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OBJECTIVES: Hyperoxia is common among critically ill patients and may 
increase morbidity and mortality. However, limited evidence exists for crit-
ically injured patients. The objective of this study was to determine the 
association between hyperoxia and in-hospital mortality in adult trauma 
patients requiring ICU admission.

DESIGN, SETTING, AND PARTICIPANTS: This multicenter, retrospec-
tive cohort study was conducted at two level I trauma centers and one level 
II trauma center in CO between October 2015 and June 2018. All adult 
trauma patients requiring ICU admission within 24 hours of emergency 
department arrival were eligible. The primary exposure was oxygenation 
during the first 7 days of hospitalization.

INTERVENTIONS: None.

MEASUREMENTS AND MAIN RESULTS: Primary outcome was in-hos-
pital mortality. Secondary outcomes were hospital-free days and ventilator-
free days. We included 3,464 critically injured patients with a mean age of 
52.6 years. Sixty-five percent were male, and 66% had blunt trauma mech-
anism of injury. The primary outcome of in-hospital mortality occurred in 264 
patients (7.6%). Of 226,057 patient-hours, 46% were spent in hyperoxia (ox-
ygen saturation > 96%) and 52% in normoxia (oxygen saturation 90–96%). 
During periods of hyperoxia, the adjusted risk for mortality was higher with 
greater oxygen administration. At oxygen saturation of 100%, the adjusted 
risk scores for mortality (95% CI) at Fio2 of 100%, 80%, 60%, and 50% 
were 6.4 (3.5–11.8), 5.4 (3.4–8.6), 2.7 (1.7–4.1), and 1.5 (1.1–2.2), re-
spectively. At oxygen saturation of 98%, the adjusted risk scores for mor-
tality (95% CI) at Fio2 of 100%, 80%, 60%, and 50% were 7.7 (4.3–13.5), 
6.3 (4.1–9.7), 3.2 (2.2–4.8), and 1.9 (1.4–2.7), respectively.

CONCLUSIONS: During hyperoxia, higher oxygen administration was in-
dependently associated with a greater risk of mortality among critically in-
jured patients. Level of evidence: Cohort study, level III.

KEY WORDS: critical care; hyperoxia; injuries; intensive care units; 
oxygenation; trauma

Oxygen is frequently administered to critically injured patients to pre-
vent hypoxia and enhance oxygen delivery (1, 2). This life-saving ma-
neuver has undisputed importance to treat and prevent morbidity 

associated with hypoxia. However, excessive oxygen supplementation is rou-
tine and often results in hyperoxia (oxygen saturation [Spo2] > 96% or Pao2 > 
150 mm Hg) (3–6).

Emerging evidence indicates that even modest hyperoxia be harmful. 
Supraphysiologic levels of oxygen in critically ill patients have repeatedly been 
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associated with an increase in both morbidity and mor-
tality (5–8). However, most studies focus exclusively 
on medical patients, as reflected by prior systematic 
reviews (2, 9–14). Limited evidence exists specifically 
regarding hyperoxia in trauma patients. Based on 
our review of the literature via a systematic Medical 
Subject Headings search, prior studies are limited to 
mostly traumatic brain injury (TBI) patients and do 
not account for cumulative oxygen exposure (15).

Beyond patient morbidity, the avoidance of hyperoxia 
may also improve resource utilization in both civilian 
and military contexts. Oxygen is a limited resource that 
is challenging to obtain in austere settings, including 
combat settings. It requires substantial resources, space, 
weight, and logistics to procure. Better understanding of 
the extent to which hyperoxia is not beneficial or even 
harmful could decrease this logistic burden in forward 
military operations and other austere settings.

In this study, we evaluated the association between 
hyperoxia and supplemental oxygen delivery with in-
hospital mortality in critically injured patients. We 
hypothesized that increased time in hyperoxia would 
be associated with increased mortality. Clarifying this 
association has the potential to reduce morbidity, re-
duce mortality, and improve resource utilization in an 
underinvestigated field of trauma research.

