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Abstract Cell adhesion molecules participate in the for-

mation, maturation, function and plasticity of synaptic

connections. The growing body of evidence indicates that

in the regulation of the synaptic plasticity, in which these

molecules play pivotal role, also the proteolytic processes

are involved. This review focuses on extracellular prote-

olysis of the cell adhesion molecules by specific subgroup

of the matrix metalloproteinases, a disintegrin and metal-

loproteases and a disintegrin and metalloproteinase with

thrombospondin motifs, jointly referred to as metzincins, in

driving coordinated synaptic structural and functional

modifications underlying synaptic plasticity in the adult

brain.
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Abbreviations

PS1/c-secretase Presenilin 1/gamma-secretase

NMDA N-Methyl-D-aspartic acid

cLTP Chemical long term potentiation

PKC Protein kinase C

MAP kinase Mitogen-activated protein kinase

PI 3-kinase Phosphoinositide 3-kinase

PTZ Pentylenetetrazol

Introduction

After the initial establishment of neuronal connections

during development, synapses remain highly dynamic and

undergo activity-dependent changes in their efficacy and

morphology. Communication between neurons at the syn-

apses is mediated primarily by neurotransmitter release and

by the gating of the postsynaptic receptor ion channels, but

burgeoning evidence indicates that signaling is also medi-

ated by adhesion molecules that interact in a homo- or

heterophilic fashion across the synaptic cleft. Thus, cell

adhesion molecules (CAMs) at the synapse mediate syn-

aptic plasticity, the ability to change synaptic function,

thought to underlie learning and memory, as well as

implicated in a number of neuropsychiatric conditions. It

is, however, still poorly understood how synaptic CAMs

contribute to synapse formation and/or structure, and

whether and/or how smaller groups of CAMs serve as

minimal, functionally cooperative adhesive units upon

which the structure is based [1].

An increasing number of studies support the idea that

structural changes at the synapses are closely associated

with synaptic plasticity. A majority of these dynamic

changes in the synaptic microenvironment are regulated by

various families of proteases, including mainly metzincins

[2] and serine proteases. Their function is to cleave the

proteins available in the extracellular matrix (ECM) and

even to release signaling molecules from ECM and CAMs,

which may play an essential role for changes in synaptic

configuration. Notably, ECM remodeling affects both

structural and functional plasticity, such as long-term

potentiation (LTP), long-term depression (LTD), homeo-

static plasticity, and metaplasticity [3]. Importantly, the

synaptic remodeling involves a complex sequential prote-

olytic activation and interaction of different molecules
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resulting in the control of various processes acting at the

synapse, such as receptors trafficking, cytoskeleton

remodeling, formation, growth and morphological changes

of new and existing dendritic spines. Notably, it has

repeatedly been shown that the same target molecule can

be recognized and processed by various proteases and the

released soluble ectodomains of CAMs may interact with

different ligands, leading to the generation of distinct

signals.

Proteolysis of Cell Adhesion Molecules

At the synapse, cell adhesion molecules operate in syner-

gistic association in the control of adhesive function and

signal transduction by forming dynamic network rather

than acting as independent molecules. Similarly, the pro-

cesses associated with remodeling of neuronal connections

are achieved by the concerted actions of several different

proteases that are secreted by neurons and glial cells [4, 5].

One of the most prominent features between CAMs and

proteases actions is that they are reciprocal. Metzincins are

apparently the major effectors in remodeling the structures

of neuronal circuits which contribute to the fine tuning of

diverse biological processes through limited proteolysis of

specific targets. Recent data strongly imply their important

role in the modulation of morphology of dendritic spines

which lead to changes in signaling pathway and molecules

trafficking in the brain. Table 1 contains summary infor-

mation on cleavage of CAMs by metzincins and the role of

their proteolytic processing in synaptic plasticity.

