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Abstract: Image source forensics is widely considered as one of the most effective ways to verify in
a blind way digital image authenticity and integrity. In the last few years, many researchers have
applied data-driven approaches to this task, inspired by the excellent performance obtained by those
techniques on computer vision problems. In this survey, we present the most important data-driven
algorithms that deal with the problem of image source forensics. To make order in this vast field,
we have divided the area in five sub-topics: source camera identification, recaptured image forensic,
computer graphics (CG) image forensic, GAN-generated image detection, and source social network
identification. Moreover, we have included the works on anti-forensics and counter anti-forensics.
For each of these tasks, we have highlighted advantages and limitations of the methods currently
proposed in this promising and rich research field.

Keywords: image forensics; multimedia forensics; source identification; data driven methods

1. Introduction

With the development of modern techniques, digital imaging has become an important component
in our daily life. It is easy for us to capture digital images with devices such as smartphones and
digital reflex cameras, embellish them by using photo-editing software, and then upload them to social
network platforms to share the important moments of our life with our friends. The ease with which
we handle digital images, however, is a double-edged sword. Forged images are becoming more
and more widespread in our life and seeing is no longer believing [1,2], especially with the advent of
techniques based on artificial intelligence (AI) such as generative adversarial networks (GAN) [3] that
can be exploited by malicious actors to spread “fake news” [4].

In order to verify the authenticity and integrity of a digital image, a number of techniques, known
collectively as “digital image forensics” [5], were developed during the last years. Within this research
area, source image forensics tries to answer the general question “where is this digital image from?”,
and to do so multiple sub-topics can be explored, represented in Figure 1: source camera identification,
recaptured image forensic, computer graphics (CG) image forensic, GAN-generated image detection,
and source social network identification.

In the past the task of source image forensics has been dealt with several algorithms based on
statistical analysis and pattern recognition. More recently, improvements in computing capabilities
sparked a renewed interest in techniques based on machine learning. In particular, deep learning-based
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schemes have been successfully applied in the field of source image forensics, and have proved their
effectiveness in various competitions [6,7].

Figure 1. The structure of the presented review.

Techniques based on artificial neural networks have been known for many years and have gone by
many names. A series of breakthroughs in 2006 [8–10], however, made the use of deep neural networks
viable and gave rise to the field known as deep learning [11,12]. After that, methods based on deep
learning have consistently achieved remarkable results on a series of tasks such as handwritten digital
recognition and image classification, often beating competing approaches based on conventional
schemes. A number of specialized techniques have been developed in the field of computer vision,
including convolutional neural networks (CNN), recurrent neural networks (RNN), and generative
adversarial networks (GAN). Among them, CNNs have been shown to be effective when dealing
with image-related tasks, and have been subsequently adopted as a basis for numerous digital image
forensics methods.

Basic components of CNNs consist mainly of convolutional layers, pooling layers, and activation
functions, which are stacked together to construct the architecture of CNNs. According to
Khan et al. [13], recent innovations in CNNs building and training can be categorized as structural
reformulation, parameters optimizations, regularization, loss function. Among those, structural
reformulation plays the most important role in improving the performance, and can be divided into
seven different classes: spatial exploitation, depth, multi-path, width, channel boosting, feature map
exploitation, and attention based CNNs. Typical CNN architectures such as AlexNet [14], VGGNet [15],
GoogleNet [16], ResNet [17], DenseNet [18], Xception [19], SENet [20], Siamese Network [21], are well
known. We refer the interested reader to the review by Khan et al. [13], Gu et al. [22] for further details
about deep learning.

The impressive results obtained by deep learning-based methods in image source forensics
motivate us to provide a comprehensive review of those approaches in such a way as to allow a
neophyte to come into this field with some help. In this survey paper, we did our best to collect
all the related paper which have been published in journals, conferences, and arXiv. We observed
that all of them have some common modules, and we propose a unifying framework where all these
schemes fit, thus simplifying their comparison. The framework is visually represented in Figure 2.
First, the input, a full resolution image, is usually cropped into small and fixed-size pixel patches.
Then, all patches are processed, or a patch selection strategy can be applied to choose the patches that
are more useful for the following task. Next, these patches can be pre-processed by a spatial filter to
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improve their signal-to-noise ratio (SNR). After that, they are fed to a convolutional neural network
(CNN). Classification of a single patch can be achieved either by having a softmax layer at the end
of the network, or by training a separate classifier on the features extracted by the last layer of the
CNN. In the end, the classification result for the original image can be obtained by voting among
the pixel patches. It should be noted that our general framework includes all the ideas used in the
methods that we have reviewed; until now, however, no single method is using all those techniques.
In Figure 2, optional parts are denoted by a dotted contour. Starting from the general framework, we
have divided the reviewed algorithms in the following five separate sub-sections, according to their
main contributions:

1. adoption of traditional convolutional neural networks (T.CNN) for source camera
identification tasks;

2. improvement of performance by using data enhancement (D.A.), including data augmentation
and data preprocessing;

3. improvement of performance through fusion and ensemble (F./E.);
4. improvement of performance by means of patch selection (P.S.);
5. adoption of different classifiers (C.).

The most significant network parameters of the reviewed works are summarized in Table 1 and
Table 2. Then, in Tables 3 and 4, we have summarized the experimental settings and the performance
achieved by those architectures, as well as by some conventional CNNs.

The remaining part of this review is organized as follows. First of all, in Section 2 we will
describe the deep learning-based methods that deal with the most important topic of this area, i.e.,
source camera identification. Then, in Sections 3 to 6 we will present an overview on the methods
dealing with the remaining sub-topics: recaptured image forensic, CG image forensic, GAN-generated
image detection, and source social network identification, respectively. In Section 7 we will describe
anti-forensics and counter-anti-forensics algorithms based on deep learning methods. A description of
the results obtained by the described techniques will be given in Section 8. Finally, in Section 9, we
will provide our analysis and conclusion on deep learning based source image forensics.

Patch Selection

(Section 2.4)

Data Enhancement

(Section 2.2)

Data Augmentation

Preprocessing

Traditional CNNs Architectures

(Section 2.1)

Fusion and Ensemble

(Section 2.3)

Classifier

(Section 2.5)

Voting

Figure 2. The framework of the deep learning-based algorithms for source forensics. (Section X.X)
indicates the subsection where the related technique is described in detail.