MATERIALS AND METHODS

Patient records were obtained from regional trauma 
registries and electronic health records (EHRs) at 
two level I trauma centers (University of Colorado 
Hospital, Aurora, CO, and Memorial Hospital Center, 
Colorado Springs, CO) and one level II trauma center 
(Medical Center of the Rockies, Loveland, CO). All 
are University of Colorado Health hospitals, share a 
common reporting structure to the state of Colorado 
trauma registry and use the same EHR (Epic). 
Critically injured patients were defined as: 1) having 
an International Classification of Diseases, 10th Edition 
(ICD-10) code for injury/trauma, 2) meeting criteria 
for entry into the Colorado state trauma registry, and 
3) requiring admission to the ICU. Admitting service 
was generally trauma and acute care surgery. We col-
lected data from October 1, 2015, to June 30, 2018. This 
multicenter, retrospective cohort study was approved 
by the Colorado Multiple Institutional Review Board 
(number 17-1359) as a minimal risk study with waiver 
of informed consent.

Individuals without an injury code from the trauma 
registry definitions or who were coded as a readmis-
sion were excluded. Individuals who died in the hos-
pital during the study period but who were missing a 
time of death were assigned a time of death of noon. 
Patients with suspected or confirmed carbon monoxide 
positioning—a condition which dictates intentional 
hyperoxia—were excluded based on ICD-10 coding. 
Longitudinal measurements of Fio2 (continuous), 
Spo2 (continuous), and Pao2 (Pao2) (intermittent) 
were obtained from entry to the emergency depart-
ment through the first 7 ICU days. Baseline character-
istics and illness severity were determined using time 
of intubation and extubation (if applicable), Acute 
Physiology and Chronic Health Evaluation (APACHE) 
II score, mechanism of injury (MOI), patient comor-
bidities, ventilator-free days (VFDs), and hospital-free 
days (HFDs). Intubation and extubation times were 
used to determine when a patient required a ventilator. 
When two intubation times occurred together without 
an interim extubation, the patient was assumed to be 
on a ventilator from the earlier time point. When two 
extubation times occurred together without an interim 
intubation, the patient was assumed to be on ventilator 
until the later time point. Manual chart review on a 
selected number of patients was performed to confirm 
this approach. There were no instances of more than 
two intubation/extubation times occurring together. 
Patients for whom their first procedure was an extuba-
tion were assumed to be ventilated from arrival and 
patients whose last procedure was an intubation were 
assumed to be ventilated until departure.

Spo2 measurements were paired to the nearest prior 
Fio2 measurement. Spo2 measurements were assumed 
to remain unchanged until the next Spo2 measurement 
was recorded. Measurements outside of the range 
0–100% were discarded. Supplemental oxygen mea-
surements recorded in liters per minute (L/min) were 
converted to Fio2 using the formula x × 3.5 + 21 where 
“x” is the flow rate in L/min (16–19). Fio2 measure-
ments outside of the range 21–100% were discarded. 
Fio2 measurements from the ventilator setting flow 
sheets were assumed to be remain constant until the 
patient was extubated or a new setting was recorded. 
Supplemental oxygen was assumed to remain constant 
until the next record (either Fio2, supplemental ox-
ygen, or room air) or for 12 hours. No value of Fio2 
was assumed for the first 12 hours of a patient’s visit in 
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the absence of a recorded value. After 12 hours with no 
record, the patient was assumed to be on room air, re-
gardless of mechanical ventilation status. All vital signs 
were obtained via electronic capture from the EHR. Safe 
upper limits in critically ill patients without trauma are 
96% Spo2 and 150 mm Hg Pao2 (4–6). Based on a re-
cent Delphi Consensus investigating oxygen targets for 
trauma patients, hypoxia was defined as Spo2 less than 
88%, mild hypoxia as Spo2 88–89%, normoxia as Spo2 
90–96%, and hyperoxia as Spo2 greater than 96% (20).

We calculated APACHE scores from the patient’s 
worst value in the first 24 hours (21). APACHE phys-
iologic variables with no record were assigned a value 
of zero. For the oxygenation component, if Pao2 was 
completely missing for an individual, the worst serum 
bicarbonate (Hco3) was used. If any Fio2 value greater 
than 50% was recorded in the first 24 hours, the worst 
alveolar–arterial oxygen gradient was used. Otherwise, 
the worst Pao2 was used.

