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Abstract

In polygynous mating systems, males often increase their fecundity via aggressive defense of mates and/or resources
necessary for successful mating. Here we show that both male and female reproductive behavior during the breeding
season (June–August) affect female fecundity, a vital rate that is an important determinant of population growth rate and
viability. By using 4 years of data on behavior and demography of California sea lions (Zalophus californianus), we found that
male behavior and spatial dynamics—aggression and territory size—are significantly related to female fecundity. Higher
rates of male aggression and larger territory sizes were associated with lower estimates of female fecundity within the same
year. Female aggression was significantly and positively related to fecundity both within the same year as the behavior was
measured and in the following year. These results indicate that while male aggression and defense of territories may
increase male fecundity, such interactions may cause a reduction in the overall population growth rate by lowering female
fecundity. Females may attempt to offset male-related reductions in female fecundity by increasing their own aggression—
perhaps to defend pups from incidental injury or mortality. Thus in polygynous mating systems, male aggression may
increase male fitness at the cost of female fitness and overall population viability.
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Introduction

In species with polygynous mating systems, males increase their

reproductive success (fecundity) by either defending females

(female-defense polygyny), defending key resources required by

females for reproduction, such as breeding or nesting sites

(resource-defense polygyny), or by establishing male dominance

hierarchies that influence female choice of males (lek polygyny;

[1,2,3]). In spite of literature demonstrating male fecundity (i.e.,

the number of offspring sired by a male) increases with polygyny

(e.g., [4,5,6,7,8,9,10]), little empirical work has addressed the

impact of aggressive behaviors often associated with polygyny on

female fecundity. Specifically, interactions between males to secure

resources or mates during the breeding season could have a

detrimental effect on the ability of females to care for offspring

(e.g., [11]). Infanticide and accidental mortality of offspring

resulting from male-male combat are extreme examples of this

[12,13,14,15,16,17,18]. Even fewer studies have explored the

population consequences of male-male interactions in polygynous

mating systems. Demography is determined in large part by

female vital rates [19] although many studies have illustrated the

importance of male vital rates [20,21,22,23,24]. Thus, any

reduction in female fecundity due to male-male interactions

associated with mate or breeding site defense could reduce the

overall population growth rate.

In this paper, we explore the relationship between behavior and

female fecundity in California sea lions (Zalophus californianus) within

the Gulf of California, Mexico, with particular attention to the effect

of intra-sexual aggressive behavior on the long term population

growth rate of this population. Sea lions are polygynous mammals

that aggregate at terrestrial breeding sites during the summer

reproductive season [25], making them ideal for studies of behavior

and demography [26]. Males do not participate in parental care;

rather males increase their reproductive success by having multiple

mates. Thus, male reproductive success may be related to agonistic

interactions of territorial males and indirectly related to female future

reproductive success. Unlike males, females actively participate in

parental care [27]. Females alternate between foraging trips at sea (3–

4 days) and nursing periods on land to support themselves and their

pups during the , one-year lactation period [28]. Pup survival

depends primarily on the mother’s ability to obtain sufficient food and

provide protection against conspecific aggression [29,30].
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California sea lions are thought to exhibit a resource-defense

polygynous breeding system, although some characteristics of their

mating systems suggest it is lek-like [31]. During the breeding

season, reproductively active males defend territories that vary in

size, density of females, and topography (e.g. sandy vs. rocky

beaches) [27,32]. Aggressive encounters between males are

frequent and males who initiate interactions (likely the more

aggressive males) are also the ones who hold territories [33].

Females compete with other females to maintain space required

for thermoregulation and pup care [31]. More aggressive females

tend to have a competitive advantage when colony density is high

[34]. Finally, while females typically defend their pups against

conspecific attacks and accidental trampling by males engaged in

aggressive territorial behavior, they must spend a significant

amount of time at sea to eat. Pups are left on land and likely at

higher risk of mortality when mothers are at sea foraging.

Here we examine how behaviors such as maternal attendance,

male and female aggression, and spatial variables such as male

territory size relate to female fecundity and thus, the population

growth rate of California sea lions in the Gulf of California,

Mexico [26]. Male aggression should simultaneously reduce time

available for copulation with females and potentially increase the

risk of trampling of pups. By contrast, female aggression should

lend to better protection of pups from trampling (by males) and

from aggressive females, as well as better defense of prime

breeding grounds coveted by other females attending pups. Thus,

we expect that female and male aggression may have counter-

vailing effects on female fecundity and fecundity will decline with

male aggression but increase with female aggression. We explore

these predictions at the population-level using data for 6 island

breeding colonies in the Gulf of California.