Cadherins

Among the principal representatives of the CAMs are

cadherins. Members of the cadherin superfamily share

general expression profiles and have distinct functions

during the brain development and in the mature brain

function. Their main role is to tie up the pre- and post-

synaptic part of synapse by homophilic interactions. Inside

the cells, cadherins are bound to the actin cytoskeleton via

b-catenins and affect synaptogenesis, maintenance of cell–

cell contact and dendritic spine morphology [6]. It was

shown that surface population of cadherin molecules is

regulated by proteolytic cleavage in the extracellular

matrix or intracellular milieu. Neuronal cadherin (N-cad-

herin) undergoes the ectodomain cleavage by at least

two membrane-bound matrix metalloproteinases (MMPs),

ADAM10 and membrane type 5-matrix metalloproteinase

(MT5-MMP), followed by the intramembrane proteolysis

mediated by PS1/c-secretase complex [7–10]. ADAM10

plays a crucial role in the complex sequence of events that

regulates dendritic spine maturation and/or stabilization

and in the modulation of the structural organization of the

glutamatergic synapse [7]. The ADAM10 driven process-

ing in response to calcium influx via NMDA type

glutamate receptor is required for the subsequent PS1/c-

secretase cleavage of N-cadherin, which leads to releasing

of a cytoplasmic fragment. This process is called regulated

intramembrane proteolysis (RIP), in which removal of the

ectodomain by shedding is necessary for the second

cleavage catalyzed by c-secretase [11]. The proteolytic

processing of N-cadherin affects the interaction between

N-cadherin and b-catenin, leading to release of b-catenin

from the cell surface and directing it to the nucleus, to

regulate genes involved in the proliferation of neuronal

stem cells, neuronal differentiation, axonal remodeling and

synaptogenesis [9]. It might be suggested that such prote-

olytic modulation of b-catenin interaction with N-cadherin

may be a substantial molecular mechanism for the synaptic

plasticity.

Recently, Gardoni et al. [12] have shown that PACAP38

has an impact on the modulation of dendritic spine

morphology through the ADAM10-N-cadherin-AMPA

receptor signaling pathway. Pituitary adenylate cyclase-

activating polypeptide 38 (PACAP38) is neuropeptide that

is implicated in the induction of the synaptic plasticity at

the excitatory glutamatergic synapse. It has been shown

that PACAP38 induces a form of long-term depression in

the hippocampal neurons and transgenic animals, thus

indicating its role in learning and memory [13–16].

Moreover, PACAP38 leads to a strong increase of

ADAM10 activity through three signaling cascades (PKC,

MAP kinase and PI 3-kinase) [17]. Impairing ADAM10

localization and activity at the synapse decreases its pro-

cessing of N-cadherin. Thus, it induces a modification of

the synaptic AMPA receptors, and a significant increase in

the size of dendritic spines, both in vitro and in vivo [7].

More recently, Warren et al. [18] have shown the dif-

ferences in the expression and distribution of ADAM10,

MT5-MMP and N-cadherin after traumatic brain injury

(TBI), leading to maladaptive synaptic plasticity. MT5-

MMP and ADAM10 are critical to the success of injury-

induced synaptic plasticity. They displayed time-dependent

increases during synaptogenesis, and elevated enzyme

activity was concatenated with a reduction of the synaptic

adhesion protein, N-cadherin.

ADAM10 inhibition contributes to elevated N-cadherin

expression and improves synaptic stability under mal-

adaptive conditions. Sustained N-cadherin expression is

reported to underlie both structural and physiological

plasticity at the synapse [6, 19, 20]. Furthermore, it was

also shown that manipulation of cadherins by either using

specific blocking peptide or antibodies, or genetic muta-

tions lead to disruption of N-cadherin molecule that has a
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profound and long-lasting effect on synaptic plasticity and

memory formation [19, 20]. Moreover, a dysfunction of the

cadherin-based adhesive system may alter functional con-

nectivity and information processing in the human brain in

neuropsychiatric disorders [21].

Notably, the ectodomain shedding of other members of

cadherin family in multiple pathophysiological conditions,

including inflammation and cancer, has been observed. For

instance, it was demonstrated that vascular endothelial

cadherin (VE-cadherin), an endothelial-specific member of

cadherin family, that forms a complex with beta-catenin

and stabilizes cell–cell adhesion is also cleaved by MMP-7

on the cell membrane of the human umbilical vein endo-

thelial cell. This phenomenon might play an important role

in angiogenesis [22]. Moreover, ADAM10-mediated

endothelial cadherin (E-cadherin) proteolysis was proposed

as a regulatory mechanism in inflammatory epidermal

diseases, which are characterized by loss of E-cadherin

expression and loss in epithelial integrity [23]. In breast

cancer, it was observed that upregulation of the ADAM15

leads to enhance cleavage of E-cadherin [24]. In the brain,

during early stage of neural development the presence of

E-cadherin has been observed. It was shown that E-cad-

herin is first expressed in the embryonic ectoderm and

plays a role in maintaining of ectoderm and future epi-

dermis architecture together with other cadherins. Soon

after neural induction, E-cadherin is replaced by N-cad-

herin. So far, however, it has apparently not been shown

that E-cadherin is processed by metzincins in the brain.