2. Source Camera Identification

One of the hot topics in multimedia forensics is source camera identification, the purpose of which
is to trace where an image is from. Identifying the source camera is an important step in pointing out
the owner of illicit images (e.g., crime scenes, terroristic act scenes, etc.) and ensuring the security and
trustworthiness of such digital data.
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2.1. Traditional Convolutional Neural Networks (T.CNN)

Early works focused on applying to the problem of source camera identification traditional
convolutional neural networks consisting of stacked convolutional layers. To the best of our
knowledge, deep learning-based schemes for source camera identification were firstly introduced by
Bondi et al. [23]. This path-breaking method used a simple architecture with five layers, including
three convolutional steps and two fully connected layers, working on 48 × 48 patches. The authors
tested their network for both instance- and model-level camera identification, obtaining accuracies
of 29.8% and 72.9%, respectively. Moreover, model-level camera identification increased to 94.1%
on full resolution images with a voting strategy on the respective image patches. Focusing on
images captured by mobile phones, which nowadays are the most popular image acquisition devices,
Freire-Obregón et al. [24] proposed a six-layer CNN architecture, including two convolutional layers,
one max pooling layer and three fully connected layers. The activation function used in this work
was the Leaky Rectified Linear Unit (L-ReLU) which, as reported by the authors, led to slightly better
performance than those obtained by using ReLU activations. Then, Huang et al. [25] presented an
architecture similar to the one proposed by Bondi et al. [23], and the authors were able to improve
over the accuracy obtained by Freire-Obregón et al. [24] by using Batch Normalization and more
convolutional layers. Following along the line of deeper CNN architectures, Yao et al. [26] (code
available at https://github.com/grasses/Camera-Identification) put forward a 13-layer convolutional
neural network. The proposed method is robust against JPEG compression and noise adding; however,
it is not resistant to re-scaling operation.

Chen et al. [27] investigated the use of a residual neural network (ResNet) with 26 layers for source
camera identification, and proved its effectiveness with multiple experiments: the accuracies obtained
for brand-, model-, and device-level identification were 99.12%, 94.73%, and 45.81%, respectively.
According to their paper, ResNet has better performance than AlexNet, GoogleNet, and the scheme
from Bondi et al. [23]. Ding et al. [28] extended this last method by combining ResNet architecture
with a multi-task learning strategy, further improving the performance. The three tasks (brand-level,
model-level, and sensor-level classification) are integrated into one framework and share the weights
of the CNN architecture.

Several works [29–33] applied to source camera identification new architectures from computer
vision such as DenseNet, XceptionNet. Marra et al. [29] used XceptionNet to obtain overall accuracies
of 95.15% for pixel patches and 99.31% for the full resolution image by using a voting strategy.

All the works cited so far are intended to solve source camera identification in a closed-set
scenario, where there is the assumption that we have a perfect knowledge of all the devices that
could possibly capture the query images, which means that the acquisition devices for test data are
the same used for acquiring training data. A more realistic case, however, is the open-set scenario,
where information about query images is not completely known. Recently, a number of deep learning
methods for this more challenging scenario have been proposed. Bayar and Stamm [34] presented
two different schemes to address the open-set problem for camera model identification, which aims to
judge whether the device that captured the query image is known or unknown. The first one uses,
in place of a classification layer, a confidence score mapping with a thresholding strategy to evaluate
whether the true source camera model is known or unknown. The other approach uses a different
classifier on features extracted by a CNN. Mayer and Stamm [35] tried to measure similarity among
images by using a siamese network. Features are extracted from the last layer of a CNN and fed into a
siamese network to learn a measurement of source similarity, which allows for verifying if two query
images are captured by same device or not.

It should be noted that the evolution of CNN architectures proposed for Source Camera
Identification tasks closely follow the one of architectures proposed for computer vision tasks. This
is somewhat to be expected as CNNs are well-suited for that kind of tasks, and thus a great deal of
research on neural architectures produced by the community was focused on solving those problems.

https://github.com/grasses/Camera-Identification
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Given the encouraging results obtained so far, it is logical to assume that the forensics community will
keep on building on new CV architectures.

2.2. Data Enhancement (D.E.)

Data enhancement, including data augmentation and pre-processing, has been widely used as an
effective way to improve the performance when dealing with computer vision tasks. These techniques
have also been adopted for source camera identification schemes. Bondi et al. [36,37] normalized
the images by subtracting the pixel-wise mean value, which is a popular way to center the data
and helps the network to learn faster. Kamal et al. [31] applied five different data augmentation
operations: random crops, random rotations, image manipulations (including JPEG compression,
gamma correlation, and resizing), images addition, and empirical mode decomposition. It should be
noted that the authors increased the training set size by collecting more images from Flickr (https:
//www.flickr.com/). The results demonstrated that adding more images has a great impact to
performance: considering that deep learning-based methods are data-driven, increasing the number of
training examples definitely leads to higher detection accuracies. Team GPU_muscle [30,32] collected
more than 500 GiB of photos from various resources (Flickr, Yandex.Fotki, Wikipedia Commons,
mobile reviews, and others) and obtained an accuracy of more than 98% by training traditional
CNNs. In addition, using manipulated images such as enhanced images with gamma correction, JPEG
compressed images, and images transformed by resampling operation, to some extent, enhances the
robustness of the CNN model.

Preprocessing techniques to improve the signal-to-noise ratio (SNR) of input data have been
introduced following the intuition that the main difference between computer vision and image source
identification tasks lies in the importance of image contents. Usually, computer vision tasks are
seriously dependent on the image contents, whereas the opposite is true when dealing with source
camera identification. In the latter case, the correct class to be attributed to an example is heavily
dependent on the noise component introduced by camera acquisition. Based on this observation,
some researches [38–42] proposed to reduce the interference of the image contents using two kinds of
preprocessing. The first technique is based on the idea of applying a denoising filter F to the input
image I, and then subtracting the result of that operation from I itself, thus obtaining the noise N:

N = I − F(I). (1)

Tuama et al. [39] chose a wavelet-based denoiser, as filters of that kind have been widely used
in model-based schemes based on Photo Response Non Uniformity (PRNU) for source camera
identification. Bayar and Stamm [38] evaluated the effect of a median filter with 3 × 3 windows
(MFR). The second preprocessing technique is based on the idea that the noise can be easily obtained
by using a spatial filter G:

N = I ∗ G (2)

Tuama et al. [39] also tested the effectiveness of an high-pass (HP) filter. According to that
work, HP filters yield better results than wavelet-based denoiser when used in CNN-based schemes.
Ding et al. [28] evaluated the case of gaussian filter residuals with three scales (3 × 3, 5 × 5, 7 × 7) and
verified their effectiveness.