Results

Of our putative predictor variables, only two were found to be

correlated: the number of females per territory and territory size

(Pearson’s correlation, r = 0.428; P = 0.0003; Table 1). We

considered territory size in subsequent analyses because this

variable is a comprehensive predictor representing both space use

and male defense of females.

Model selection results suggested that the best multiple

regression model for fecundity included 3 variables: female

aggression, male aggression, and male territory size (Tables 2 &

S1). This model had a reasonable fit as well (R2
LR = 0.25; see

Table 2). Four other models also had DAICC values of ,2. Female

and male aggression and territory size were included in 3 of the 4

supported models (Table S1). The best regression model for

prospective fecundity included only 1 variable — female

aggression — but this variable explained very little of the variance

(R2
LR = 0.04). The model including female aggression as the single

predictor garnered strong support (wi = 0.48) and was the only

model with DAICC,2 (Tables 3 & S2).

Female aggression, male aggression, and male territory size

exerted significant linear effects on fecundity but the direction of

these effects varied (Fig. 1; Table 3). Female aggression had

positive effects on fecundity, whereas male aggression had negative

effects on fecundity (Table 3). Male territory size was also

negatively associated with fecundity, but the effect size was small.

Table 1. Pearson correlation among seven behavioral and
spatial variables recorded at six California sea lion breeding
colonies in the Gulf of California.

Variablesa F M N P D NF

F

M 0.082

N 0.149 0.065

P 20.001 20.030 0.024

D 20.255 20.323 20.315 0.182

NF 0.052 20.262 20.215 20.187 0.270

T 20.003 20.003 20.128 0.078 0.013 0.428*

*Significant correlation, P = 0.0003.
aF = Female aggression, M = Male aggression, N = Female nursing, T = Male
Territory size, P = Male patrolling, D = Distance to nearest neighbor (among
territorial males), NF = number of females in territory. Descriptions are provided
in Table S4.

doi:10.1371/journal.pone.0012230.t001

Table 2. Top candidate models explaining fecundity in California sea lions.

Modela Coefficient estimates wi R2
LR Variable weightsb AICC

Intercept D F M N P T

FMT* 1.277 – 0.074 20.170 – – 20.001 0.154 0.254 2 25.3

FM* 1.178 – 0.044 20.177 – – – 0.120 0.065 2 25.8

P* 0.794 – – – – 0.612 – 0.103 0.026 0.27 26.1

T* 1.275 – – – – – 20.001 0.080 0.024 0.403 26.6

D* 1.180 20.023 – – – – – 0.073 0.021 0.297 26.8

N 1.139 – – – 20.477 – – 0.046 0.014 0.173 27.7

FMD 1.210 20.025 0.048 20.167 – – – 0.046 0.103 2 27.7

F 1.095 – 0.004 – – – – 0.044 0.014 0.557 27.8

M 1.129 – – 20.007 – – – 0.044 0.014 0.561 27.8

Parameter estimates, Akaike weights (wi), and estimate of model fit (R2
LR) for the top 9 candidate models explaining fecundity (i.e., the same year behavior was

measured). We include all models with DAICC,3 here so that we can calculate variable weights for all six variables considered (see Table 3). Weights for coefficients
included in the model with the most AIC support and estimates for these coefficients are in bold.
aF = Female aggression, M = Male aggression, T = Male Territory size, P = Male patrolling, D = Distance to nearest neighbor (among territorial males), N = Female nursing
behavior. Descriptions are provided in Table S4.

bVariable weights are the sum of weights of all models in the set considered containing that variable. * Indicates models with strong support (e.g., with DAICC,2).
doi:10.1371/journal.pone.0012230.t002
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Finally, female aggression was positively related to prospective

fecundity (Fig. 2; Table 3).

Discussion

Polygyny in California sea lions most likely increases the

average fecundity of territorial males as well as the variance in the

fecundity of all males, such that there is greater disparity in

fecundity between territorial and non-territorial males. In this

paper we provide evidence that male characteristics associated

with polygyny have potentially detrimental effects on female

fecundity. Specifically, we found significant negative effects of both

male aggression and increased territory size on female fecundity.

By contrast, we found significant positive effects of female

aggression on this estimate of female fecundity. Of six variables

examined (see Tables 1 & 2), male aggression, male territory size,

and female aggression explained ,25% of the variance in female

fecundity and male variables comprised .65% of variable weights

across all regression models examined. By contrast, only female

aggression was significantly related to prospective fecundity.

