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A B S T R A C T

Mycobacterium avium subsp. paratuberculosis (MAP) is the causative agent of Johne’s disease (JD) which affects
mainly ruminants and is characterized by chronic diarrhea and emaciation. Johne’s disease is highly prevalent in
many countries around the world and leads to high economic losses associated with decreased production.
Genotyping of the involved pathogen could be used in the study of population genetics, pathogenesis and mo-
lecular epidemiology including disease surveillance and outbreak investigation. Principally, researchers have
first assumed the presence of two different MAP strains that are associated with the animal host species (cattle
and sheep). However, nowadays MAP characterization depends mainly upon genetic testing using genetic
markers such as insertion elements, repetitive sequences and single nucleotide polymorphisms. This work aims
to provide an overview of the advances in molecular biological tools used for MAP typing in the last two decades,
discuss how these methods have been used to address interesting epidemiological questions, and explore the
future prospects of MAP molecular epidemiology given the ever decreasing costs of the high throughput se-
quencing technology.

1. Introduction

Mycobacterium (M.) avium subsp. paratuberculosis (MAP) is a
member of the M. avium complex (MAC). It is the causative agent of
paratuberculosis or Johne’s disease (JD), a chronic gastroenteritis pri-
marily affecting domestic ruminants and causing high economic losses
especially in the dairy industry worldwide [1]. The diasease was also
found to sporadically exist in wild ruminants [2]. MAP was also iden-
tified – but without showing clinical signs – in a wide range of hosts
such as non-human primates [3], non-ruminant wildlife [4], dogs [5],
feral cats [6], rabbits [7], parrots [8] and bears [9]. Over a century, a
possible role for MAP in the pathogenesis of Crohn’s diseases (CD), a
chronic debilitating gastroenteritis affecting humans has been debated.
One of the first MAP isolates that was obtained from a Crohn’s disease
patient is the “Linda strain” [10]. The difficulty of constant and reliable
MAP isolation from human CD patients was one of the main obstacles
that hindered the proof or refutation of this hypothesis over such a long
period of time [11,12].

Molecular epidemiology of infectious diseases is a branch of epi-
demiology that involves the use of molecular biological techniques in

studying the determinants and distribution of disease occurrence in a
certain population [13]. In this review, we will focus on the current
understanding of MAP diversity, the advances achieved in the mole-
cular biological approaches of MAP genotyping in the last two decades
and the epidemiological applications of these approaches.

2. MAP types

Historically, MAP types were described based on epidemiologic and
phenotypic characteristics. Based on the host from which MAP strains
were first isolated, researchers proposed cattle (C) and sheep (S) type
strains as the two main MAP types infecting cattle and sheep, respec-
tively [14]. However, advances in the molecular biology have provided
a more robust basis for classification. Using pulsed-field gel electro-
phoresis (PFGE), two MAP genetic groups were identified that showed
only host preferences but not exclusivity and hence a new nomenclature
for MAP types (type I and II) has been proposed [15]. Type I isolates
were slow growers (more than 16weeks to achieve visible growth) and
strongly associated with sheep; while type II isolates were readily
growing (4–16weeks) strains commonly isolated from cattle, but with a
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broader host range. A third group called “intermediate” or “type III”
was also characterized and was primarily thought to be different from
type S and type C isolates [16]. However, a recent whole genome se-
quencing-based study revealed that both types (I and III) are subgroups
of the sheep or type S [17].

Based on a SNP at bp 223 of the insertion element IS1311, a new
MAP type termed “bison” or “type B” was described for isolates origi-
nating from bisons (Bison bison) in Montana, USA [18]. All IS1311 co-
pies in “type B” isolates had a thymidine transition compared to cyto-
sine in type S isolates. In type C isolates, some copies possessed T and
others C nucleotides (nt). Whole genome sequencing analysis later
showed that the type B is a subgroup of type C and that some type C
strains exhibited the IS1311 profile of type S raising concerns about the
reliability of IS1311 analysis as a method of choice to discriminate
between types C, S, and B [17]. Subsequent molecular analysis of Indian
MAP type B isolates revealed variations from those isolated in the USA
and consequently respective isolates were termed “Indian bison type”
[19]. Later, the Indian bison type isolates were found to possess a TG
deletion at bp positions 64 and 65 of the IS1322 locus 2 [20]. The
current classification of MAP types based on a recent whole genome
sequencing-based study [17] is illustrated in Fig. 1.