Syndecans

Syndecans are a major class of heparin sulfate proteogly-

cans (HSPGs) and are involved in adhesion-induced syn-

aptic modifications. Four members of the syndecan family,

syndecan-1, -2, -3, and -4, have been characterized in the

mammalian tissues, including the brain. For instance,

Table 1 Metzincins implicated in synaptic plasticity and their substrates in the brain

Family Synaptic

substrates

Metzincin cleavage Possible synaptic effects of processing Refs.

Cadherins N-cadherin MT5-MMP, ADAM-10 Proliferation of neuronal stem cells, neuronal

differentiation, axonal remodeling and

synaptogenesis, modulation of dendritic spine

morphology

[7–10]

Syndecans Syndecan-1 MMP-2, -7, -9, MT1-MMP,

MT3-MMP, ADAM-17

Dendritic spine development, cell adhesion,

neurite guidance, cell migration during

development of CNS

[25, 26, 28–33]

Syndecan-2 MMP-2, -9

Syndecan-4 MMP-2, -9, ADAM-17,

ADAMTS-1, -4

Immunoglobulin

superfamily

NCAM MMP-2, ADAMs Neurite branching and outgrowth, influence on

LTP, structural remodeling of neuronal

connections

[37, 38, 46, 47]

L1-CAM ADAM-10, -17 Neurite outgrowth, neuronal differentiation and

migration

[41]

Nectin-1 ADAM-10 Regulation of the spine density and morphology,

cell–cell interaction, influence on LTP and

LTD

[49–51]

SynCAM 1 ADAM-17 Modulation of synaptic interactions [51]

SynCAM 2 MMP-9 Remodeling of dendritic spine structure [56]

ICAM-5 MMP-2, -9 Maturation of dendritic spines, cytoskeleton

reorganization, morphological remodeling of

dendritic spines,

[57, 62, 63]

Dystroglycans b-dystroglycan MMP-9 Cytoskeleton reorganization, modulation of

dendritic spine morphology

[65, 66]

Neurexins b-neurexin MMPs Regulation of the synapse formation and

stabilization of the connectivity in the CNS

[69, 70]

Thrombospon-dins TSP1 MMP-2, ADAMTS1 ND [74–79]

TSP2 MMP-2, -9, -14,

ADAMTS1

TSP5 MMPs

ND not defined
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syndecan-2 plays a prominent role in the organization of

postsynaptic structures. It is highly concentrated on the

spines of mature hippocampal neurons, and plays a critical

role in the dendritic spine development [25]. The other

member, syndecan-3, is involved in cell adhesion, neurite

guidance, and cell migration during development of the

nervous system [26]. Moreover, it has been suggested to

function as an important modulator of the synaptic plas-

ticity that influences hippocampus-dependent memory

[27]. Through interaction with several cytoplasmic pro-

teins, syndecans may provide a molecular link between

intracellular cytoskeleton/signaling complex and the

extracellular environment at specific sites on the cell sur-

face [25].

It has been shown that syndecans undergo regulated

proteolytic shedding from the cell surface. Interestingly,

syndecans are differentially cleaved by three classes of

metzincins: MMPs, a disintegrin and metalloproteases

(ADAMs) and a disintegrin and metalloproteinase with

thrombospondin motifs (ADAMTS) proteases. MMP-2 and

MMP-9 can cleave syndecans-1, -2 and -4 [28, 29]. MMP-7

and membrane-associated metalloproteinases MT1-MMP

and MT3-MMP are known to cleave syndecan-1 [30, 31]. It

has recently been demonstrated that ADAM17 is able to

shed syndecan-1 and syndecan-4 [32], and the latter is also

processed by ADAMTS1 and ADAMTS4 proteases [33].

Moreover, for it has been shown that the remaining portion

of the syndecan-3 can be further processed by the PS1/c-

secretase complex. The multiplicity of proteases able to

cleave syndecans may result from the heterogeneity of their

ectodomains and may depend on the cell type and stimula-

tory conditions. Hence, still is not clear how extracellular

stimuli influence sheddases to mediate syndecan cleavage.

Although, the syndecans cleavage was not demonstrated in

the brain, it cannot be excluded that some of their neuronal

functions may be regulated by proteolysis.