Our observed negative relationship between male aggression

and female fecundity is consistent with observations of common

lizards (Zootoca vivipara; [22]) and Hawaiian monk seals (Monachus

schauinsland; [35]). These results suggest several interesting

hypotheses about the relationship between aggression and

fecundity in sea lions. Male aggression may have negative effects

on female fecundity by directly influencing female behavior and

female-pup interactions. For example, male aggression may cause

separation of mother-pup pairs, increase female vigilance and

disrupt nursing which could make pups more susceptible to

Table 3. Parameter estimates for the best candidate models predicting fecundity (the same year behaviors were measured) and
prospective fecundity (the year following behavioral observations) in California sea lions.

Parameter Estimatea Se Weighted Estimateb F df P

Fecundity the same year behavior was measured

Intercept 1.277 0.156 1.146 – – –

F 0.074 0.020 0.027 13.020 1, 21.3 0.002

M 20.170 0.038 20.078 21.080 1, 16.8 0.000

T 20.001 0.0004 0.0002 5.750 1, 20.8 0.026

Prospective fecundity: fecundity the next year behavior was measured

Intercept 0.356 0.236 – – – –

F 0.105 0.038 – 7.54 1, 11.6 0.018

F = Female aggression, M = Male aggression, T = Male Territory size.
aEstimates of parameters from candidate models with highest support (highest Akaike weight).
bWeighted estimates are calculated as in Burnham and Anderson [66].
doi:10.1371/journal.pone.0012230.t003

Figure 1. Univariate relationships between the six candidate behavioral variables and fecundity (e.g., female fecundity the same
year behaviors were observed). Fitted lines are significant where present.
doi:10.1371/journal.pone.0012230.g001
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external sources of mortality [36], disrupt resting in females and

pups, and possibly cause direct mortality of pups—trampling by

large males during territorial bouts. Alternatively, male aggression

may reduce female fecundity indirectly due to a male trade-off

between time spent on courtship (and copulation) and defense of a

territory leading to a lower insemination rate of philopatric

females [37]. Reproductive effort in male red deer (Cervus elaphus)

decreases with increasing density [38,39] because males increase

the frequency of fighting with increasing density [40]. Similarly,

male domestic cats (Felis catus) that are more aggressive have

reduced male fecundity both directly due to their propensity for

fighting in lieu of mating and indirectly by scaring off females

[41,42,43]. While we did not identify a significant relationship

between male aggression and prospective fecundity, these two

hypotheses deserve further exploration to unravel the mechanisms

by which male aggression reduces fecundity.

We found that female aggression is significantly and positively

related to female fecundity (the same year) and prospective

fecundity (next year). Interestingly, in other species, female

aggression has been linked to a decrease in fecundity. For

example, Harcourt [30] found that aggression was correlated with

pup mortality in a dense population of South American fur seal

(Arctocephalus australis). Similarly, female reproductive success is

enhanced through an increase in pup survival when aggression by

female elephant seals to other females and alien pups is infrequent

[44]. Our results suggest that present levels of female aggression in

California sea lions may instead be associated with increased

fecundity rates. Female aggression may result in higher fecundity

by increasing survival of pups directly via greater protection of the

pups or indirectly by securing higher quality resting and breeding

areas within the colony for females and their pups [45]. Females

that are more fit may invest more time in fighting to delineate a

space for themselves and pups [17,30]. Female grey seals

(Halichoerus grypus) are known to aggressively defend space for

themselves and their pups [46]. Therefore, female aggression may

represent a form of vigilance, where aggressive females are

exhibiting higher rates of maternal care. Vigilant parenting may

also explain the relationship between female aggression and

prospective fecundity of philopatric females. Alternatively, in-

creased female aggression may be the outcome of higher fecundity,

as females with pups tend to be more aggressive than single

females [47]. Future studies should attempt to determine the

mechanisms of this relationship and also measure the timing (as

opposed to frequency) of male and female aggression.

Lower fecundity was also associated with larger territory sizes,

although the magnitude of the effect was quite small (Table 3). In

the colonies we studied, larger territories are often found in

colonies with lower densities and declining population trends (e.g.,

Granito, see [32]). Therefore, larger territories in our study sites

may simply reflect lower population densities (less competing

males) and possible lower quality sites (where fewer males try to set

a territory and individuals are less fit). Both lower densities and

lower quality habitat could reduce fecundity rates explaining the

association between territory size and fecundity we observed.

