted as “DNAmAge.” By defini-
tion, DNAmAge is highly correlated with chronological age. To remove the con-
founding effect of age, we regressed DNAmAge on chronological age and

formed raw residuals. The resulting residuals are not correlated with chronologi-
cal age (R = 0). A positive or negative value of epigenetic age acceleration
indicates that the DNAmAge estimate is higher or lower than expected versus
chronological age. Similarly, we carried out age adjustments for DNAm based on
estimates of relative age or average time to death.

Cross-validation was carried out with LOO, LOBO, and species-balanced
(LOFO10Balance) methods. LOO and LOBO cross-validation trained each model
on all but one individual or breed, respectively. The left out individual/breed was
then used as a test set. LOFO10Balance was implemented by partitioning both
the combined human/dog dataset into 10 evenly sized folds, where each fold
has the same proportion and human and dog samples (referred to as balanced
folds). We then iterated through each fold, training on the other nine folds, and
applied the model to the target fold.

EWASs of Age, Lifespans, and Weight. EWAS was performed in each tissue
separately using the function standardScreeningNumericTrait from the WGCNA R
package (59).

Epigenetic Clock for Average Time to Death. Follow-up time-to-death data
were not readily available for individual dogs in our study. To create a surrogate
variable for this important endpoint, we leveraged two known variables, as fol-
lows: 1) the median lifespan per breed and 2) the chronological age at the time
of the blood draw. For each dog, we defined AverageTimeToDeath as the differ-
ence between median breed lifespan and chronological age.

To protect against confounding by age, we used two approaches. First, we
defined age-adjusted measures as raw residuals resulting from regressing the
DNAm-based biomarker on chronological age. For example, we regressed DNA-
mAverageTimeToDeath (dependent variable) on age using ordinary least squares
regression. Next, we defined the age-adjusted measure as residual (actual value
minus predicted value). The resulting residual turns out to be uncorrelated
with chronological age. Second, we used multivariate regression models where
chronological age was added as the covariate.

To assess the accuracy of elastic net regression models (R function glmnet),
we used LOBO cross-validation, training each model on all but one breed. The
left out breed was then used as a test set. The LOBO approach assesses how well
the penalized regression models generalize to breeds that were not part of the
training data. To ensure unbiased estimates of accuracy, all aspects of the model
fitting including prefiltering CpGs were conducted in the training data for the
LOBO analysis. We fit the glmnet model to the top 6,000 CpGs with the most
significant median Z score (lifespan correlation test) in the training data. The top
6,000 CpGs were selected by averaging the CpG values for each breed and
conducting EWAS of the median lifespan.

Phylogenetically Independence Contrast Analysis. We computed phylo-
genetically independence contrasts (PICs) (60) for lifespan and adult weight
DNAm biomarkers using the R package ape (61). Individual-level data such
as age-adjusted DNAmAverageTimeToDeath were averaged by dog breed to
conduct PIC analysis on breed level data.

Sensitivity Analysis for DNAmAverageTimeToDeath. We randomly split
the sample into training (75%) and test dataset (25%) at the breed level. As a
result, the training (n = 571) and test (n = 171) dataset are balanced in the
breed level. Both the training and test dataset contain 93 dog breeds. We per-
formed an elastic net analysis (α = 0.5) to build DNAmAverageTimeToDeath
using the training dataset and evaluated its prediction accuracy on the test data-
set including its correlation with AverageTimeToDeath, chronological age, and
dog breed character. We also repeated the PIC analysis. To address concerns that
our analysis was confounded by a disproportionately large number of PWDs
(n = 71 in the training and n = 24 in the test dataset), we randomly removed
66 PWD samples from the training dataset such that only 5 PWD samples
remained in the training dataset. As a result, each breed was represented
by about five animals each. The analysis was repeated on the revised training
(n = 505, 5 PWDs) and test dataset (n = 171).