NCAM and L1-CAM

NCAM and L1 are members of immunoglobulin-like

superfamily that were repeatedly implicated in synaptic

functions, as well as neuronal migration, neuronal survival,

neurite outgrowth, myelination, axon guidance, fascicula-

tion, and regeneration [34–36].

Both NCAM and L1 were shown to be processed by

metzincins. Inhibition of NCAM-mediated adhesion with

either function-blocking antibodies or synthetic peptides

did not affect normal basal synaptic transmission, but

reduced E-LTP in area CA1, along with impaired hippo-

campal-dependent learning [37]. Hinkle et al. [38] revealed

that regulated ADAM metalloprotease-induced ectodomain

shedding of NCAM down-regulates neurite branching and

neurite outgrowth in primary cortical neurons.

In vitro and in vivo studies showed that cleavage of L1

protein is elicited by two sheddases ADAM10 and

ADAM17. Both proteases critically affect the physiologi-

cal functions of L1 adhesion protein. Proteases-mediated

disruption of L1-dependent contacts might be an important

mechanism for the regulation of the adhesion of migrating

neurons. Moreover, ADAM10-dependent releasing of sol-

uble L1 ectodomain from cultured neurons promotes neu-

rite outgrowth and influences neuronal differentiation. In

addition, it was shown that NMDA-stimulated Ca2? influx

might be the cause for enhanced ADAM10 activity, leading

to increased L1 shedding. This Ca2? influx is known to

affect activity-dependent synaptic plasticity [39]. Besides,

L1 is also cleaved by PS1/c-secretase complex. This reg-

ulated intramembrane proteolysis process [40], also dem-

onstrated for the N-cadherin or nectin-1, affects signal

transduction at the synapse. Furthermore, Matsumoto-

Miyai et al. [41] found that the plasticity-related L1 is a

specific substrate of neuropsin and that this neuropsin-L1

processing system is regulated by neural activity and is

involved in the hippocampal plasticity.

NCAMs are involved in the initial phase of long-term

potentiation in the hippocampus and learning [42, 43]. It has

been reported that NCAM may be cleaved extracellularly

in vivo in response to the activation of NMDA receptors

during the induction of LTP and in response to seizures [44,

45]. Additionally, Hubschmann et al. [46] have shown that

NCAM can be released from the primary hippocampal

neurons in vitro and this cleavage involves extracellular

ATP and can be inhibited by the metalloproteinase inhibi-

tor. The ATP released either during learning or induction of

LTP may target NCAM for proteolysis, and this proteolysis

is necessary for the structural remodeling of neuronal con-

nections taking place during consolidation of LTP. All these

findings suggest that metalloproteinase activity regulates

NCAM-mediated neurite outgrowth, possibly by cleaving

NCAM from the extending neurite, thereby reducing

adhesion to an immobile environment and thus facilitating

further neurite extension [46]. The members of NCAM

family are also implicated in aberrant plasticity. It was

shown that neural cell adhesion molecules and metzincins,

together play an important role in the pathogenesis of

experimental autoimmune encephalomyelitis (EAE). The

observed elevated level of MMP-2 and impaired expression

of NCAM in the hippocampus appear to be critical for both

the brain plasticity and underlie a complex autoimmune

process in the brain in acute EAE [47].

The expression of the paralog of NCAM, NCAM2 has

been proposed to influence certain types of neurological

diseases and cancers. Both proteins are abundant in the

central nervous system (CNS), suggesting that they also
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may share functional similarities. To date, there is no

information about proteolytic cleavage of NCAM2. Nev-

ertheless, it cannot be excluded that in the olfactory system,

where NCAM2 is important for the formation or mainte-

nance of the dendritic and axonal compartmentalization, its

function might be regulated by proteolysis, similarly to

NCAM1 [48].

Nectins

Nectins are Ca2?-independent immunoglobulin-like adhe-

sion molecules, involved in cell–cell adherent junctions.

Nectin-1 ectodomain shedding and intramembrane cleav-

age occurs in postsynaptic as well as presynaptic mem-

branes, where it is localized [49, 50]. Kim et al. [51] have

shown that nectin-1 cleavage plays a role in the regulation

of the spine density. It is well documented that activation of

NMDA receptors or chemical long-term potentiation

(cLTP) result in ADAM10 activation which is one of the

major proteases responsible for ectodomain shedding of

nectin-1 in neurons [49, 51]. The extracellular proteolysis of

nectin-1 generates at least two soluble ectodomains [50].