Studies that explicitly consider habitat quality and fecundity are

needed to explore these hypotheses.

We used simple linear models to explore relationships between

behavior and demography (fecundity) thereby potentially ignoring

possible non-linearities in these relationships. The decision to use

linear models was made because the sample size requirements of

non-linear models are higher than the number of observations in

our dataset. Moreover, an initial visual inspection of our data did

not suggest any obvious non-linearities in any of the univariate

response surfaces. However, we recognize that there are reasons to

expect the relationship between somes behaviors and fecundity to

be non-linear. For example, female aggression is likely to have a

non-linear relationship with fecundity because low to intermediate

levels of female aggression may help secure suitable habitat and

protect pups (as suggested by our study), while high levels of female

aggression disrupt maternal care reducing the time females devote

to nurse their pups and also place pups at higher risk of injury [30].

Future studies—with higher sample size and wider ranges of

Figure 2. Univariate relationships between the six candidate behavioral variables and prospective fecundity (e.g., female fecundity
the year after behaviors were observed). Fitted lines are significant where present.
doi:10.1371/journal.pone.0012230.g002
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variation in behavior—should attempt to construct and test

nonlinear hypotheses using more data-intensive tools than used

here (e.g. Generalized Additive Models [48]).

Overall, our results indicate that female and male behavior

influence female fecundity in sea lions. However, measured

behavior explained only 25% of the variability in fecundity in

our study sites. Female fecundity is likely influenced by other

factors not measured in our study, such as habitat quality and food

abundance (e.g., [49]). Furthermore, an alternative mating

strategy might exist that is linked to female fecundity (i.e.; the

existence of males that fertilize females without venturing ashore

during the breeding season, or perhaps do so at night, outside of

the observation periods in the study; [50,51,52,53]). In this case,

female fecundity would not be explained by territorial male

behavior on site. Future studies should consider the effect of these

factors in sea lion female fecundity and also explore how different

conditions may influence behavioral responses. For example,

aggression patterns in California sea lions have been shown to be

influenced by habitat conditions such as temperature and sea

condition [54] and extrinsic factors have been suggested to best

explain population dynamics of elephant seals [55]. Nevertheless,

our study provides an initial understanding of the complexity of

factors that affect vital rates such as fecundity, and reveals the

importance of considering animal behavior in studies of

population dynamics.

Our observation that female fecundity varies with male

aggression has important implications for understanding the

relationship between polygyny and demography. Specifically,

female fecundity is an important parameter in estimating the

growth rate and viability of California sea lions. Small changes in

fecundity may represent a significant influence on the discrete

annual rate of population increase (l). For example, we observed

values for the number of pups per female ranging from 0.44–2.07.

Applying extreme values from this range (2.1 vs. 0.4) into a

projection matrix based on measured survival rates (see [26] for

details) we estimated changes in the annual rate of increase of

20.04 (from 1.16 to 1.12). This small change in l represents a 4%

reduction in the annual population growth of this sea lion

population. Thus, our observation that female fecundity varies

with aggression (by both sexes) and male territory size suggests that

female and male social interactions may influence the propensity

for populations to recover from decline or increase their risk of

extinction (e.g., [21,35]).

In conclusion, our data illustrate the importance of considering

male dynamics in population models typically used in conserva-

tion. Male behavior has a much stronger relationship with female

vital rates than similar female behaviors during the same year. For

example, the proportional contribution of weights of male

coefficients (M & T: 0.43; Table 2) was .1.5 fold higher than

the proportion of variable weights associated with single female

coefficient from best model (F: 0.25; Table 2). Males matter, in this

case, not because male limitation precludes efficient siring of

offspring [21], but because high aggression among males

apparently suppresses reproduction by females. At the same time,

female aggressive behavior explains some variation in fecundity in

subsequent years. Studies such as ours that examine the

mechanisms that determine demography (e.g., behavior) may

inform practical decision making for imperiled populations by

identifying mechanisms that are most critical to population

viability [56]. Understanding which behavioral and ecological

factors influence population dynamics can encourage proactive

management and better predictions of wildlife response to

changes. For example, increases in male aggression were

associated with reduced female fecundity, suggesting that envi-

ronmental changes that may increase male aggression (e.g., greater

human disturbance, increases in density) are likely to be associated

with reduced fecundity.