Following the idea of spatial filters, Yang et al. [42,43] presented self-learning filters as a way to
further improve the SNR. Self-learning filters can be trained together with the rest of the network.
Inspired by SPAM features [44], Bayar and Stamm [45] (code available at https://gitlab.com/MISLgit/
constrained-conv-TIFS2018) proposed a novel constrained convolution which ensures that learned
high-pass filters are within a given bound. In particular, the central weight of the convolutional
kernel is set to −1 and the sum of the other weights is equal to 1. Instead of designing the filter,
Wang et al. [41] used local binary patterns (LBP) to code the image. The images are first processed by

https://www.flickr.com/
https://www.flickr.com/
https://gitlab.com/MISLgit/constrained-conv-TIFS2018
https://gitlab.com/MISLgit/constrained-conv-TIFS2018
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LBP coding operation in the preprocessing step, and then fed into CNN architecture. Self-learning
filters, constrained convolutions, and LBP coding are reported to outperform high-pass filters.

Recently, Zuo [40] evaluated how the performance of CNN models are impacted by the use of
two preprocessing techniques: laplacian gaussian smoothing filters and non-local means denoising
filters. Results indicate that the CNN model without pre-procession provides better performances. The
author gave a possible explanation from perspective of the training data and strategy. It should be
noted, however, that the dataset used was only composed of images captured by three camera models,
and that the number of epochs during training phase was small due to limitations in the available
computing power. For these reasons, extended experiments should be conducted to verify the effect of
preprocessing in future.

The analysis of data enhancement techniques used in source camera identification tasks highlight
an important difference with respect to classical DE methods used in machine learning. Commonly
used augmentation algorithms used by the ML community focus on helping the network become
rotation- or scale-invariant by presenting image contents in different conditions. In source camera
identification tasks, on the contrary, most DE technique aims to reduce the influence of image contents
by filtering out information deemed not useful. As those two classes of enhancement methods
are not mutually exclusive, future works could attempt to combine them to come up with a more
comprehensive way to make the network more robust.

2.3. Fusion and Ensemble (F./E.)

Fusion and ensemble strategies aim to enhance performance by fusing multiple models and
features together. Yang et al. [42] constructed a content-adaptive fusion network by merging three
models together, thus significantly increasing the overall accuracy with respect to the single models.
Bayar and Stamm [38] combined constrained convolutions and MFR at the first layer of the CNN
architecture and obtained a slight improvement over a constrained CNN. Kamal et al. [31] used the
ensemble feature of DenseNet201 trained using three image scales (64 × 64, 128 × 128, 256 × 256),
which is beneficial to the CNN model. Ferreira et al. [33] proposed to integrate InceptionNet and
XceptionNet architectures to boost performance.

2.4. Patch Selection (P.S.)

It is well known that the PRNU noise that can be extracted from an image is related with
its contents. Smooth, non-saturated areas with high luminance are good for PRNU estimation.
Furthermore, content-adaptive processes such as CFA demosaicing and JPEG compression can be
applied during image acquisition. Therefore, choosing different areas in the image could have some
effect on the performance. Based on this fact, a good strategy for choosing the best pixel patches to be
used for CNN training can be essential to obtain higher performance. Bondi et al. [36] (code available
at https://github.com/polimi-ispl/camera-model-identification-with-cnn) only select for training the
pixel patches whose average values are close to half of the image dynamic range. Another criterion
for patch selection, which aims to find the better textured pixel patches with the half of the image
dynamic, was proposed by Kamal et al. [31], Bondi et al. [37]. In this approach the quality value for
a pixel patch is computed from its variance and mean. Pixel patches with higher measure value are
used to train the CNN model. Güera et al. [46] proposed a CNN-based solution to estimate, for each
pixel patch, a value representing the camera-model-attribution reliability. Yang et al. [43] adopted a
different approach where pixel patches were separated into three subsets according to their mean and
variance. Then, a different CNN model would be trained on each subset. Finally, query pixel patches
would be classified using the model corresponding to their characteristics.

It appears that, currently, the dynamic range of a patch is considered to be the best descriptor for
its usefulness for the task at hand. Experimental results confirm that such an approach is sensible.
It would however be interesting to explore more diverse descriptor, perhaps taking into account the
peculiarities of the neural network that will be subsequently used to classify the selected patches.

https://github.com/polimi-ispl/camera-model-identification-with-cnn
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2.5. Classifier (C.)

Some computer vision works [47–49] claim that using a separate SVM classifier on the features
learned by a CNN instead of a softmax layer can improve classification performance. In the same way,
some image forensics researchers have recently explored if the adoption of different classifiers can
improve the performance. In particular, Huang et al. [25], Kamal et al. [31], Bondi et al. [36,37] and
Bayar and Stamm [34,38] proposed two-stage learning strategies by feeding the features extracted by a
CNN model into a different classifier such as a Support Vector Machine (SVM), Extremely Randomized
Trees (ERT), cosine similarity measure, nearest mean score, and deep learning architecture with squeeze
and excitation block. The results confirm that these classifiers can achieve better performance with
respect to simple softmax layers.

2.6. Summary

The most significant network parameters and the experimental settings of the reviewed works are
summarized in Table 1, where we have identified twelve main architectures (using the short name A1,
A2, ...., A12). Then, in Table 3 we have summarized the experimental settings and the performance
achieved by those architectures, as well as by some conventional CNNs.

3. Recaptured Image Forensic

Recaptured image forensic deals with the task of establishing whether an image has been
recaptured or not, that is if it has been generated by capturing a printed picture or a screen display with
an acquisition device. Yang et al. [50] presented an effective and practical deep learning-based method
to address this problem: Laplacian Convolutional Neural Networks (L-CNN). In this technique the
Laplacian filter is embedded into the first layer of a CNN to improve the noise signal ratio introduced
by recapture operations. In that paper five different kinds of high-pass filters have been evaluated.
Experimental results showed that performance obtained using laplacian filter is better than the one
obtained by using other high-pass filters, or by not using filters at all. According to the paper, L-CNNs
achieve 96% detection accuracy even when applied to 64 × 64 image patches. To the best of our
knowledge, this is the first work based on deep learning to detect recaptured images. Choi et al. [51]
tested a nine-layer CNN on 64 × 64 patches and obtained a detection result on the original images
by using a voting strategy. The authors report slightly improved results over model-based methods.
Li et al. [52] proposed a new framework by combining CNNs with RNNs. Instead of using a Laplacian
filter in the first layer, the authors considered the convolutional operation as the preprocessing. The
weights of the convolutional operator can be automatically learned during the training phase. Features
extracted from trained CNN model were then fed into a recurrent neural network to classify the images.
Aforementioned algorithms were evaluated on a small-scale dataset. Recently, Agarwal et al. [53]
developed a diverse large-scale dataset for evaluating recaptured image forensic techniques. The
dataset consists of 14,500 recaptured images and 14,500 original images. Those images were captured
by various devices such as cameras, displays, scanners, printers. The authors also proposed an
eight-layer CNN with 16 different kinds of gaussian filtering residuals in the first layer. The reported
detection accuracy was up to 99.9% for 64 × 64 pixels patches, which is a great improvement over
model-based schemes.