EWAS-GWAS–Based Overlap Analysis. EWAS-GWAS overlap analysis related
gene sets found by our EWAS of age with gene sets identified by published
large-scale GWAS of various phenotypes, including body fat distribution, lipid
panel outcomes, metabolic outcomes, neurological diseases, six DNAm based
biomarkers, and other age-related traits (Dataset S5). Data from 102 GWAS were
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utilized (SI Appendix, Note S3). The six DNAm biomarkers included four epige-
netic age acceleration measures derived from 1) Horvath’s pantissue epigenetic
age adjusted for age-related blood cell counts referred to as intrinsic epigenetic
age acceleration (33, 62); 2) Hannum’s blood-based DNAm age (17); 3) DNAm-
PhenoAge (63); and 4) the mortality risk estimator DNAmGrimAge (18), as well
as with DNAm-based estimates of 5) blood cell counts and 6) plasminogen acti-
vator inhibitor 1 levels (18). For each GWAS result, we used MAGENTA software
(64) to calculate an overall GWAS P value per gene, which is based on the most
significant single nucleotide polymorphism (SNP) association P value within the
gene boundary (±50 kb) adjusted for gene size, number of SNPs per kb, linkage
disequilibrium pattern, and other potential confounders (64). For each EWAS
result, we studied the genomic regions from the top 1,000 CpGs (500 per direc-
tion of association) with dog relevant traits, as follows: lifespan, weight, lifespan
adjusted weight, and chronological age. For those, the top 633 CpGs had an
EWAS of P < 0.05. To assess the overlap with a test human trait, we selected
the top 2.5% genes for each GWAS trait and calculated one-sided hypergeomet-
ric P values based on genomic regions as detailed in SI Appendix, Note S3. The
number of background genomic regions in the hypergeometric test was based
on the overlap between the entire genes in a GWAS and the entire dog genomic
regions (∼32k CpGs) in our mammalian array. We caution the reader that the
analysis was not adjusted for multiple comparisons.

PRC Region Overlap Analyses. PRC annotations were defined based on the
binding of at least 2 transcriptional factor members of PRC1 (RING1, RNF2,
BMI1) or PRC2 (EED, SUZ12, and EZH2) in 49 available chromatin immunopre-
cipitation sequencing (ChipSeq) datasets in ENCODE (27). Using the 20,622
probes that aligned to orthologous genes in both human and dog species, we
identified 331 and 2,463 CpGs on the array that were located in regions bound
by PRC1 and PRC2, respectively. We performed one-sided hypergeometric analy-
sis to study the overlap between PRC1 or PRC2 regions, using up to the top
500 CpGs with positive and negative Z scores (P < 0.01) from the EWAS of age,
median lifespan and weight and height of dog breed. We report both the enrich-
ment (OR > 1) and depletion (OR < 1) patterns for the overlap analysis.

Universal Chromatin State Analysis. To annotate the EWAS-generated CpGs
sets based on chromatin states, we assigned a state for the 20,622 CpGs based
on the universal ChromHMM chromatin state annotation of the human genome

(26). The underlying hidden Markov model (HMM) was trained using chromatin
mark data gathered from 1,053 datasets and 127 cell and tissue types to pro-
duce a single annotation of the genome per position. A total of 100 distinct
states were generated and categorized into 16 major groups according to the
parameters in the HMM model and genome annotations (Dataset S6). Of the
total 100 states, our 20,622 CpGs map to 97 distinct states. Similar to the over-
lap analysis with PRC regions, we performed one-sided hypergeometric analysis
to study both the enrichment (OR > 1) and depletion (OR < 1) patterns of
EWAS CpGs across the chromatin states.

Additionally, we note the following URLs: American Kennel Club, http://www.
akc.org/dog-breeds/; AnAge, http://genomics.senescence.info/help.html#anage;
UCSC genome browser, http://genome.ucsc.edu/index.html; CanFam_Great-
Dane.UMICH_Zoey_3.1.100 Assembly, https://www.ncbi.nlm.nih.gov/assembly/
GCF_005444595.1/.

Data Availability. The data are publicly available as part of the data release from
the Mammalian Methylation Consortium. Genome annotations of these CpGs can be
found on GitHub (https://github.com/shorvath/MammalianMethylationConsortium)
(65). The mammalian methylation array (HorvathMammalMethylChip40) can be pur-
chased from the nonprofit Epigenetic Clock Development Foundation (https://
clockfoundation.org/). All other study data are included in the article and/or support-
ing information.
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