Materials and Methods

Data Collection
Our analyses stem from 4 years of spatially replicated

observations at 6 breeding colonies in the Gulf of California,

Mexico (Fig. 3). All field research was approved by the

Institutional Animal Care and Use Committee at Arizona State

University (permit 07-918R). Observations were collected simul-

taneously at 2 sites per island during July 2004–2006 (behavioral

data) and July 2004–2007 (demographic data, Table S3). During

each observation trip, we gathered data for 8–9 hrs per day, but

the actual times of observation varied daily to ensure our

observations covered all daylight hours (7 am–7 pm). We

concentrated our efforts in July because at this time most births

have already occurred and mating has started [28,31]. Garcı́a-

Aguilar and Aurioles-Gamboa [28] found that the reproductive

peak occurs approximately at the same time at Granito and Los

Islotes, although there appears to be two peaks at Los Islotes.

These data suggest that differences in reproductive timing among

islands are unlikely to introduce bias to our study design.

We recorded data on 4 behaviors associated with mating and

reproductive success: female aggression, male aggression, nursing

(in females), and patrolling (in territorial males; see Table S4 for

definitions). For aggression, we observed all male and female sea

lions present at the study sites. Repeated aggressive interactions

between two individuals were treated as a single event if they

occurred #3 min of one another. Interactions initiated .3 min

after the last bout ended were recorded as a new, independent

event [33,54,57,58]. Nursing and patrolling behaviors were

obtained from scan sampling (Table S4). Scan samples document

Figure 3. Study sites in the Gulf of California, Mexico. Numbers
indicate the six islands where observations were conducted: (1) San
Jorge, (2) Los Lobos, (3) Granito, (4) San Esteban, (5) Los Islotes, and (6)
Farallon de San Ignacio.
doi:10.1371/journal.pone.0012230.g003
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the behavior of each animal when it is first observed [59]. The

behavior and sex of each adult at the study site was recorded

during each scan.

Each day we also documented 3 territorial attributes that

describe spatial dynamics of individually-identified territorial

males: distance to nearest neighbor, territory size, and number

of females per territory (see Table S4 for definitions). Additional

details on the size of colonies, sex ratio, and density are provided in

[26,33,54]. For all behaviors and territorial attributes, we

calculated a single value per year as the mean of all recorded

observations during the observation trips (Table S3).

Individual females could not be identified, thus we do not

examine behavior at the level of the individual, but as population

averages. Unlike females, male sea lions have distinct scar patterns,

generally permitting individual identification. In a few cases (,7%)

we were unable to identify individual males, thus some could be

overrepresented in our sample as they could be observed many

times per day, trip, or year. In a previous study [54] we explored this

potential bias with a subset of identified males and found that

individuals were generally represented equally in our estimates of

aggressive behavior, suggesting our data represented the overall

population rather than a few particularly aggressive individuals.

We also estimated a single value per year for female fecundity

which was calculated as the ratio of the maximum number of pups

to the maximum number of adult females observed at each site.

We calculated fecundity the same year the behavior was recorded

(hereafter, fecundity) and fecundity the year after behavior was

recorded (hereafter, prospective fecundity). Counts were complet-

ed 4–6 times a day at each site during observation trips (Table S3).

During each count observers are unlikely to detect all individuals

in the colony, especially females and pups. Pups may rest amongst

or under large rocks and boulders and thus, are undetected by

observers. Similarly, some females are likely to be foraging at sea

during any given count. Previous research suggests that up to 50%

of pups and 23–54% of females can be undetected in population

counts [60,61]. In the Gulf of California, the proportion of missing

animals is thought to be consistent among island study sites

(Stzeren et al. 2006). To account for the likely underestimates in

abundance from raw counts, we use the maximum (rather than

mean) number of individuals observed in each case as the

maximum is most likely a better estimate of the actual number of

adult females and pups (leading to more accurate estimates of

fecundity). However, using the maximum value could inflate the

variance and lower the precision of our estimates. To explore this

potential source of error, we tested for differences in the variance

of maximum and mean fecundity measures, where mean fecundity

was calculated as the ratio of the mean number of pups to mean

number of females observed per year at each site (Table S5). We

found no significant differences (F = 0.59, n = 25, 25, P = 0.9;

F = 1.24, n = 15, 15, P = 0.33; current and prospective fecundity,

respectively; Table S5). Therefore, our use of the maximum values

in the calculation of the ratio of pups: females should not inflate

the variance or lower the precision of our estimates of this

parameter.