3. Genotyping methods

Many genotyping methods have been developed and applied for
MAP characterization. In Table 1, the different methods described in
details in this review are listed.

3.1. Randomly amplified polymorphic DNA (RAPD)

RAPD analysis is a simple and cost effective PCR-based finger-
printing technique. In this analysis, the genomic DNA is directly am-
plified under low stringency PCR-conditions using a single short primer
(10–22 bases) of arbitrary sequence. In the last decade of the 20th
century, RAPD was commonly used for subtyping of different organisms
such as Mycoplasma [28], M. tuberculosis [29] and M. avium [30]. In
Germany, RAPD was used for the first time to characterize MAP isolates
(n=16) from cattle [21]. The isolates displayed heterogeneity; how-
ever the data was insufficient to conclude that RAPD could be applied
in MAP genotyping. More recently, one primer -among 20 different
primers available in a commercial kit- was found to be suitable for the
identification and subtyping of MAP and M. avium using RAPD analysis
[31]. Six different genotypes were identified for both MAP and M.
avium isolates investigated. MAP isolates from cattle, goat and humans
were genetically similar, while one sheep isolate had a distinct genetic
profile.

3.2. Amplified fragment length polymorphism (AFLP)

AFLP is a rapid PCR-based fingerprinting technique. It involves DNA
fragmentation with the help of restriction enzymes followed by ligation
of adaptors that are complimentary to the restriction regions. The
adapted restriction fragments are then amplified with PCR and visua-
lized on polyacrylamide gels either by autoradiography or fluorescence
based methods. A variety of restriction enzymes and adaptors/primers
could be combined making AFLP a flexible tool that for different ap-
plications such as genetic characterization and genetic mapping.
Moreover, AFLP is sensitive to polymorphism detection at the whole
genome level.

In one study in the USA, AFLP was used to characterize 104 ge-
netically diverse MAP isolates obtained from different hosts and geo-
graphic regions [22]. In contrast to earlier studies, AFLP fingerprints of
the MAP isolates obtained from humans did not cluster with either the
bovine or ovine isolates [22,32]. Among the studied MAP isolates,
bovine isolates showed a low degree of genetic diversity regardless of
geographic origin, while isolates obtained from humans and sheep
displayed a higher degree of genetic heterogeneity. Contrarily, another
American research group found a high degree of genetic diversity
among MAP isolates characterized by AFLP using 96 primer set (eleven
genotypes for 21 isolates; [33]). More recently, the same research group
reported that AFLP could even discriminate between MAP isolates
based on epigenetic variations [34]. Despite no sequence differences
were detected, MAP isolates obtained from tissue samples possessed
distinct AFLP fingerprints compared with isolates cultured from faecal
samples. Interestingly, they were able to identify restriction sites that
were not digested in the tissue-associated isolates and thus accounting
for the apparent heterogeneity. The authors assumed that this could be
due to the presence of a DNA sequence they identified upstream of the
undigested sites for possible methyltransferase recognition.

AFLP suffers however from some limitations such as the need for a
purified, high molecular weight DNA, poor reproducibility especially
between different platforms and difficulty of standardization due to a
subjective interpretation of the banding patterns [35].

3.3. Pulsed-field gel electrophoresis (PFGE)

PFGE is a fingerprinting-based genotyping technique that was first
described by Schwartz et al. in 1984 for the separation of yeast chro-
mosomes [36]. However, it is still the gold standard for characteriza-
tions of many pathogenic bacteria [37]. PFGE is a special form of gel
electrophoresis where restricted DNA fragments are subjected to peri-
odical reorientation of the electric field relative to the gel direction
allowing a better separation of DNA fragments [38]. In Australia, PFGE
was used for the first time for genotyping of MAP isolates obtained from
different ruminant species [23]. PFGE was able to discriminate between
the three main MAP types (I, II and III). As a first step, it has clustered
pigmented and non-pigmented MAP isolates into two genetic groups

Fig. 1. Nomenclature and classification of MAP types based on a recent whole
genome sequencing-based phylogenetic analysis [17]. Type C (cattle type),
Type S (sheep type) and type B (bison type).

Table 1
MAP genotyping methods described in this review.

Genotyping method Reference*

Randomly amplified polymorphic DNA [21]
Amplified fragment length polymorphism [22]
Pulsed-field gel electrophoresis [23]
IS900-restriction fragment length polymorphisms [14]
Mycobacterial interspersed repetitive unit-variable number tandem

repeat
[24]

Multi-locus short sequence repeats [25]
Single nucleotide polymorphisms [26]
Whole genome sequencing [27]

* The first study that developed or used the respective genotyping methods
for analysis of MAP isolates.
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(type I and type II) [15]. Type III MAP isolates were then later found to
have distinct PFGE fingerprinting profiles [16].