We classified comorbidities using ICD-10 codes 
according to classifications provided by the Agency for 
Healthcare Research and Quality (22). Four cardiopul-
monary comorbidities were flagged: congestive heart 
failure, valvular disease, pulmonary circulation disor-
ders, and peripheral vascular disorders. The sum of a 
patient’s other noncardiopulmonary comorbidities was 
also used as a covariate in the analysis. All included 
comorbidities are listed in Supplemental Table 1 (http://
links.lww.com/CCX/A606).

We categorized MOI using ICD-10 codes according 
to classifications provided by the Centers for Disease 
Control and Prevention (23). If more than one cate-
gory was present in the ICD-10 code, preference was 
given in the following order: penetrating, motor ve-
hicle, fall, or other. MOI was then dichotomized to 
blunt (fall, motor vehicle) and nonblunt (penetrating 
and other) for modeling purposes.

We calculated VFDs for the first 28 days of a patient’s 
hospital stay. Following published literature (24–26), 
days were counted toward invasive mechanical venti-
lation if any of the following conditions were met: 1) 
the patient was mechanically ventilated within the first 
28 days of ICU admission, 2) the patient was reintu-
bated within 48 hours of attempted extubation, 3) the 
patient had a tracheostomy and required noninvasive 
ventilation, or 4) the patient had a tracheostomy and 
was unable to tolerate a lack of invasive/noninvasive 
ventilation for greater than 48 hours. If the patient 

was hospitalized for less than 28 days, all days after 
they were discharged were considered ventilator free. 
Patients who were never on a ventilator were assigned 
a value of 28 (24, 27). We counted days where a pa-
tient was only on a ventilator in the operating room as 
ventilator free. We defined HFDs as 90 days minus the 
length of stay in the hospital in days.

We analyzed the primary outcome, in-hospital mor-
tality, using a Cox proportional hazard regression with 
time-varying covariates. Spo2 and Fio2 were evaluated at 
all time points in each patient record. We assessed linear 
versus nonlinear relationships and found nonlinear to 
be the most adequate fit (Supplemental Fig. 1, http://
links.lww.com/CCX/A607). Quadratic terms were used 
for both Spo2 and Fio2, along with their interaction, to 
accommodate for a nonlinear relationship. Estimation of 
all Cox models was performed with the “survival” pack-
age v.2.44.1.1 in R v3.5.2 (Vienna, Austria). Marginal 
risk scores were calculated using the ggeffects package 
v.0.9.0 in R v3.5.2. Risk scores are calculated as the ratio 
of the exponentiated linear predictor with specified 
values of the oxygenation variables and reference values 
for all other covariates to the exponentiated linear pre-
dictor for a hypothetical patient with mean values for all 
predictors included in the model.

We also conducted a secondary analysis of VFDs 
and HFDs. The primary exposure variables were per-
centage of time in hyperoxia (Spo2 > 96%) and per-
centage of time on room air (Fio2 = 21%). To account 
for violations of linear regression assumptions (zero 
inflation, right censoring) as well as the possibility of 
death, we used multinomial regression models to esti-
mate the association between outcomes and exposure 
variables. Subjects who died were assigned to a differ-
ent category than those with zero VFDs and HFDs. 
Further categories were created based on the distribu-
tion of the data and the available sample size, balancing 
the intention of avoiding excessive sparse categories 
with interpretability considerations. The sample size 
for 22 through 28 VFDs was large enough to allow in-
ference at the day level. We grouped remaining VFDs 
into three weekly categories: days 1–7, days 8–14, and 
days 15–21. We grouped HFDs days 1–55, days 56–62, 
days 63–69, days 70–76, days 77–83, and days 84–90. 
We adjusted all models for age, race/ethnicity, sex, 
smoking status, APACHE II score, presence of cardi-
opulmonary comorbidities, number of other comor-
bidities, and MOI. We analyzed secondary outcomes 
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using the PROC LOGISTIC procedure in SAS (9.4); 
we performed all other analyses in R v3.5.2 (Cary, NC).