These protein fragments may act as signaling molecules in

the synaptic cleft by interacting with other ECM compo-

nents and thus regulating cell–cell interaction or may bind

to their receptors, initiating a cascade of signaling inside the

cell. Thus, taken together, these events may influence on

changes in density and spine morphology observed during

induction of LTP and LTD. On the other hand, the intra-

membrane domain of nectin-1 released by activity of

presenilin-dependent gamma-secretase complex may also

serve many roles. The C-terminal fragment of nectin-1 may

be translocated into the nucleus and acts as either tran-

scriptional stimulator or repressor. Sequence analysis

revealed that this intracellular fragment contains a putative

nuclear localization signal (RRRH) right after the trans-

membrane domain [52]. Moreover, cleavage of nectin-1

releases cytoplasmic proteins such as afadin from periphe-

ral membranes and causes its translocation into the nucleus

and thus, may regulate the subcellular localization of afadin

between the plasma membrane and the nucleus [53].

SynCAMs

Synaptic cell adhesion molecules (SynCAMs) belong to the

immunoglobulin-like protein family and act as an adhesion

molecules in the synaptic cleft forming a homo- and het-

erophilic transsynaptic adhesion complexes that contributes

to synapse organization and function [54]. Tanabe et al.

[55] have shown that SynCAM1 can be processed by

ADAM17-like proteases at the synapse. The biological

importance of this phenomenon may be associated with the

modulation of synaptic interaction and plasticity. Recently,

using proteomic approach, the cleavage of SynCAM2 via

MMP-9 has been demonstrated [56]. SynCAM2 cleavage

evoked by MMP-9 might influence the remodeling of the

dendritic spine structure in response to synaptic transmis-

sion. It indicates that different SynCAMs can be cleaved by

various types of proteases, however, the exact mechanism

of this process still remains unknown.

ICAM-5

Tian et al. [57], showed that intercellular adhesion mole-

cule-5 (ICAM-5), protein specifically expressed in post-

natal excitatory neuronal cell bodies, dendritic shafts, and

dendritic filopodia of the telencephalon [58, 59], is a sub-

strate for either MMP-2 or MMP-9. Upon neuronal stim-

ulation, ICAM-5 cleavage driven by MMPs, caused the

dendritic spines maturation and elongation of filopodia.

Moreover, blocking of MMP-2 and MMP-9 by specific

inhibitor as well as ICAM-5 deficiency led to the retraction

of the spine heads and a decreased number of spines in

response to NMDA stimulation [57]. The mechanism of

spine remodeling through MMPs dependent ICAM-5

cleavage has been proposed [60, 61]. In neurons, stimula-

tion of either NMDA or AMPA receptors for glutamate

leads to enhancement of MMP-2 and MMP-9 activity,

resulting in processing of ICAM-5 from immature nascent

spines. The shedding of ICAM-5 may facilitate local

membrane and cytoskeleton reorganization, and thereby

morphological remodeling of the dendritic spines [57]. In

addition, recent results have shown that ICAM-5 can be

also cleaved by exogenous MMP-3 and MMP-7, in

response to neuronal activation by either NMDA treatment

or induction of LTP [62].

Furthermore, it was shown that soluble ICAM-5 is

generated with cLTP. The N-terminal domain of ICAM-5

is able to stimulate integrin dependent actin polymerization

within dendrites, and thus spine expansion. In addition, the

inhibition of MMPs activity and blocking of b1 integrins

diminished ICAM-5 dependent effects. Overall, these

findings indicate that MMPs and soluble ICAM-5 have the

potential to influence neuronal excitability [63].

b-Dystroglycan

Dystroglycan is a part of dystrophin-glycoprotein complex

that links dystrophin and the intracellular cytoskeleton with

extracellular matrix and anchors the whole complex at the

membrane [64]. DG is composed of a- and b-subunits.

a-dystroglycan (a-DG) is a highly glycosylated extracellular
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component, whereas b-DG spans the plasma membrane

forming a bridge between a-DG and the cytoskeleton [65].

Michaluk et al. [66] have shown that MMP-9 driven b-DG

proteolysis occurs in response to synaptic activity in neuronal

cultures and in the hippocampus in response to seizures.