PFGE was not commonly used in the literature as a MAP typing
technique. Few studies have used PFGE for characterization of MAP
isolates originating from different European countries [39–42].

3.4. IS900-restriction fragment length polymorphisms (IS900-RFLP)

RFLP is a fingerprinting-based typing approach that involves di-
gestion of an organism’s genome using one or more restriction en-
donuclease enzymes followed by electrophoresis of DNA fragments.
These fragments are then transferred to a membrane (“Southern blot”),
where they are hybridized with a labelled DNA probe targeting the
MAP-specific insertion sequence (IS900). IS900-RFLP utilizes the
random nature of IS900 insertion sites that differ from one MAP strain
to another. Consequently, upon hybridization each MAP strain would
exhibit different banding patterns [43]. Most studies have used one or
more of the three enzymes BstEII, PvuII and PstI. However, combining
the results of two or more IS900-RFLP reactions employing different
restriction enzymes increases the overall discriminatory power/index
(DI) of MAP genotyping [44]. DI is a numerical value ranging from 0 to
1 which measures the probability that a certain typing method would
discriminate between two epidemiologically unrelated strains of a
particular microbial population [45]. IS900-RFLP was also able to dif-
ferentiate between the three major MAP types “type I or S”, “type II or
C” and “type III or intermediate” [14].

IS900-RFLP was the first and the most commonly used MAP geno-
typing approach for almost two decades [41,44,46–48]. Nevertheless, it
has drawbacks limiting its use especially after the advancement of se-
quencing technologies in the last years. It is laborious, time consuming,
requires a substantial amount of cultured material for genomic DNA
extraction [49] and the inter-laboratory interpretation of results might
be challenging.

3.5. Tandem repeats-based genotyping

Tandem repeats (micro- or minisatellites) are DNA sequences that
are repeated in a head to tail manner. They are common in prokaryotic
genomes and the repeat copy number may vary even between closely
related strains [50]. Based on the repeat size, tandem repeats are
classified into three main categories. Repeats ranging from 1 to 9 nt are
called microsatellites, short sequence repeats (SSR), or short tandem
repeats. Larger repeats (10–100 nt) are usually known as minisatellites
or variable number tandem repeats (VNTR), while repeats of more than
100 nt are termed macrosatellites [51]. Two mechanisms were hy-
pothesized as the drivers for the addition or deletion of repeat copies,
namely strand slippage caused by DNA polymerase errors on one side
and recombination events on the other side [50]. Tandem repeats were
first thought to be junk DNA of no function; however, an accumulating
body of evidence has shown that they affect the expression of genes
associated with bacterial adaptation to the surrounding environment
[52]. Epidemiologists have exploited the mutable nature of such repeats
to characterize bacterial pathogens based on the polymorphism that
results from variations in repeat copy numbers [53]. The character-
ization is founded on PCR-based amplification of tandem repeat loci
followed by calculating the repeat copy numbers at each locus either by
size polymorphism mainly in gel or capillary electrophoresis (for
VNTR) or by sequencing the PCR products (for SSR) [54,55]. The repeat
copy numbers at different tandem repeat loci are then combined to-
gether in a numerical code defining the genotype of each isolate. As a
PCR-based approach, tandem repeats exhibit some advantages com-
pared with the other typing methods. They have made the character-
ization faster and less laborious. Furthermore, they enabled direct
typing from clinical specimens or from non-viable cultures. Other ad-
vantages are reproducibility, standardization, and comparability of re-
sults between laboratories [25].

3.5.1. Mycobacterial interspersed repetitive unit-variable number tandem
repeat

Mycobacterial interspersed repetitive units (MIRU) are a specific
group of minisatellites found only in mycobacteria. They were first
described in the genome of M. tuberculosis [56]. Compared with other
minisatellites (VNTR), MIRU have a unique structure of two DNA se-
quence motifs; A (24 bp) 5′-TGACGAGGAGCGGCGCAGATGGCA-3′ and
B (29 bp) 5′-GGCGCCGGTGACGATGCAGAGCGTAGCGA-3′ [57]. Since
both types of repeats (MIRU and VNTR) have already been used for
MAP characterization in the majority of studies, the nomenclature
MIRU-VNTR was established in the field.