The most significant network parameters and the experimental settings of the reviewed works
are summarized in Table 2, where we have identified four main architectures (using the short name
B1, B2, ...., B4). Then, in Table 4 we have summarized the experimental settings and the performance
achieved by those architectures, as well as by some conventional CNNs.

We can notice how most of the techniques proposed for recaptured image forensics are base on
some kind of manual of automatic filtering. As an image’s subject is not useful for establishing whether
the image has been recaptured, those filters attempts to discard that information while, at the same
time, highlighting the traces left by the recapturing operation.
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Table 1. Summary of the reviewed architectures for source camera identification. CC and IC denote Constrained and Instant convolutional operations, respectively.
GAP denotes the presence of a global average pooling operation. BN denotes the presence of batch normalization operations.

Architecture Input Size Preprocessing
Convolutional Part Fully Connected Part

N Layers Activation Pooling BN GAP N Layers Activation Dropout

A1 [23] 48 × 48 × 3 - 3 ReLU Max - - 1 ReLU X

A2 [24] 32 × 32 × 3 - 2 L-ReLU Max - - 2 L-ReLU X

A3 [25] 36 × 36 × 3 - 3 ReLU Avg X - 1 ReLU X

A4 [26] 64 × 64 × 3 - 13 ReLU Max - - 2 ? X

A5 [27] 256 × 256 × 3 - 1 Conv, 12 Residual ReLU - - X - - -

A6 [36] 64 × 64 × 3 - 4 ? Max - - 1 ReLU -

A7 [37] 64 × 64 × 3 - 10 ? Max - - 1 ReLU -

A8 [38] 256 × 256 × 2 IC + CC 4 TanH Max, Avg X - 2 TanH -

A9 [39] 256 × 256 HP 3 ReLU Max - - 2 ReLU X

A10 [41] 256 × 256 × 3 LBP 3 ReLU Max X - 2 ReLU X

A11 [42] 64 × 64 × 3 - 6 ReLU Avg X X - - -

A12 [43] 64 × 64 × 3 - 1 Conv, 3 Residual ReLU Avg - X - - -
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Table 2. Summary of the reviewed architectures for recaptured image forensics (RF), CG image detection (CGI), GAN-generated images detection (GAN), and Source
social networks identification (SSN). Lap denotes Laplacian filter, GR denotes the Guassian residuals. Col + Tex is the combination of Cb,Cr and the texture filtering
responses by Schmidt filter bank. Filters denotes a combination of three kinds of high-pass filters used for steganalysis and DCT-His denotes the histogram of DCT
coefficents.

Architecture Input size Preprocessing
Convolutional part Fully connected part

N Layers Activation Pooling BN GAP / Stats N Layers Activation Dropout

RF

B1 [50] N × N × 3 Lap 5 ReLU Avg X GAP - - -

B2 [53] 64 × 64 × 1 GR 6 L-ReLU - X - 1 L-ReLU -

B3 [52] 32 × 32 × 3 Conv 2 ReLU Avg X - 1 ? -

B4 [51] 64 × 64 × 3 - 6 ReLU Max - - 2 ReLU X

CGI

C1 [54] 32 × 32 × 3 - 6 ReLU - - - 2 ReLU + BN -

C2 [55] 96 × 96 Col + Tex 4 ReLU Avg X - 1 ? X

C3 [56] 650 × 650 Filters 5 ReLU Avg X GAP - - -

C4 [57] NxN Conv 3 ReLU Max X - 1 ReLU X

C5 [58] 100 × 100 × 1 - 2 - - - Stats 1 ReLU X

GAN D1 [59] N × N × 3 Lap 3 L-ReLU Max - - 2 L-ReLU -

SSN
E1 [60] 64 × 64 DCT-His 2 ReLU Max - - 1 ReLU X

E2 [61] 64 × 64 PRNU 4 ReLU Max - - 1 ReLU X
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Table 3. The experimental setting for different algorithms. In this table, DA, FE, PS, C denote respectively data augmentation, fusion and ensemble, patch selection,
and classifiers. The ratio between training and test data is shown in the column “Train : Test“. For the performance-patch/voting, the numbers between parenthesis
denote the number of models/sensors in the test set. It should be noted that the evaluation matrix for 8, 20 is that 0.7 × (accuracy of unaltered images) + 0.3 ×
(accuacy of manipulated images). Some works evaluated the performance on multiple datasets; only the most representative ones are shown in this table.

Arch. Input
Size D.A. F./E. P.S. C. Train : Test Dataset

Perf. (Patch) Perf. (Voting)

Model Sensor Model Sensor

[23] A1 48 × 48 × 3 - - - Softmax 7:3 Dresden [62] 72.9% (27) 29.8% (74) 94.1% (27) -

[24] A2 32 × 32 × 3 - - - Softmax MICHE-I [63] 98.1% (3) 91.1% (5) - -

[25] A3 36 × 36 × 3 - - - SVM 8:2 Dresden [62] - - - 99.9% (10)

[26] A4 64 × 64 × 3 - - X Softmax 3:2 Dresden [62] 93% (25) - >98% (25) -

[27] A5 256 × 256 × 3 - - - Softmax 7:3 Dresden [62] 94.7% (27) 45.8% (74) - -

[29]

A6 64 × 64 × 3

- - - Softmax 8:2 VISION [64]

- 80.77% (35) - 97.47% (35)

DenseNet-40 32 × 32 × 3 - 87.96% (35) - 95.06% (35)

DenseNet-121 224 × 224 × 3 - 93.88% (35) - 99.10% (35)

XceptionNet 299 × 299 × 3 - 95.15% (35) - 99.31% (35)

[31]
DenseNet-201
+ SE-Block 256 × 256 × 1 X X X SE-block 3.2:1 SPC2018 [7] 98.37% (10, weighted) - - -

[36] A6 64 × 64 × 3 - - X SVM Dresden [62] 93% (18) - >95 % (18) -

[37] A7 64 × 64 × 3 - - X Softmax Dresden [62] 94.93% (18) - - -

[38] A8 256 × 256 × 2 X X - ET 4:1 Dresden [62] 98.58% (26) - - -

[39] A9 256 × 256 - - - Softmax 8:2 Dresden [62]
98.99% (12)
98.01% (14) - - -

[41] A10 256 × 256 × 3 X - - Softmax 8:2 Dresden [62]
98.78% (12)
97.41% (14) - - -

[43] A12 64 × 64 × 3 X X X Softmax 4:1 Dresden [62] - 97.03% (9) - -

[32] DenseNet-161 480 × 480 × 3 X - - Softmax SPC2018 [7] 98% (10, weighted) - - -

[42] A11 64 × 64 × 3 X X - Softmax 4:1 Dresden [62] - 94.14% (9) - -

[33] Inception-Xception 299 × 299 - X X Softmax SPC2018 [7] 93.29% (10, weighted) - - -

[28] ResNet-modified 48 × 48 × 3 X - - Softmax Dresden [62] - - 79.71% (27) 53.4% (74)
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Table 4. The experimental setting for different algorithms for recaptured image forensics (RF), CG image detection (CGI), and Source social networks identification
(SSN). In this table, DA, FE, PS, C denote respectively data augmentation, fusion and ensemble, patch selection, and classifiers. The ratio between training and test
data is shown in the column “Train : Test“. For the performance-patch/voting, the numbers between parenthesis denote the patch sizes, when applicable.