RESULTS

Patient Characteristics

A total of 3,464 individuals met our definition for crit-
ically injured patients. The primary reason for exclu-
sion was lack of a trauma diagnosis from the trauma 
registry. Baseline patient and visit characteristics are 
presented in Table 1. Mean age was 53 years. Patients 
were 65% male, 68% non-Hispanic White, 8% non-
Hispanic Black, and 16% Hispanic. Blunt trauma 
mechanism was present in 66% of cases, 73% arrived by 
emergency medical services, and the median APACHE 
II score was 8, which corresponds to a predicted ICU 
mortality of 8%.

The percentage of time spent by patients in each 
Fio2 and Spo2 category during the first 3 days and 
days 4–7 of hospitalization are presented in Figure 1. 
Of the 226,057 patient-hours recorded, 186,902 (46%) 
were spent with hyperoxia, 212,360 (52%) with nor-
moxia, 2,499 (1%) with mild hypoxia, and 3,921 (1%) 
with hypoxia.

Primary Outcome

The primary outcome (in-hospital mortality) occurred 
in 264 patients (7.6%). One-thousand four-hundred 
twenty-one patients (41%) required mechanical venti-
lation outside of the operating room at some point dur-
ing their index admission. The median hospital length 
of stay was 6 days (IQR, 3–12 d) among survivors.

As Fio2 increased, risk for mortality increased across 
all Spo2 levels. The oxygenation variables jointly were 
significantly associated with mortality according to 
likelihood ratio testing (p < 0.001). Graphical and tab-
ular summaries of model results were produced to in-
terpret the direction of these effects. The adjusted risk 
scores for mortality at all Fio2 and Spo2 categories are 
presented as a heatmap in Figure 2. The reference is an 
individual with the mean value of each covariate. We 
calculated risk scores from Cox models adjusted for 
race, age, gender, APACHE II score, smoking status, 
cardiopulmonary comorbidities, number of non-
cardiopulmonary comorbidities, and MOI. During 
hyperoxia (Spo2>96%), the risk for mortality increased 
with greater Fio2.

Adjusted and unadjusted risk scores for mor-
tality at specific Spo2 and Fio2 values are presented in 
Supplemental Table 2 (http://links.lww.com/CCX/
A608) and Supplemental Table 3 (http://links.lww.
com/CCX/A609), respectively. During hyperoxia, the 
adjusted risk of mortality was higher for greater Fio2. 
That is, at a given Spo2, higher Fio2 increased the risk 
for mortality, and this effect was more pronounced at 
higher Spo2 levels. Adjusted hazard ratios for mortality 
for all variables used in the Cox models are presented 
in Table 2.

Secondary Outcomes

Median VFDs to day 28 was 28 days (IQR, 25–28 d). 
Median HFDs to day 90 was 83 days (IQR, 75–87 d). 
The odds ratios (ORs) for each category of VFDs/
HFDs relative to death estimated from multinomial 
regression models are displayed in Figure 3. Our anal-
ysis showed generally that more time on room air and 
less time hyperoxic were associated with favorable 
outcomes. An increased amount of time on room air 
(Fio2 21%) was associated with an increased in the 
odds of more VFDs and HFDs. For each 1% point in-
crease in time on room air, the odds of being in the 28 
VFDs group versus death increased (OR, 1.06; 95% CI, 
1.05–1.07) For each 1% point increase in time on room 
air, the odds of being in the 84–90 HFDs group also 
increased (OR, 1.04; 95% CI, 1.03–1.05). Conversely, 
increased time in hyperoxia (Spo2 > 96%) was associ-
ated with decreased odds of greater VFDs and HFDs. 
For each 1% point increase in time in hyperoxia, 
the odds of never requiring mechanical ventilation 
versus death decreased (OR, 0.99; 95% CI, 0.98–0.99). 
Similarly, for each 1% point increase in time in hyper-
oxia, the odds of being in the 84–90 HFDs group was 
also decreased (OR, 0.99; 95% CI, 0.98–1.00).