MIRU loci (MIRU 1-MIRU 4) were first described in MAC strains by
nucleotide basic local alignment search tool (BLASTN) analysis of the
previously identified MIRU sequences in M. tuberculosis [24]. These loci
were able to discriminate between MAP and other MAC subspecies and
between pigmented ovine and all other MAP isolates as well. One year
later [58], VNTR loci were investigated in the publicly available com-
plete genome of M. avium strain 104 (GenBank accession number NC_
008595.1) using the tandem repeat finder software [59]. By in-
vestigating 49 MAP isolates, eight VNTR candidates were tested and
five of them were found to be polymorphic dividing the isolates into six
genotypes. One of these five VNTR loci (VNTR 1658) was indeed
identical to the previously described MIRU 3 locus [24]. In 2007, a set
of eight MIRU-VNTR loci (VNTR 3, 7, 10, 25, 32, 47 and MIRU X3 and
292) was discovered in the MAP genome [60]. MIRU X3 and 292 are
the same loci as the previously described MIRU 3 and 2, respectively
[24]. These eight loci have been used to set up an online database
(available at http://mac-inmv.tours.inra.fr/index.php) to facilitate the
documentation and comparison of MIRU-VNTR-based MAP genotypes
detected in different laboratories all over the world. This has en-
couraged many researchers to use this MIRU-VNTR panel to carry out
epidemiological investigations for MAP isolates from different countries
[42,44,47,61–66]. In 2010, a new VNTR locus (VNTR 259) was de-
scribed which was able to discriminate between MAP type II and type
III isolates [67].

MIRU-VNTR loci of MAP were recently found to be a subject of
homoplasy and hence compromising their accuracy as genetic markers
for phylogenetic analysis [68]. Homoplasy is the independent devel-
opment of the same alleles in isolates belonging to different genetic
lineages of an organism based on convergent evolution [17].

3.5.2. Multi-locus short sequence repeats (MLSSR)
In a first screening of SSR in the MAP genome, an American research

group identified 78 perfect mono-, di- and tri-nucleotide repeats by in
silico analysis of the first complete genome of MAP strain K10 [25].
Perfect repeats are characterized by an integer number of identical
copies of the original repeat sequence, whereas imperfect repeats may
possess a sequence of n integer copies plus a fragment of the original
repeat sequence. In a preliminary analysis using a subset of diverse
MAP isolates (n=6), eleven of these repeats were found to be poly-
morphic (SSR 1-SSR 11) [25]. In a sequencing-based approach, these
polymorphic loci were subsequently utilized for the typing of 27 ge-
netically diverse MAP isolates. The analysis exhibited a high DI of 0.96
by identifying 20 different SSR types (two major phylogenetic groups)
which was sufficient to support epidemiological investigation. Shortly
afterwards, American research groups started to use this genotyping
approach to characterize MAP isolates originating from different host
species and geographical regions in the USA [69–73].

Furthermore, the stability of SSR loci as genetic markers was in-
vestigated. In one study, SSR markers remained unchanged (stable)
after ten in vitro serial passages of three genetically distinct MAP iso-
lates [73]. Contrarily, SSR locus 2 exhibited a repeat copy number
variation both after in vivo passage and in a natural infection context
within single cattle herds and individual animals as well [74], hence it
was recommended to refrain from using this locus in epidemiological
investigations due to its instability. Based on technical limitations of
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sequencing a long stretch of a mononucleotide repeat, it was proposed
that more than ten guanine bases at SSR locus 1 should be interpreted
as ≥11 G [74], which limits the discriminatory capacity of this locus.
Different attempts were carried out to overcome this problem by de-
termination of the copy number at this locus either by Matrix-Assisted
Laser Desorption Ionization Time of Flight Mass Spectrometry (MALDI-
TOF MS; [75]) or by capillary gel electrophoresis-based fragment
analysis [76]. This in turn extended the detection limit of copy numbers
at SSR locus 1 to 15 and 21 nt, respectively.

3.6. Combination of different genotyping markers

Bacteria are described to be monomorphic, when they exhibit very
low genomic diversity. Some important pathogens such as M. tubercu-
losis, Bacillus anthracis, Yersinia pestis and MAP are monomorphic [77].
With respect to MAP genotyping, different authors therefore used
combinations of two or more genotyping techniques to increase the
overall typing DI in order to obtain epidemiologically meaningful data
(Table 2).