Simultaneously, in neurons, after treatment with specific

inhibitor (TIMP-1) blocking MMP-9 activity and in MMP-9

knockout mice, the appearance of truncated form of the

protein was not observed. So far, the exact consequences of

b-dystroglycan cleavage are not known, however, a growing

body of evidence suggests a functional role for the entire

dystrophin-glycoprotein complex at central synapses and in

their plasticity. For instance, it was shown that mice selec-

tively deficient in the brain dystroglycan suffer from late

phase of long term potentiation deficits in the hippocampus

[65]. Moreover, mutations in the genes encoding dystrogly-

can-binding proteins such as laminin, its extracellular ligand,

as well as dystrophin, are associated with mental retardation.

Notably, specific changes in the hippocampal expression

patterns of transcripts encoding dystrophin and neurexins,

presynaptic interacting partners of DG, following kainate and

PTZ treatment in vivo have been previously demonstrated

[67, 68].

b-Neurexin

It was also established that cell surface adhesion receptors

undergo proteolytic cleavage in the synaptic cleft. Among

them, it was shown that biological role ofb-neurexin is closely

associated with its proteolytic processing. The presynaptic

receptors neurexins (NRXs), and their ligands, postsynaptic

neuroligins (NLs) are two families of synapse-specific adhe-

sion molecules critically involved in regulation of the synapse

formation and stabilization of the connectivity in the central

nervous system. It was demonstrated that mutations in neu-

rexins may lead to synaptic defects associated with brain

disorders (e.g. mental retardation, autism). Studies by several

independent groups have shown that neurexins can be pro-

teolytically processed at the synapse [69, 70]. Thus, both

in vitro and in vivo neurexins are sequentially cleaved by

metalloprotease- and PS1/c-secretase dependent activities.

In neurons, accumulated N- and C-terminal fragments of

b-neurexin play a dual role, as signaling molecule in the

extracellular milieu as well as in the intracellular space.

Thrombospondins

Thrombospondins (TSPs) are involved in cell–cell inter-

actions and synaptogenesis and have the ability to bind to

the matrix proteins, proteinases, growth factors, and cell

surface receptors. Recently, it was shown that thrombo-

spondin 1 and thrombospondin 2 promote synaptogenesis,

both in vitro and in vivo, and their deficiency results in

reduced synaptic density during development [71]. More-

over, both of them are involved in modulation of the

synaptic plasticity and axonal sprouting after ischemic

injury [72]. However, one of the best described roles of

TSP1 is action as an anti-angiogenic agent. TSPs functions

have been well established in cancer biology where angi-

ogenesis is essential for tumor growth [73].

To date, many reports indicate that TSPs are processed

by various proteases in extracellular matrix. It was shown

that ADAMTSs are involved in the processing of extra-

cellular glycoproteins, including TSP1 and TSP2 [74]. For

instance, cleavage of TSP1 and TSP2 by ADAMTS1 could

modulate their functions by facilitate remodeling of matrix-

associated TSP [75]. Furthermore, most recently, the global

proteomic studies discovered that TSPs are also targets for

other metzincins. Hence, thrombospondin-1 and thrombo-

spondin-2 are MMP-2 [76] and MMP-14 [77] substrates,

respectively. Moreover, for thrombospondin-2 the cleavage

by MMP-2 and MMP-9 was confirmed [78]. TSP5 was also

shown to be proteolytically processed by different MMPs

in vitro [79]. Nevertheless, despite the established role of

TSPs in the brain, especially during synaptogenesis, so far,

there is no direct data about the regulation of these proteins

by proteolysis.

Future Directions

Interest in the identification of proteodegradome in the

extracellular matrix, including discovering of the new tar-

gets for proteases and understanding their function, has

intensified in recent years in a hope to increase our

knowledge of the synaptic machinery. In this review, we

emphasize that cell adhesion molecules play not only

scaffolding role in the synaptic cleft, but foremost are

capable to modulate the functional and structural aspects of

the synaptic plasticity in both normal and pathological

conditions. It has to be noted that presented list of CAMs

which undergo proteolytic turnover at the synapse is still

open. Completion of genome sequences for many organ-

isms allows to protein classification into the respective

clusters. Based on individual protein domain structures for

extracellular matrix proteins the ECM and adhesion pro-

teins, the concepts of ‘‘matrisome’’ and ‘‘adhesome’’ have

been implemented [75, 76]. This opens a window for

classification of new ECM and ECM-associated proteins as

important in regulation of the synaptic plasticity and

understanding how these components can influence neu-

ronal network dynamics.
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