DISCUSSION

In this large multicenter cohort of critically injured 
patients, hyperoxia was present on average during 
nearly half of the time during the first 7 days of hospi-
talization. During hyperoxia, higher oxygen adminis-
tration was associated with a greater risk of mortality.

The mortality risk associated with increasing ox-
ygen administration was greatest at higher Spo2 levels 
(Fig. 2). The lowest mortality risk for each Spo2 level 
was attained at 21% Fio2 or room air. Many hyperoxic 
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TABLE 1. 
Characteristics and Outcomes of Colorado ICU Admissions for Major Trauma 2015–2018

Characteristics
All, 

 n = 3,464
Died, n = 264  

(7.6%)
Survived,  
n = 3,200 p

Demographics, n (%)     

 Age, yr, mean (sd) 52.6 (21.0) 56.9 (20.7) 52.2 (21.0) < 0.001

 Male gender 2,263 (65) 178 (67) 2,085 (65) 0.503

 Race/ethnicity     

  Non-Hispanic White 2,346 (68) 157 (59) 2,189 (68) < 0.001
  Hispanic 547 (16) 46 (17) 501 (16)
  Non-Hispanic Black 280 (8) 14 (5) 266 (8)
  Other 291 (8) 47 (18) 244 (8)
 Insurance status     

  Private 1,155 (33) 64 (24) 1,091 (34) < 0.001
  Medicare 1,122 (32) 113 (43) 1,009 (32)
  Medicaid 1,004 (29) 57 (22) 947 (30)
  Other 31 (1) 3 (1) 28 (1)
  Missing 152 (4) 27 (10) 125 (4)

Medical history     

 Comorbidities     

  Any cardiopulmonary, n (%) 669 (19) 75 (28) 594 (19) < 0.001

  Number of other, median (IQR) 3 (1-4) 4 (2-5) 3 (1-5)  

 Tobacco use, n (%)     

  Current or former smoker 1,489 (43) 71 (27) 1,418 (44) < 0.001
  Never smoker 1,226 (35) 47 (18) 1,179 (37)
  Not reported/missing 749 (22) 146 (55) 603 (19)
 Alcohol use, n (%)     

  Yes 1,475 (43) 58 (22) 1,417 (44) < 0.001
  No 1,216 (35) 66 (25) 1,150 (36)
  Not reported/missing 773 (22) 140 (53) 633 (20)
 Other substance use, n (%)     

  Yes 642 (19) 16 (6) 626 (20) < 0.001
  No 1,921 (55) 93 (35) 1,828 (57)
  Not reported/missing 901 (26) 155 (59) 746 (23)

Clinical     

 Emergency medical services arrival, n (%) 2,525 (73) 221 (84) 2,304 (72) < 0.001

 Mechanism of injury, n (%)     

  Fall 1,235 (36) 102 (39) 1,133 (35) 0.012
  Motor vehicle 1,069 (31) 67 (25) 1,002 (31)
  Penetrating 258 (7) 31 (12) 227 (7)
  Other 902 (26) 64 (24) 838 (26)
 Ever mechanically ventilated, n (%) 1,421 (41) 249 (94) 1,172 (37) < 0.001

 Acute Physiology and Chronic Health  
Evaluation II score, median (IQR)

8 (5-14) 22 (15-27) 7 (5-12) < 0.001

 Length of stay, d, median (IQR) 6 (3-11) 4 (1-9) 6 (3-12) < 0.001

IQR = interquartile range.
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patients (Spo2 > 96%) in our study continued to be 
ventilated with Fio2 greater than room air. One expla-
nation involves the standardized order sets dictating 
respiratory therapist practice. During the study period, 
these order sets did not allow for titration of Fio2 below 
40% for mechanically ventilated patients. Since criti-
cally injured patients in this study spent nearly half of 
their time in hyperoxia, this may represent an inappro-
priate use of oxygen and a potential “modifiable” area 
for improvement. These patients should be weaned to 
room air as quickly as possible to minimize the risk 
for mortality associated with hyperoxia. However, the 
clinical indication for hyperoxia was not investigated 
for each instance, and it is possible these choices were 
justified.