3.7. Single nucleotide polymorphisms (SNP)

Single nucleotide polymorphisms (SNPs) are point mutations of
single nt along the genome. They are stable genetic markers that can be
used to trace back the phylogenetic history of an organism. The avail-
ability of the first complete MAP genome [27] has directed the scien-
tists’ efforts to search for SNPs that could be used for MAP typing and
phylogenetic analyses.

Investigation of single or multiple gene sequences such as 65 kDa
heat shock protein (hsp65), superoxide dismutase (sodA), chromosomal
replication initiator protein (dnaA), DNA polymerase III subunit beta
(dnaN), DNA replication and repair protein (recF), DNA topoisomerase
IV subunit B (gyrB), enoyl-(acyl carrier protein) reductase (inhA),
polyketide synthase (pks8), DNA gyrase subunit A (gyrA) and PPE fa-
mily protein (MAP1506) enabled scientists to find SNPs differentiating
between the major MAP types (I, II and III) [26,85–87]. Partial se-
quencing of IS900, a robust and merely MAP-specific insertion element,
revealed SNP characteristics for the MAP types I, II, and III adding a
typing feature to the well-established diagnostic value of this element
[88]. The emergence of new technologies allowed researchers to adopt
novel approaches such as microarray technology and high resolution
melting (HRM) for detection of the previously described MAP-specific
SNPs [67,89]. Recently, the decrease in the costs of high throughput
sequencing (HTS) has made the whole genome sequencing (WGS) of
bacteria more accessible to microbiologists. Accordingly, MAP isolates
have been sequenced and informative SNPs were used for developing
assays that can be used to address various epidemiological questions.
For example, seven SNPs were derived from WGS data of human MAP
isolates and used to investigate the occurrence of identical lineages of

human MAP isolates in other hosts in Australia [90,91]. Similarly, five
SNPs were extracted from WGS data of a national Canadian collection
of cattle MAP isolates [92,93] and were used to detect the four most
common phylogenetic groups in Canada. The preliminary climax was
reached, when a comprehensive SNP-based MAP typing assay was de-
veloped based on an international collection of MAP isolates for the first
time [94]. This was feasible by extracting only 14 SNPs that have been
used to classify MAP isolates into 14 different phylogenetic groups.

3.8. Whole genome sequencing (WGS)

Using a shotgun sequencing approach, the first closed and annotated
genome sequence of the MAP cattle strain K10 was published in 2005
[27], which has later been revisited and improved [95]. This has fa-
cilitated subsequent MAP genetic studies for diagnostic, comparative
genomic and epidemiological purposes. It also gave insight into the
molecular basis of MAP pathogenicity and virulence characteristics.
Since then, researchers have worked on reinforcing the scientific
knowledge by publishing complete genomes of other MAP isolates from
different geographic areas. Currently, 44 genomes are publicly avail-
able in the genome database (https://www.ncbi.nlm.nih.gov/genome/
genomes) of the National Center for Biotechnology Information (NCBI)
for MAP isolates obtained from different countries such as India, Egypt,
Germany, and the USA [96–98].

The recent application of HTS enabled researchers to investigate the
MAP sequence variations at the whole genome level. Consequently,
comparative genomic studies were carried out to gain insight into
genomic variations between different MAP types obtained from several
host species including sheep [99], camel [100], bison [101], human
[90,102] and other domestic and wild animals [103]. The exponential
decrease in the costs of HTS has enabled the WGS of a large number of
MAP isolates. This helped elucidating phylogeography of MAP isolates
at a national level in Canada [68,92] and – in the meantime – also on a
worldwide scale [17].

4. Epidemiological applications of MAP genotyping

In this section, examples of the application of MAP genotyping in
addressing interesting epidemiological aspects of JD will be discussed.

4.1. Within-herd and within-animal strain diversity

Using a wide spectrum of typing techniques, multiple MAP strains
were identified in the same herd and even in the same animal
[32,39,40,47,62,71–74,76,104–108]. Different explanations were pro-
posed in the literature for the observed multiple strain superinfections.
Since animals’ movements are well known as an important risk factor
for inter-herd MAP transmission [109], multiple introduction events
associated with purchasing subclinically infected animals from different

Table 2
Different combinations of genotyping markers previously used for MAP typing.

