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Alcohol use behaviors are highly heterogeneous, posing significant challenges to etiologic research of alcohol use disorder (AUD).
Magnetic resonance imaging (MRI) provides intermediate endophenotypes in characterizing problem alcohol use and assessing the
genetic architecture of addictive behavior. We used connectivity features derived from resting state functional MRI to subtype
alcohol misuse (AM) behavior. With a machine learning pipeline of feature selection, dimension reduction, clustering, and
classification we identified three AM biotypes—mild, comorbid, and moderate AM biotypes (MIA, COA, and MOA)—from a Human
Connectome Project (HCP) discovery sample (194 drinkers). The three groups and controls (397 non-drinkers) demonstrated
significant differences in alcohol use frequency during the heaviest 12-month drinking period (MOA >MIA; COA > non-drinkers)
and were distinguished by connectivity features involving the frontal, parietal, subcortical and default mode networks. Further, COA
relative to MIA, MOA and controls endorsed significantly higher scores in antisocial personality. A genetic association study
identified that an alcohol use and antisocial behavior related variant rs16930842 from LINC01414 was significantly associated with
COA. Using a replication HCP sample (28 drinkers and 46 non-drinkers), we found that subtyping helped in classifying AM from
controls (area under the curve or AUC= 0.70, P < 0.005) in comparison to classifiers without subtyping (AUC= 0.60, not significant)
and successfully reproduced the genetic association. Together, the results suggest functional connectivities as important features in
classifying AM subgroups and the utility of reducing the heterogeneity in connectivity features among AM subgroups in advancing
the research of etiological neural markers of AUD.
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INTRODUCTION
Alcohol use disorder (AUD) is a major public health problem in the
United States and worldwide [1]. AUD is characterized by a variety
of behavioral criteria, as described in the Diagnostic and Statistical
Manual of Mental Disorders (DSM) [2], posing significant
challenges to etiologic research [3–5]. Understanding the different
dimensions of alcohol use behavior and their neural and genetic
basis would facilitate the development of new treatment and
prevention strategies for AUD. Etiological research of AUD has
focused on the neurobiology of reward processing, cognitive
control and emotion regulation [6, 7]. Adoption, twin, and family
studies show that the behavioral and neural phenotypes of AUD
and problem drinking are influenced by genetics [8–12]. It is
essential to characterize the genetic, neural, and behavioral
determinants to differentiate the biotypes of alcohol misuse for
precision medicine. This study aims to utilize the Human
Connectome Project (HCP) [13] data to identify distinct biotypes
of alcohol misuse.
Biological, clinical, and analytical variances embedded in

alcohol use-related phenotypes reduce statistical power and
diminish evidence of clinically impactful classification. Clinical
symptoms, such as the DSM criteria, are often used in the
identification of alcohol use subtypes. However, they represent

distal behavioral manifestations, and the resultant subcategories
may not effectively distinguish etiological subtypes and help in
identifying genetic risk variants [14]. Magnetic resonance imaging
(MRI) quantifies structural and functional brain differences that
dispose individuals to and/or reflect the effects of alcohol use.
Thus, MRI provides intermediate endophenotypes of problem
alcohol use, such as binge drinking, and helps in assessing the
genetic architecture of addiction or alcohol use behavior. There is
a long tradition of typological research in psychiatry that has
helped in refining the DSM criteria of substance use disorders.
Whereas early topology research employed univariate classifica-
tion based on a single factor (e.g., Type I and Type II AUD
distinguished by age of onset [15, 16]), multivariate subtyping on
the basis of a variety of clinical features reflecting vulnerability,
severity, chronicity, and psychopathology has been shown to be
more effective [17, 18]. However, empirical subtyping by
symptoms has not yielded clinically impactful categories [19],
and it has been proposed that neural markers may enhance the
validity in subtyping alcohol misuse [20, 21]. For instance, using
unique and stable connectivity patterns characterized by resting-
state functional MRI (rsFMRI), investigators have defined four
subtypes of depression with differential responses to treatment
[22]. Further, these biological subtypes may be underpinned by
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different genetic risk factors. Thus, this study attempted to employ
statistical methods to link brain circuits and genetic markers for
sub-categorization of drinking behavior so to enhance the validity
of clinically derived patterns.
In research of the connectivity markers of alcohol misuse,