A small but significant protective effect for mor-
tality was associated with a greater number of noncar-
diopulmonary comorbidities (Table  2). This appears 
counter-intuitive. However, the effect is likely offset by 
the trend toward increased mortality for patients with 
a greater number of cardiopulmonary comorbidities.

Overall, more time in hyperoxia was associated with 
fewer VFDs and HFDs. This association was most pro-
nounced at the extremes of duration of mechanical 
ventilation and length of stay.

This cohort study distinguishes itself from other 
retrospective hyperoxia studies by virtue of three key 

methodological innovations. First, we are 
not aware of prior studies which assess 
oxygenation continuously throughout 
hospitalization. Previous studies investi-
gating hyperoxia and in trauma patients 
(28–31) and critically ill medical patients 
(3, 5–8, 32–41) recorded either the high-
est Pao2 within the first 24 hours or a 
mean Pao2. The definition of “hyperoxia” 
in these previous trials also ranged from 
a Pao2 greater than 100 mm Hg to a Pao2 
greater than 300 mm Hg. Therefore, this 
is the first study to investigate oxygena-
tion for the entire duration of hospital-
ization with a very high frequency of 
discrete measurements. Second, due to 
our treatment of oxygenation as a contin-
uous variable, more sophisticated mod-
els were required when compared with 
previous hyperoxia studies. Nonlinear 
terms were included in a Cox regression 

model to estimate the association between oxygenation 
variables and mortality risk, as detailed in the Methods 
section. This level of sophistication is likely why we 
are the first group, to our knowledge, to apply such a 
method. Third, many of the previous studies examin-
ing the association between hyperoxia and mortality 
in trauma patients focused almost exclusively on TBI 
(29, 30, 42–54). One of the strengths of our study is the 
inclusion of all trauma patients: blunt, penetrating, or 

Figure 1. Percentage of time in each Spo2 and Fio2 category in the first 3 d 
and days 4–7 of hospitalization. Hypoxia (oxygen saturation [Spo2] < 88%), mild 
hypoxia (Spo2 88–89%), normoxia (Spo2 90–96%), hyperoxia (Spo2 > 96%).

Figure 2. Heatmap of risk scores for mortality at each oxygen 
saturation (Spo2) and Fio2 level. For each Spo2 level, greater Fio2 
increases risk of mortality.
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otherwise. This increases the external generalizability of 
our results due to the broad scope of included patients.

Given the association between hyperoxia and 
supplemental oxygen delivery with in-hospital mor-
tality for critically injured patients, it is time to begin 
rethinking our clinical practice. As many as 84% of 
critically ill patients (both medical and trauma) are 
exposed to excess levels of oxygen (6, 13). The recent 
ICU-randomized trial comparing two approaches to 
oxygen therapy randomized controlled trial found 
no significant difference in VFDs between critically 
ill patients who received conservative versus usual 
oxygen therapy (55). However, a recent meta-analy-
sis of critically ill patients demonstrated that supple-
mental oxygen to achieve an Spo2 greater than 96% 
increased in-hospital mortality without improving 
other “patient-important” outcomes (13). In our 
study, additional oxygen administration was associ-
ated with increased mortality for already hyperoxic 
patients. Therefore, hyperoxia appears to not just 

increase mortality but does so in a dose-dependent 
manner. This clinically important association, if val-
idated by rigorous clinical trials, could be practice 
changing. Such clinical trials are already underway 
(NCT04534959). Just as clinicians administer judi-
cious volumes of IV fluids to their critically injured 
patients, less aggressive oxygen support also has po-
tential to reduce morbidity and mortality.

Avoidance of hyperoxia could also improve re-
source utilization. Oxygen is a limited resource 
with significant obstacles in transporting to austere 
setting. Substantial resources, space, and weight 
must be dedicated to oxygen during such missions. 
Further, the coronavirus disease 2019 pandemic has 
exposed flaws in many healthcare systems around 
the world (56–58). Although we investigated ex-
clusively civilian trauma patients, our results are 
unlikely to be different for active-duty service mem-
bers. Therefore, the association between hyperoxia 
and mortality also has the benefit of decreasing the 
logistic burden of oxygen procurement in military 
operations.