Arch. Input
Size D.A. F./E. P.S. C. Train : Test Dataset Perf.

(Patch)
Perf.

(Voting)

RF

[50] B1 N × N × 3 X - - Softmax 1:1
NTU-Rose [65]
LCD_R [66]

99.74% (512)
99.30% (256)
98.48% (128)
95.23% (64)

[53] B2 64 × 64 × 1 X X - Softmax 8:2 LS-D [53] 99.90%

[52] B3 32 × 32 × 3 X - - Softmax 1:1
ASTAR [67] 86.78% 93.29% (64)

NTU-Rose [65] 96.93% 98.67% (64)

ICL [68] 97.79% 99.54% (64)

[51] B4 64 × 64 × 3 - - - Softmax 1:1 ICL [68] 85.73% 96.60%

CGI

[54] C1 32 × 32 × 3 - - - Softmax 3:1 Columbia [69] 98%

[70] ResNet50 224 × 224 - - - Softmax 5-f CV DSTok [71] 96.1%

[55] C2 96 × 96 X X - Softmax 13:4 3Dlink [55] 90.79% 94.87% (192)

[56] C3 650 × 650 X - - Softmax 9:8 WIFS [58] 99.95% 100%

[72] ResNet50 ? X - - Softmax 7:1 Columbia [69] 98%

[57] C4 233 × 233 X - X Softmax 3:1 Columbia [69] 85.15% 93.20%

[58] C5 100 × 100 × 1 - X - MLP 8:2 WIFS [58] 84.80% 93.20%

[73] VGG19 - X X MLP 5:2 WIFS [58] 96.55% 99.89%

[74] ResNet50 224 × 224 × 3 - - - SVM DSTok [71] 94%

SSN

[60] E1 64 × 64 X - - Softmax 9:1
UCID [75] 98.41% 95%

(Avg.)PUBLIC [75] 87.60%

IPLAB [76] 90.89%

[61] E2 64 × 64 X - - Softmax 9:1
UCID [75] 79.49% 90.83%

VISION [64] 98.50%

IPLAB [76] 83.85%
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4. Computer Graphics Image Forensic

Another possible source of a digital image is represented by Computer Graphics algorithms, so
proper methods to detect this kind of origin have also been developed. In this field, Yu et al. [54]
evaluated VGG-based architectures for CG image detection and found that their performance could
be improved by dropping max-pooling layers. The authors explained that pooling layers could lead
to a loss of association between adjacent pixels. Therefore, they presented a six-layer CNN without
any pooling layer and achieved detection accuracies of over 98% on 32 × 32 patches. He [70] tested
several training strategies for VGG-19 and ResNet-50 architectures. Specifically, transfer learning
technique was applied during the training phase and a fine-tuned ResNet-50 model was found to
have the best performance. The authors report an average detection accuracy of about 96.1% on
DSTok dataset. Building on the hybrid CNN-RNN approach of Li et al. [52], He et al. [55] presented a
similar framework with a dual-path CNN to identify CG images. In this approach, 96 × 96 patches
are firstly converted to the YCbCr color space. Then, the luminance component is processed by a
Schmidt filter bank to generate 13 different kinds of filtered responses. Lastly, the pair of chrominance
components Cb,Cr and the filtered responses of the luminance component are separately fed into a
four-layer CNN. Using this technique, the authors improved over the results obtained by Yu et al. [54]
by 4 percentage points. Yao et al. [56] designed a five-layer CNN where the inputs are preprocessed
by using high-pass filters. In this work, the authors explored three high-pass filters that were first
introduced in the field of steganalysis: SQUARE5x5, SQUARE3x3, and EDGE3x3. Cui et al. [72]
evaluated the use of ResNet-50 using the PRNU noise as input, and their architecture achieved a
detection accuracy of 98% on Columbia Photographic Images and Photorealistic Computer Graphics
Dataset. Instead of using fixed filters in the preprocessing step, Quan et al. [57] (code available at
https://github.com/weizequan/NIvsCG) proposed a CNN with 32 convolutional operations in the
first layer so that the weights of convolutional operator can be learned during the training phase.
The results reported in their paper show that the performance of this method is better than the
conventional methods, like Geo [77], SPAM [44], and Mfra [78], which indicate the effectiveness of
CNN-based method on computer graphics (CG) image forensic. Rahmouni et al. [58] (code available
at https://github.com/NicoRahm/CGvsPhoto) presented a novel statistical features extraction (SFE)
layer and embed it between the last convolutional layer and the first fully connected layer. The
SFE layer would extract four features: mean, variance, maximum, and minimum. The authors also
explored feeding those features into different classifiers such as LDA and SVM. According to their
paper, the best results are obtained by the CNN model trained in an end-to-end way. Continuing on this
path, Nguyen et al. [73] improved detection performance by using a more powerful feature extractor:
VGG-19. In this approach, the outputs of the convolutional operations before first three max pooling
layers were extracted and the final features were calculated by computing their mean and variance.
Then, three groups of those final features were fed into a fused 1-D CNN with two convolutional and
three fully connected layers. Sharing a similar idea with the last two methods, De Rezende et al. [74]
explored using other feature extractors and different classifiers: softmax, k-nearest neighbors, XGBoost,
and SVM. In the end, ResNet-50 was chosen and the outputs of its 49th layer were used as features.
The authors report that combining ResNet50 with a SVM classifier with RBF kernel achieved the
best performance.

The most significant network parameters and the experimental settings of the reviewed works
are summarized in Table 2, where we have identified five main architectures (using the short name
C1, C2, ...., C5). Then, in Table 4 we have summarized the experimental settings and the performance
achieved by those architectures, as well as by some conventional CNNs.