Markers’ combination No. of MAP isolates No. of genotypes DI value* Reference

MIRU-VNTR+SSR 34 18 Not calculated [78]
38 22 0.94 [79]
35 9 Not calculated [80]
91 25 0.93 [81]

MIRU-VNTR+ IS900-RFLP 71 24 0.997 [44]
SSR+PFGE 268 37 (PFGE)

19 (SSR)
0.817 [40]

IS900-RFLP+PFGE+MIRU-VNTR 164 44 0.941 [42]
MIRU-VNTR+SSR+ IS900-RFLP 53 17 0.95 [47]
MIRU-VNTR+SSR+ IS1311-PCR-REA** 21 11 Not calculated [82]

200 38 0.88 [83]

* Discriminatory index calculated according to Hunter and Gaston [84]. Values are those reported by the respective studies.
** Restriction endonuclease analysis.
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sources is the most popular and likely the most plausible explanation
[44,72]. However, one study has assumed that polyclonality could be a
basic aspect of the organism’s ecology and has proposed that clinical
cases of paratuberculosis might be provoked by multiple MAP-strain
infections [62]. A third explanation was that MAP strains exhibiting
minor genetic diversity could exist due to within-herd or within-animal
evolution over time (microevolution) given the chronic nature of the
organism [107]. The extent of microevolution in MAP infections and its
possible phenotypic consequences need to be further investigated.
Moreover, the potential consequences of multiple strain infections on
the clinical outcome, immune reaction, and vaccination efficacy should
be addressed in upcoming studies.

4.2. Informing paratuberculosis management policies

One of the most important epidemiological applications of geno-
typing is tracing back sources of infections and hence providing in-
valuable information for decision makers concerning disease manage-
ment policies [110]. In this regard, a high resolution genotyping that
could classify strains in the greatest number of groups is necessary for
an efficient tracing back process [111].

MAP isolates obtained from cattle showing clinical signs of JD in
Queensland, a subtropical Australian area known to have a very low
prevalence of JD, were subjected to genotyping using a combination of
MIRU-VNTR and MLSSR [112]. The genotypes were compared with
national and international strains to identify the potential source(s) of
infection and to evaluate the applied control measures. The results in-
dicated that the two identified MAP strains (Q2012 and Q2013) re-
sulted from two different incursion events and were not introduced
from other Australian regions, where the disease is more prevalent.
Although no definitive clarification of the sources of infections was
achieved, the findings of this study provided evidence that restriction of
animal movements between high- and low-prevalence regions as a
control measure applied has not been violated in Australia.

4.3. Revealing the inter-species MAP transmission

MAP genotypic characterization has helped elucidating MAP
transmission events between different host species. Cross-species
transmission between cattle and different wildlife animal species has
been reported. Using a combination of three genotyping approaches
(SSR, MIRU-VNTR, and IS900-RFLP), a German study investigated the
transmission of MAP between free-living red deer and farmed cattle
sharing the same habitat [47]. Four of the identified 17 genotypes were
shared between the two animal species, where one genotype was found
to dominate in both of them suggesting a cross-species transmission
between cattle and deer [47]. In Australia, a small proportion (1.7%) of
macropods co-grazing with sheep was found to be infected with MAP
[113]. Genotypic characterization of the isolates using PCR and re-
striction endonuclease analysis has indicated that a cross-species
transmission of the MAP type S has occurred. However, macropods
seems not to be a wildlife reservoir of infection, since they were found
to shed the organism at low levels [113]. On the other side, wild rabbits
are believed to represent a reservoir of MAP infection [114] and a
genotyping approach combining IS900-RFLP, PFGE, and MIRU-VNTR
has revealed that wild rabbits and cattle within the same region often
share the same genotypes [42]. Moreover, MAP isolates obtained from
CD patients showed a great homogeneity (based on WGS) with bovine
MAP isolates from the same geographic location in Australia indicating
a possible zoonotic transmission, presumably through consumption of
milk and dairy products [90].

5. Conclusions

The advances in the molecular biological techniques have re-
volutionized our understanding of the MAP diversity and the

epidemiology of JD has witnessed a shift from depending on classical
phenotypic traits such as host preference, time to visible growth and
colony pigmentation for MAP characterization towards using geno-
typing approaches. The latter have so far successfully been used for
interesting epidemiological applications. This included informing
paratuberculosis management policies by identifying the sources of
infections, detection of multiple MAP strains both at the intra-herd and
intra-animal levels and revealing the inter-species MAP transmission. In
the near future, HTS technology is expected to be more accessible to
more laboratories throughout the world. Consequently, WGS will
transform our ability to characterize MAP isolates at an unprecedented
high resolution which would be applied to extend our understanding of
MAP molecular epidemiology at intra-animal, intra-herd, regional, na-
tional and international levels.
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