The results of this study should be interpreted in 
the context of some limitations. This study is retro-
spective in nature. The primary outcome (in-hospital 
mortality) was relatively uncommon, occurring in just 
7.6% of the sample. The large size of our cohort (3,464 
patients) partially mitigates this issue. Illness Severity 
Score was not available for all patients; therefore, 
APACHE II score was used a surrogate. It is also pos-
sible the proportionality of hazard assumption used for 
the Cox regression is not valid for this study. We em-
ployed several assumptions in our cohort, including 
time of death and duration of mechanical ventilation. 
In addition, we assumed all patients discharged on a 
ventilator remain on a ventilator until day 28, and all 
patients discharged off ventilation, remained ventilator 
free until day 28 (24). Further, we did not attempt to 
find an ideal oxygenation target for critically injured 
patients. Our definitions for hypoxia, normoxia, and 
hyperoxia are based on previous studies and a Delphi 
consensus (20). It is possible that an Spo2 of 90–96% 
does not necessarily represent normoxia in trauma. 
Perhaps, oxygenation targets for critically injured 
patients should fall into a different range. Prospective 
clinical trials are needed to further elucidate ideal ox-
ygenation targets. A phase 3, multicenter randomized 
controlled trial (NCT04534959) will investigate the 

TABLE 2. 
Hazard Ratios for Mortality of All Covariates 
Used in the Cox Models

Covariates
Hazard Ratio  

(95% CI)

Continuous  

 Age 1.03 (1.02–1.03)

 Acute Physiology and Chronic  
Health Evaluation II Score

1.08 (1.06–1.09)

 Number of Noncardiopulmonary  
comorbidities

0.92 (0.86–0.98)

Categorical  

 Other race/Ethnicity 1.23 (0.93–1.62)

 Female 1.13 (0.86–1.50)

 Never smoker 0.77 (0.51–1.14)

 Unknown smoking status 1.87 (1.35–2.60)

 Cardiopulmonary comorbidities  
present

1.00 (0.74–1.35)

 Nonblunt mechanism of injury 0.97 (0.73–1.30)

Hazard ratio (HR) for age accounts for every 1 yr increase. HR for 
Acute Physiology and Chronic Health Evaluation II score accounts 
for every one-point increase.
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question of causality between hyperoxia and mortality 
in critically injured patients. Finally, oxygen delivery 
and target levels may vary based on altitude; all three 
sites are more than 5,000 feet above sea level (5,003 
feet in Fort Collins, CO, 5,403 feet in Aurora, CO, and 
6,035 feet in Colorado Springs, CO). This correlates to 
partial pressures of atmospheric oxygen ranging from 
128 mm Hg to 133 mm Hg, compared with 160 mm Hg 
at sea level (59). Therefore, extrapolation of our find-
ings to sea level requires further research.

CONCLUSIONS

In this large multicenter cohort of critically injured civilian 
patients, hyperoxia was present nearly half of the time 
during the first 7 days of hospitalization. During hyper-
oxia, higher oxygen administration was associated with a 
greater risk of mortality. Prospective interventional stud-
ies are required to determine the causal association be-
tween hyperoxia and clinical outcomes and optimal target 
oxygen concentrations in critically injured patients.

Figure 3. Adjusted odds ratios (ORs) and 95% CIs for ventilator-free days (VFDs) and hospital-free days (HFDs); all odds ratios are 
relative to death. All models were adjusted for age, race/ethnicity, sex, smoking status, Acute Physiology and Chronic Health Evaluation 
II score, presence of cardiopulmonary comorbidities, number of other comorbidities, and mechanism of injury. A, ORs for percent of time 
on room air at each VFDs group. B. ORs for percent of time on room air at each HFDs group. C, ORs for percent of time in hyperoxia 
at each VFDs group. D, ORs for percent of time in hyperoxia at each HFDs group. *By definition, people with zero VFDs will spend an 
extremely low percentage of time on room air; as a result, this odds ratio (0 VFDs relative to death) was excluded from the figure due to 
large CIs (OR, 0.79; 95% CI, 0.66–0.95).
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