It can be noted that many recent works adopt approaches based on the extraction of statistical
features from filtered images. All of them, however, only compute simple indicators such as mean
and variance. It would be interesting to explore the possibility of using more sophisticated statistical
features and whether those variant could yield an improvement on photo-realistic CG images.

https://github.com/weizequan/NIvsCG
https://github.com/NicoRahm/CGvsPhoto
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5. GAN-Generated Image Detection

In recent years, a number of deep learning techniques capable of generating fake multimedia
contents has been developed. Those methods, collectively called “deepfakes”, include autoencoders
(AE) and generative adversarial networks (GAN). This pose significant challenges to the forensics
community, as the contents generated by those techniques are much more realistic than the ones
generated by computer graphics algorithms. Numerous researches and competitions [79] have focus
on the detection of deepfake multimedia, such as the MFC2018 and DFDC launched by NIST and
Facebook, respectively, and some surveys on this topic have been published. Verdoliva [80] presented
an overview of media forensics and deepfakes. Nguyen et al. [81] came up with a survey of algorithms
used to create deepfakes and, more importantly, methods to detect deepfakes proposed in the literature
to date. Tolosana et al. [79] provided a thorough review of techniques for manipulating face images
including DeepFake methods, and methods to detect such manipulations.

The most recent topic related to source image forensics is the detection of content generated
by means of GANs. Here, Marra et al. [82] evaluated the performance of several image forensic
detectors and popular computer vision CNN architectures on GAN-generated images detection.
More specifically, the authors used four image forensic detectors: the method proposed by Fridrich
and Kodovsky [83], the one by Cozzolino et al. [84], the one by Bayar and Stamm [85], and the
one by Rahmouni et al. [58]. The reviewed CNN architectures were: DenseNet [18], InceptionNet
v3 [86], XceptionNet [19], and the Cycle-GAN [87] discriminator. Experimental results showed
that XceptionNet has the highest average detection accuracy even for images that have undergone
Twitter-like compression. Haodong et al. [88] reported on an experimental investigation about the
effectiveness of forensic detectors for GAN generated image detection, and in particular fake face
images generated by Deep Convolutional Generative Adversarial Networks (DCGAN) [89] and
Wasserstein Adversarial Networks (WGAN) [90]. Four approaches were evaluated in this work:
GAN discriminator, face quality assessment, Inception score, and VGG-features with FLD. The best
performance was obtained by using VGG-features with FLD. However, its generalization performances
are limited when test set images are generated by different GAN schemes than the one used for
training. Focusing on the differences in color composition between original and GAN generated
images, Li et al. [91] presented a method where a feature set based on co-occurrences matrices is used
to capture color image statistics. Firstly, the color image is transformed to RGB, HSV, and YCbCr
spaces. Then, residual images would be generated for RGB, H, S, Cb, Cr channels, and co-occurrence
matrices for all the residual images would be calculated. The extracted features would be finally
fed into a binary classifier. The proposed method was evaluated on three public faces datasets
(celebA [92], HQ-CelebA [93], LFW [94]) with four kinds of generated images (deep feature consistent
variational auto-encoder (DFC-VAE) [95], DCGAN, WGAN-Gradient penalty (WGAN-GP) [96],
Progressive Growing Generative Adversarial Networks (PGGAN) [93]), and it was able to obtain
better performance than the one of model-based texture feature set [97]. McCloskey and Albright [98]
extracted features from color and saturation space to detect PG-GAN generated image. On one hand,
the standard rg chromaticity space is applied and the bivariate histograms of r, g components are fed
into a INH network [99]. On the other hand, two groups of saturation measurements are extracted as
features and SVM is used to classify PG-GAN generated images. The dataset produced in conjunction
with the US National Institute of Standards and Technology’s Media Forensics Challenge 2018 was
used to evaluate the performance of those two schemes. According to the report, saturation statistics
provided better performance. Mo et al. [59] expected that the main difference between the original
and GAN-generated images would be reflected on the residual domain. Therefore, they presented
a three-layer CNN with a Laplacian filter preprocessing to identify fake face images generated by
PG-GAN. From the perspective of artificial fingerprints, Marra et al. [100] explored a PRNU-based
scheme for GAN-generated image detection. Three GAN architectures are considered in this work:
Cycle-GAN, Pro-GAN, and Star-GAN. The results demonstrated that those GAN schemes would leave
artificial fingerprints into the generated images.
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The most significant network parameters and the experimental results of the reviewed works are
summarized in Table 2, and in Table 5.

Based on our review of GAN-generated image detection works, we can broadly classify the
proposed methods in three categories: existing detection methods; approaches based on the analysis
of color characteristics of the images; and techniques based on the analysis of images’ residual/noise.
However, GANs are a very popular topic among machine learning researchers, and thus we expect
GAN-generated images to become increasingly difficult to be detected. Existing techniques are likely
to become obsolete in a short time, and for this reason forensics researchers will need to keep building
new, effective detection methods.

Table 5. The statistical table for GAN-generated image detection. GAN shows the GAN model used to
generate the images. Method represents the detection algorithm. Performance is the obtained accuracy
unless otherwise specified. Only the best performance described in each paper is reported in this table.

GAN Dataset Method Performance

[82] Cycle-GAN [87] Cycle-GAN Data [87]

Cycle-GAN Discriminator [87] 83.58%
Fridrich and Kodovsky [83] 94.40%
Cozzolino et al. [84] 95.07%
Bayar and Stamm [85] 84.86%
Rahmouni et al. [58] 85.71%
DenseNet [18] 89.19%
InceptionNet V3 [86] 89.09%
XceptionNet [19] 94.49%

[88] DC-GAN
W-GAN CelebA [92] DCGAN Discriminator 95.51%

VGG+FLD
>90 % (DC-GAN)
>94% (W-GAN)

[91]

DFC-VAE
DCGAN
WGAN-GP
PGGAN

CelebAHQ [93]
CelebA [92]
LFW [94]

Co-Color 100%

[59] PG-GAN CelebAHQ [93] Lap-CNN 96.3%

[98] GAN MFS2018 [6] RG-INHNet 0.56 (AUC)
Saturation Features 0.7 (AUC)

[100]
Cycle-GAN
Pro-GAN
Star-GAN

MFS2018 [6] PRNU-based method 0.999 (AUC)

6. Source Social Networks Identification

In recent years, social networks such as Facebook, Google+, and Twitter became more and more
important in the daily life of a large part of the world population. According to Caldelli et al. [75], on
average 350 million photo are uploaded daily on Facebook and around 60 millions monthly on Flickr.
To the best of our knowledge, Amerini et al. [60] were the firsts to propose a CNN-based algorithm to
identify from which social network a query image has been downloaded. The authors indicated that
image manipulations applied by social networks usually include compressing as JPEG and resizing the
original file, and that different social networks use different parameters for those operations. Therefore,
it is possible to identify the source social network by looking at the discrete cosine transform (DCT)
coefficients of the resulting image. Inspired by the work of Wang and Zhang [101], the authors extracted
from each image the histogram of the first nine DCT coefficients and fed them into a simple 4-layer
1D CNN, obtaining great performance on source social network identification. Caldelli et al. [61]
presented another scheme based on a 2D CNN with a preprocessing step. In the pre-processing stage,
the PRNU noise of the image would be extracted. This noise would be then fed into a 6-layer 2D CNN.
This technique obtains performance comparable with the one from the first method.