investigators can examine the whole brain or specific neural
circuits. For instance, alcohol misuse appears to disproportionately
affect the thalamus and hippocampus [23–34]. We characterized
earlier how thalamic connectivities were associated with alcohol
expectancy and the extent of problem drinking in non-dependent
drinkers [33]. Other studies have described the effects of short-
and long-term alcohol use on whole-brain connectivity and
associated the connectivity patterns with clinical manifestations
of AUD [35, 36] and identified connectivity markers that improve
the prediction of AUD diagnosis [37–39].
We employed whole-brain functional connectivity features (FCs)

of the HCP data derived from rsFMRI to achieve two aims. First, we
employed connectivity features to identify biotypes of alcohol
misuse (AM). We hypothesized that subtyping would help in
improving the classification, as compared to the analysis using the
same but non-differentiated subjects, of drinkers vs. non-drinkers.
Second, we aimed to characterize the clinical features and genetic
risk variants of the biotypes and hypothesized that the AM
biotypes would be distinguished by clinical features and risk
variants that would otherwise not reveal by merely comparing
drinkers with non-drinkers.

SUBJECTS AND METHODS
Subjects
We used the HCP S1200 Subjects Release data of 1206 young adults (age
22–35), where 1033 were genotyped and underwent 3 T rsFMRI scans
twice (scan 1 and scan 2). Although the HCP project aimed at studying
neurotypical populations, many subjects used substances of abuse,
particularly alcohol, tobacco, and marijuana, meeting at least one DSM-IV
criterion of AUD, nicotine use disorder (NUD), or marijuana use
disorder (MUD).
Our study targeted the subjects meeting at least one of the diagnostic

items of AUD, hereafter termed subjects of alcohol misuse (AM). After
preprocessing of the rsFMRI images [40]. (Section 2.3), 60 of the
1033 subjects were excluded because of poor image quality and/or failed
registration. We further excluded those who met at least one diagnostic
items of NUD or MUD and those without genotype data. As a result,
739 subjects were included in the final sample for analyses. Among the
739, 250 were AM subjects (132 men; 22–35 with mean ± SD= 28.3 ± 3.6
years) and 489 control subjects (189 men; 22–36 with mean ± SD= 28.8 ±
3.8 years). Of the 250 AM subjects, 106 met criteria for AUD (i.e., abuse or
dependence) [41] and 68 (including 43 with AUD) engaged in binge-
drinking (having ≥ 4/5 drinks per occasion for women/men) at least once a
week in the past 12 months. The detailed demographic characteristics of
AM subjects and controls are summarized in Supplementary Table S1.

Clinical measures
In the HCP alcohol-related variables were assessed through the adminis-
tration of the Semi-Structured Assessment for the Genetics of Alcoholism
(SSAGA), a computer-assisted interview that yields lifetime DSM-IV
diagnosis of substance user disorders [42]. Ten variables of numerical
values quantified the frequency and quantity of alcohol use (Supplemen-
tary Table S2). These measures were linearly normalized into a scale of 0 to
5 to reflect the severity of drinking. The HCP also characterized psychiatric
symptoms by the Adult Self Report (ASR) score [43] in the DSM-oriented
scales, with DSM raw scores for depression, anxiety, severity of somatic
symptoms, avoidant personality, attention deficit hyperactivity disorder
(ADHD, including inattention and hyperactivity/impulsivity subscales), and
antisocial personality.