To ensure that our estimates of fecundity are realistic, we

compare them with published fecundity rates obtained from mark-

recaptured studies completed at one of the studied colonies for

females 10–25 year olds (Los Islotes, [57]) and the California

Channel Islands for females 5–10 years old [62]. The mean birth

rates weighted by the sample size were 0.54 for Hernandez-

Camacho et al. [57] and 0.69 for Melin [62]. These values

correspond well with our mean estimate of 0.70 for Los Islotes

(Table S5), suggesting that our estimates based on count data are

likely to accurately reflect fecundity rates.

Data Analysis
We identified relevant behavioral and spatial variables that

affect fecundity rates using multivariate linear regression models.

To avoid co-linearity in our models we identified correlations

among the behavioral and spatial variables described above (Table

S4) using pairwise Pearson correlations. To be conservative,

variables with r.0.4 were considered to be correlated. All

uncorrelated variables were then used to generate linear regression

models. These models were used to predict fecundity the same

year the behavior was recorded and prospective fecundity

(fecundity the year after behavior was recorded). For 2 of our 6

surveyed islands, we had only 1 year of data (Table S3). Thus, we

used data from 6 islands for our analysis of fecundity, but only 4

islands for our analysis of prospective fecundity.

We fitted regression models using PROC MIXED in SAS [63]

and an automated macro implementing all-possible model

selection [64]. Our regression models considered year as a

repeated measure with a first order autoregressive variance

structure with sites (2 per island) as subjects, nested within island.

This approach accounts for spatial and temporal variation while

analyzing fixed effects of behavior and spatial variables on female

fecundity. In our analysis, the unit of replication is the site (2 per

island) for which there are repeat measurements (across years, not

days) of behavioral variables and maximum fecundity estimates.

Repeat measurements introduce statistical dependence in the

variance structure, and our analysis takes this source of statistical

dependence into consideration by modeling the site as a subject

that is measured repeatedly. In other words, we use a repeated

measures design in our regression models that assumes strong

temporal autoregressive dependence (AR1 variance structure).

This analysis corrects for statistical dependencies among repeat

observations of the same sites over time. Although only 3 islands

were surveyed on all 4 years (Table S3), the unbalanced nature of

the data was not an issue for our approach because we estimated

model parameters via maximum likelihood rather than least

squared methods, the former not requiring a balanced design in

time.

We used Akaike’s Information Criterion corrected for small

sample sizes (AICC) to choose among all possible candidate models

[65,66]. Due to low sample size (n = 26, n = 19 for fecundity and

prospective fecundity, respectively), we considered only candidate

models with #3 predictor variables (i.e., k = 9, including only 3

behaviors). This maximized the ratio of data to explanatory

variables in fitting our behavioral models to fecundity data (n/

k = 2–3). All candidate models with DAICC,2 were considered

supported models [66]. If $1 model was supported, the average

parameter estimates were calculated as described by Burnham and

Anderson [66]. Although standard estimates of model fit (R2) are

not available for mixed models, we calculated the likelihood ratio

R2 (R2
LR) which provides a useful estimate of the proportion of

variance explained by a mixed model [67].

Methodological caveats
We note that our analysis of relationships between behaviors

and fecundity should be viewed with some caution. First, our

analyses push the limit of acceptable ratios of information (sample

size) to structural parameters in our statistical model. Our models

included up to 3 behaviors, time as a repeated measure, several

spatial factors (site and island), and a covariance parameter

associated with the variance structure in our repeated measures

analysis. Thus, our ratio of data to variables (k = 9 including the

intercept and MSE) was ca. 2.1–2.9. Burnham and Anderson [66]

advise an n/k ratio of ,10 for noisy data, but also suggest that

small sample size corrections in the AICc calculation will correctly
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adjust for small sample size and high numbers of predictors. Our

decision to analyze only subsets of #3 predictors represents a

compromise between a strict interpretation of Burnham and

Anderson’s rule of thumb, and much lower n/k ratios of models

including all of our uncorrelated behaviors. Nevertheless, our

application of AICC, may correctly adjust AIC values for small

sample size bias, but should not be interpreted to completely

preclude the possibility of our large model overfitting a relatively

small dataset. Second, model selection in multiple regression

involving both fixed and random factors is not well understood; it

is still largely unknown how best to conduct model selection in

mixed effects models (e.g., whether AICC, BIC or other

information criteria are best suited). Finally, we recognize that it

is impossible to distinguish correlation from causation in our

identified relationships between fecundity and behavior.
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