The most significant network parameters and the experimental settings of the reviewed works
are summarized in Table 2, where we have identified the two main architectures as E1 and E2. Then,
in Table 4 we have summarized the experimental settings and the achieved performance.
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The works presented in this section assume that images published on a social network will
be re-encoded as JPEG after being processed by some unknown set of operations. Even if this is
a sensible assumption, there is no guarantee that the specific processing pipeline used by a social
network will stay the same over time. A simple software update on the backend software of a social
platform could dramatically change how the images are processed, thus making an existing classifier
obsolete. For this reason, all the methods described in this section require a constant update where
social-network-processed images are continuously used to retrain the models. This is, however,
inevitable due to the lack of knowledge about the inner working of social platforms.

7. Anti-Forensics and Counter Anti-Forensics

Image anti-forensics are techniques that aim to make forensics algorithms fail by modifying
the images in a visually imperceptible way. Their goal is to prompt the image forensics community
to come up with more robust forensics schemes. Recent developments in deep learning research
led to the development of generative adversarial networks (GANs), novel techniques that proved
to be very effective in deceiving many existing image forensics approaches. Güera et al. [102]
trained a DenseNet-40 model for source camera identification and verified its vulnerability to Fast
Gradient Sign Method (FGSM) [103] and Jacobian-based Saliency Map Approach (JSMA) [104] attacks.
Marra et al. [29] evaluated the vulnerability of deep learning-based source camera identification
algorithms to adversarial attacks in a more comprehensive manner. In this work, four kinds of
deep learning-based methods (shallow CNN, DenseNet-40, DenseNet-121, XceptionNet) and two
schemes of adversarial attacks (FGSM, Projected Gradient Descent (PGD) [105]) are tested to study
their behaviour when classifying both pixel patches and full resolution images. According to the
study, deep learning-based approaches are vulnerable to adversarial attacks. The authors report
that, even if the robustness of deep learning-based methods can be improved by using adversarial
training or training with JPEG-compressed images, the resulting networks are still vulnerable to
targeted attacks. Zhao et al. [106] generated increasingly strong adversarial examples by using FGSM
and Least-likely Class Method (LLCM) [107] and verified the vulnerability of deep learning-based
image forensic algorithms. Fan et al. [108] proposed two kinds of gradient-based attacks against deep
learning-based recaptured image forensic schemes: single attack and multiple attack. In order to verify
the effectiveness of the proposed approach, the authors performed the attack on deep learning-based
methods which employed adversarial training (as proposed by Szegedy et al. [109]) as a defense. The
results indicated that single attack is ineffective on models that employ adversarial training, while
multiple attack with a slow learning rate will obtain better results. Besides generating adversarial
examples, generative adversarial networks attracted extensive attention because of their ability to
generate photorealistic pictures and to achieve image-to-image translations. Two kinds of attacks
against CNN models for source forensics have been proposed by modifying the GAN framework.
Focusing on source camera identification, Chen et al. [110] defined a new loss function for the generator
comprised of three terms: the perceptional loss, the classification loss, and the adversarial loss. More
specifically, the perceptional loss describes the mean absolute difference between the original image
and its falsified copy. The classification loss was designed to measure the difference between the
output of the camera model identification classifier for the falsified image and the ideal output for
the target camera model. The adversarial loss represents the standard loss function of GANs. In
order to fool deep learning-based methods for recaptured image detection, Zhao et al. [111] proposed
a Cycle-GAN-based scheme by fusing the adversarial loss, the cycle consistency loss and the low
frequency consistency loss. In addition to the loss function used in Cycle-GAN, a low frequency
consistency loss based on a median filter is proposed to keep the generated image similar to the
original one.

Counter anti-forensics [112] methods have been proposed as a defense against anti-forensics
techniques by improving the robustness of image forensics methods in case of anti-forensics attacks.
Meanwhile, with the advent of adversarial examples, numerous approaches have been developed in
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the field of computer vision to defend against adversarial attacks [113,114]. According to the review
paper on the threat of adversarial attacks by Akhtar and Mian [113], until now defenses against
adversarial attacks can be broadly divided into three categories. The first kind of defense is based on
using modified examples either during training or during test. Adversarial training is based on this
idea. The second kind resorts to modifying the networks by adding more layers, changing loss and so
on. The last kind employs external models as network add-on when classifying unseen examples. It
should be mentioned that deep learning and adversarial attacks greatly contributed to the cooperation
between computer vision and image forensics communities, thus accelerating the development of
related image forensics techniques. We will now introduce three preliminary works proposed by
source image forensics researchers. Zhao et al. [106] combined adversarial training and regularization
of input gradients as a defense against FGSM and LLCM attacks. Firstly, the regularization term
of input gradients is added into the original loss function; then, the adversarial training strategy is
applied to train the CNN model. Carrara et al. [115,116] used OverFeat, a well-known and successful
deep convolutional network architecture, for the image representations. The features were extracted
from the pool5 layer of the OverFeat and fed into a k-nearest neighbors (KNN) regressor to get a
score. If the score is below threshold, the query image will be classified as an adversarial example and
thrown away. From the perspective of image forensics, Schöttle et al. [117] presented an adversarial
example detection scheme based on simple steganalysis features. Images that are not classified as
adversarial examples will be distinguished by the CNN model [105]. It should be noted that those
three approaches were only tested on some relatively old attack methods, such as FGSM, LLCM, FGS,
PGD, which are easy to defend against according to the report by Carlini and Wagner [118].

More effective attack algorithms have been proposed in the field of computer vision; it is thus
necessary to further study those methods in order to verify their performance in case of more powerful
attacks. Thanks to the effort of Papernot et al. [119] a Python library which implements sixteen different
kinds of adversarial attacks is available for other researchers to test their proposed defense schemes.

8. Evaluation Measures and Datasets

In this section we will describe the evaluation protocol and the datasets used in the
reviewed papers.

The metric used in most of the papers is the accuracy:

Acc =
TP + TN

TP + FP + TN + FN
(3)

where TP, TN mean the number of correctly classified positive and negative cases, FP, FN represent
the number of incorrectly classified positive and negative cases, respectively.