Functional connectivity features
All imaging data were acquired on a customized Siemens 3 T Skyra with a
standard 32-channel Siemens receiver head coil and a body transmission
coil. T1-weighted high-resolution structural images were acquired using a
3D MPRAGE sequence with 0.7 mm isotropic resolution (FOV= 224mm,

matrix = 320, 256 sagittal slices, TR= 2400ms, TE= 2.14ms, TI= 1000ms,
FA= 8°) and used to register rsFMRI data to a standard brain space. The
rsFMRI data were collected in two sessions, using gradient-echo echo-
planar imaging (EPI) with 2.0 mm isotropic resolution (FOV= 208 ×
180mm, matrix = 104 × 90, 72 slices, TR= 720ms, TE= 33.1 ms, FA=
52°, multi-band factor = 8). Within each session, oblique axial acquisitions
alternated between phase encoding in a right-to-left (RL) direction in one
run and phase encoding in a left-to-right (LR) direction in the other run.
Each run lasted 14.4 minutes (1200 frames). Physiological data (i.e., cardiac
and respiratory signals) were also acquired, using a standard Siemens
pulse oximeter placed on a digit and a respiratory belt on the abdomen,
and sampled equally at 400 Hz (~288 samples per frame). More details of
the data collection procedures can be found in the HCP S1200 Release
Reference Manual.
In the current study, both sessions (LR and RL runs combined for each

session) of rsFMRI data were used and processed with Statistical Parametric
Mapping (SPM12, Wellcome Department of Imaging Neuroscience,
University College London, U.K.). Images of each participant were first
realigned (motion corrected) and a mean functional image volume was
constructed from the realigned image volumes. These mean images were
co-registered with the high-resolution structural MPRAGE image and
segmented for normalization with affine registration followed by nonlinear
transformation. The normalization parameters determined for the struc-
tural volume were then applied to the corresponding functional image
volumes for each participant. Afterwards, the images were smoothed with
a Gaussian kernel of 4 mm at Full Width at Half Maximum.
Physiological signals were regressed out to reduce spurious BOLD

variances. A temporal band-pass filter (0.009 Hz < f < 0.08 Hz) was also
applied to the time course to obtain low-frequency fluctuations [44].
Further, we applied a “scrubbing” method to eliminate global motion-
related artifacts. Specifically, frame-wise displacement FD(t) = |Δdx(t)| + |
Δdy(t)| + |Δdz(t)| + |Δα(t)| + |Δβ(t)| + |Δγ(t)| was computed for every time
point t, where (dx, dy, dz) and (α, β, γ) are the translational and rotational
movements, respectively [45]. Moreover, the root mean square variance of
the differences (DVARS) in % BOLD intensity I(t) between consecutive time
points across brain voxels, was computed – DVARS(t) = sqrt(|I(t) – I(t-1)|2) –
where the brackets indicated the mean across brain voxels. Following
previous HCP studies, we marked volumes with FD > 0.2 mm or DVARS >
75 as well as one frame before and two frames after these volumes as
outliers (censored frames). Uncensored segments of data lasting fewer
than five contiguous volumes were also labeled as censored frames [46].
From each rsFMRI image, only uncensored frames were used in the
computation of the correlation matrix of 268 regions of interest (ROIs) [47],
which yielded 35,778 unique FC markers.

Genotypes
The genotype data of all 739 subjects were obtained from the Database of
Genotypes and Phenotypes (dbGaP) website [48], under phs001364.v1.p1.
In this dataset, DNA samples were extracted from blood or saliva and
genotyped with a custom microarray chip consisting of the Illumina Mega
Chip, ImmunoArray, and psychiatry-related content from the PsychArray.
Samples were also processed with a second Illumina Neuro Consortium
chip for SNPs particularly relevant to neuroimaging studies [49]. Although
genome-wide single nucleotide polymorphisms (SNPs) were available for
the current 739 subjects, the HCP sample size is not adequately powered
for a genome-wide association study (GWAS). Thus, we performed
candidate gene analysis by selecting the genetic variants from the
genotyped SNPs previously associated with AUD as summarized in the
NHGRI-EBI GWAS Catalog [50]. This mapping with quality control resulted
in 3890 SNPs in 75 AUD-related genes (Supplementary Table S3).

Machine learning and classification
Overall analytic goals and routines. Of the 739 subjects, 665 (222 AM
subjects) and 74 (28 AM) were used for discovery and replication,
respectively. The discovery set was further split into a training (n= 591,
194 AM) and validation (n= 74, 28 AM) set so the classifiers can be
validated without involving the replication set. The training, validation, and
replication samples had matched proportions of AM subjects, demo-
graphic and psychiatric characteristics, and alcohol use behavior (Supple-
mentary Table S4).
Figure 1 shows the analytic procedures. We accounted for the covariate

effects [51, 52] in the computation of each FC feature by regressing out
age, sex and head motion in a linear model of the training data. We used
the total number of censored frames to measure the level of head motion.
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Other datasets were corrected using the same linear models of training
data. The training sample was used to identify AM biotypes with selected
FC features and to create classifiers for AM biotypes. The validation sample
was used to compare classifiers and select the best according to the
classification accuracy of AM vs. control subjects. The resultant classifiers
produced quantitative scores for each subject in terms of membership of a
specific biotype, which also served as quantitative traits in genetic
association tests. During replication, the validated classifiers were applied
to replication sample to report classification accuracy. Genetic markers
identified during discovery were tested for replication, too.

Feature selection and biotype identification. We performed feature
selection, dimension reduction, and cluster analysis. First, we searched
for top FC features that were significantly Spearman’s rank-correlated with
one or more of the ten alcohol use metrics and eight Adult Self Report
(ASR) scores as described earlier. We then identified the top FC features
that differed significantly between AM and control subjects in Wilcoxon
rank-sum tests. We took a union of these features for cluster analysis. In
this step, we set the significance threshold as 0.05, 0.005 and 0.0005 to
identify three sets of FC features, and, subsequently, selected the set with
the best AM biotyping performance.
We reduced the data dimension by the Uniform Manifold Approxima-

tion and Projection (UMAP), a novel nonlinear dimension reduction and
visualization technique [53]. UMAP preserves the subject proximity in the
sample when searching for a low dimensional space to map high
dimensional data. We used UMAP to compress each of the three identified
sets of FC features into 2, 3, and 4 dimensions, respectively, which resulted
in 9 distinct UMAP representations. For each of the 9 representations,
K-means and hierarchical clustering were used to derive AM clusters, with
the number of clusters (2, 3 and 4) determined by the Variance Ratio
Criterion, the ratio of the sum of between-clusters dispersion and of inter-
cluster dispersion for all clusters. We trained the AM classifiers with these 9
AM biotype assignment solutions and selected the solution with the best
classification performance. We then examined the resultant clusters in
terms of the demographic, psychiatric, alcohol use, and rsFMRI-related
characteristics.

Classifying AM biotypes from controls. AM biotyping helps reduce
between-subject heterogeneity in alcohol-related FC features so to
facilitate the classification of AM subjects. We constructed an artificial
neural network (ANN) to discriminate AM subjects from controls by first
mapping them to the biotypes (workflow shown in Supplementary Fig. S1).
The resultant classifier could thus be used to classify replication subjects in
terms of AM versus control. The input to the ANN is a whole-brain FC
matrix containing 35778 distinct correlations pair-wise of the 268 ROIs. To
reduce the number of trainable parameters in the ANN and render the
model less prone to overfitting, the ANN performed feature extraction to
map the high dimensional whole-brain FC matrix into a low dimensional
representation (details in Supplementary Methods).
ANN models were trained in two separate procedures: to directly

classify AM subjects from controls (the baseline ANN model); or to first
distinguish biotypes from controls and then combine the biotype scores

in a weighted sum to arrive the final AM prediction (i.e., ANN model with
biotype knowledge). This strategy could compare whether biotyping
improves the AM classification. In the second procedure, the ANN model
was trained with a newly designed objective function which minimized
the biotype classification error together with the overall AM versus control
classification error (details in Supplementary Methods). By comparing the
area under the receiver operating characteristic curve (AUC) of the
resultant classifiers on the validation sample, we selected the best
clustering solution and corresponding classifiers. The validation set was
also used to determine the threshold to convert the probabilistic outputs
of the final classifier into binary predictions (AM vs. control) by minimizing
the absolute distance between the specificity and sensitivity of AM
prediction.
The statistical significance of the results was estimated by permuta-

tion testing, where we randomly permuted the AM and control labels for
each subject in the discovery and replication sets. For each permuted
discovery dataset, on the basis of the selected AM biotyping assignment
solution and ANN classifier, we classified subjects in each resultant AM
biotype from control subjects. We repeated this procedure 200 times
and reported the statistical significance of classification accuracy for the
replication set.