Besides, in order to fairly evaluate the performance for original and manipulated images in case
of unbalanced datasets, a weighted accuracy is also used in some papers:

Accweighted =
7

10
Accunaltered +

3
10

Accaltered (4)

where Accunaltered, Accaltered denote the accuracies in the case of unaltered images dataset and altered
images dataset, respectively.

We will now introduce the publicly available image forensics datasets used for evaluating
performance as shown in Tables 3 and 4. Datasets are organized according to the forensics topics. As
some anti-forensics and counter anti-forensics methods use datasets introduced in the other sections,
we will only report them once. Some of the datasets are freely downloadable from the authors’ websites,
while others can be obtained upon request.
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8.1. Source Camera Identification

Dresden Image Dataset [62] was built for the purpose of developing and benchmarking
camera-based digital forensic techniques. There are more than 14,000 images captured by 73 devices
which belong to 25 different models. Dresden dataset was released in 2010, when smartphones were
not yet a popular way to take pictures and therefore this dataset does not contain pictures taken with
such devices.

VISION [64] is a video and image dataset for source identification. It is currently composed
by 34,427 images and 1914 videos, both in the native format and in their social version (Facebook,
YouTube, and WhatsApp are considered), from 35 modern smartphones/tablets of 11 major brands.

SPC2018 [7] is a dataset published in 2018 for the IEEE Signal Processing Cup competition whose
topic was camera model identification. This dataset consists of 2750 images from ten different camera
models (including point-and-shoot cameras, cell phone cameras, and digital single-lens reflex cameras),
with 275 images captured using each camera model.

8.2. Recaptured Image Forensic

LS-D [53] is a large-scale dataset for evaluating recaptured image forensic. Four kinds of recapture
attacks are considered: (1) photographing a printed copy of an image; (2) scanning a printed copy of an
image; (3) photographing a displayed image; and (4) capturing a screen-grab of displayed image. This
dataset consists of 145,000 pairs of original and recaptured images. A diverse set of devices has been
used to recapture the images: 234 displays, 173 scanners, 282 printers, and 180 recaptured cameras.

NTU-Rose [65] is a collection of images recaptured from LCDs with good quality. It is composed
of 2700 recaptured images captured by using three digital still cameras and three LCDs. The number of
the original images is 300, including 100 images taken by the three cameras, 100 images downloaded
from Flick, and 100 tampered images.

ICL [68] is a dataset of images recaptured from a LCD and consists of 1035 original images taken
by nine different cameras and 2520 images recaptured by using different devices. Camera settings
were tuned in order to maintain a high image quality. Therefore, this dataset provides high-quality,
high-resolution recaptured images.

ASTAR [67] is a smartphone images dataset for single image recaptured detection. The dataset is
divided in three subsets. Subset A consists of 1094 real-scene images and 1137 recaptured images with
real environment background. Subset B is built by cropping the real-scene images from Subset A, and
by adding 1765 recaptured images without real environment backgrounds. Subset C consists of 587
pairs of single captured and recaptured images through transforming and cropping.

8.3. CG Image Detection

Columbia [69] consists of 800 CG images downloaded from Internet, 1200 images from personal
collections, 800 original images from Google Image searches, and 800 recaptured CG images.

DSTok [71] includes CG and real photograph (PG) images collected from the Internet. There are
4850 pairs of CG and PG images. All of them were JPEG-compressed and the file sizes were between
12 KB and 1.8 MB.

WIFS [58] is built for new CG and PG images. There are 1800 CG images and 1800 PG images. CG
images were downloaded from the Level Design Reference Database, which contains more than 60,000
good resolution video-game screenshots in JPEG format. Only five different video games were judged
photo realistic enough to be included in WIFS, and thus only 1800 images were selected. PG images
are high-resolution images taken from the RAISE dataset and directly converted to JPEG format.

3Dlink [55] consists of 6800 CG images download from the 3Dlink website and 6800 PG images
captured under various environmental conditions by using different camera models.
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8.4. GAN-Generated Image Detection

MFS2018 [6] is a dataset released in 2018 for a media forensics challenge, which aims to help
advance the state-of-the-art for image and video forensics techniques. For what concerns the works
reviewed in this paper, only a subset of the dataset was used (GAN Crop and GAN Full).

8.5. Social Network Identification

UCID social [75] is a UCID-based dataset for social network identification. Images from UCID
were first JPEG-compressed with different quality factors. Then, those compressed images were
uploaded to and subsequently downloaded from Flickr, Facebook, and Twitter. The UCID social
dataset is composed of 30,000 images, 10,000 images from each social network.

The PUBLIC social dataset [75] consists of 3000 uncontrolled images with different sizes, JPEG
quality factors and contents. Those images were directly downloaded from different social networks,
including Flickr, Facebook, and Twitter, 1000 images for each one.

IPLAB [76] provides 2720 images in JPEG format. Ten social networks were considered for
this dataset: Facebook, Google+, Twitter, Flickr, Instagram, Tumblr, Imgur, Tinypic, Whatsapp, and
Telegram. Captured images were uploaded to the social networks either by using a web browser, or by
using iOS and Android native apps.

9. Discussion and Conclusions

In this paper we presented a comprehensive survey of deep learning-based source image
forensics, anti-forensics, and counter anti-forensics. According to our review, deep learning-based
contributions for source image forensics can be divided into five categories, as shown in Figure 2:
adopting traditional convolutional neural networks, or improving performance adopting strategies
such as data enhancement, fusion and ensemble, patch selection, or using different classifiers. Most
researchers based their methods on popular CNNs for computer vision, such as ResNet, XceptionNet,
and DenseNet. Those architectures have proven to be effective when dealing with source image
forensics tasks, even though they were originally developed for different scenarios. In particular, the
most popular architecture for source image forensics appears to be ResNet, which strikes a balance
between computational complexity and performance. As deep learning methods are data-driven,
many contributions are focused on data enhancement techniques to improve the signal-to-noise ratio
of data provided to CNNs. To do so, both separate pre-processing steps and customized network
layers have been proposed. While many works reported an improvement in networks performance
by using these methods, some authors obtained better results without using them. Unfortunately,
these inconsistencies in different works are currently unavoidable: every method uses a different
experimental protocol, thus making it impossible to compare the results. Moreover, as deep learning
methods are heavily dependent on training data, it is difficult to declare a winner when comparing
methods that have been evaluated on different datasets.

In conclusion, while many deep learning-based source image forensics methods have obtained
remarkable results, there are still many research opportunities in this field worthy of being explored.
Interested researchers may draw inspiration from the ever-expanding set of machine learning
architectures and techniques to build new methods. Finally, it would be very important for the
advancement of this research area to come up with a standard experimental protocol and shared
datasets to make it possible to fairly compare the different proposed solutions.
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