Assessing consistency of AM biotypes between MRI scans. The robustness of
the AM biotype scoring was also examined with the second scans of the
training subjects. We computed the AUC for each AM biotype against the
rest on the basis of AM biotype scores predicted by our model. We then
used the number of subjects in a biotype as weights and computed the
weighed AUC to evaluate the overall robustness of the AM biotype scoring.

Genetic association analysis. The ANN classifier’s outputs for each biotype
were treated as quantitative traits in our genetic association analysis. The
majority of the HCP subjects are European Americans (EAs, n= 550) and
African Americans (AAs, n= 103), with 86 subjects of other races. We
performed association tests for each biotype trait and the quantitative AM
trait (the output from the non-differentiated AM-vs-control classifier) using
the combined EA and AA samples (n= 524 in the discovery set, with 114
from 57 monozygotic twins and 48 from 24 dizygotic twins). We used the
Genome-wide Efficient Mixed-Model analysis for Association (GEMMA) [54],
a linear mixture model that corrects for correlations among related
individuals by a genetic relationship matrix calculated from genome-wide
SNPs for all subjects. GEMMA also takes into account population
differences in sex and race [55]. We performed quality control steps to
the SNPs mapped from previously reported AUD associations. SNPs that
were available for <95% of the subjects in the testing or for which the
P-value of Hardy–Weinberg equilibrium was <1.0E−07, were excluded. The
minor allele frequency (MAF) of each SNP was then calculated within each
population in each association test for different traits. SNPs with MAF < 5%
in a population were removed from the association tests for the trait.
Finally, the selected ANN classifier was applied to the replication sample (n
= 63, EAs and AAs) to calculate the biotype scores for each subject,
allowing us to validate the genetic markers identified from the discovery
sample.

Fig. 1 The analytic pipeline to identify and validate alcohol misuse (AM) biotypes.
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RESULTS
AM biotypes and the FC features
After regressing out the effects of age, sex and head motion,
Spearman’s rank correlation analysis and Wilcoxon rank-sum test
based on the training set identified 18,905, 3505 and 521 FC
features, respectively, for P < 0.05, 0.005 and 0.0005. Figure 2a
shows the Manhattan plots of the distribution of P values for the
two types of analysis. For each of the three feature sets, UMAP was
conducted to reduce the data of AM subjects into lower
dimensions (2D, 3D, and 4D). Following the pipeline described
in Section 2.5, the 4-cluster AM biotyping solution (Fig. 2b)
obtained on the basis of FC features with P < 0.0005 in the 3D
UMAP space showed the best validation AUC (0.71, P= 0.005,
permutation test) of the AM classifier. This biotyping solution
included a very small group (blue points in Fig. 2b n= 18) which
we omitted in the subsequent analyses due to lack of power. All
remaining three AM biotypes were well replicated on the scan 2 of
the training sample (AUC= 0.77, 0.77, 0.71 respectively for
biotypes 1, 2, and 3, P < 0.05, permutation test, Supplementary
Fig. S2). Further, the AM biotypes derived by our approach did not
simply recapitulate subtypes derived solely from clinical-symptom
measures. As shown in Supplementary Fig. S3, biotyping
according to FC features yielded more stable clustering outcomes
than that via alcohol use behavior and clinical metrics.
The demographic characteristics were comparable among AM

biotypes 1, 2, 3 and the control group (Supplementary Table S5)
except for sex. Therefore, with sex as a covariate, we compared

the alcohol use and psychiatric metrics between the AM biotypes
and between the biotypes and control group. As expected, AM
biotypes showed higher scores than the control group in the great
majority of alcohol use and psychiatric metrics. Table 1 lists items
that showed significant differences among the three AM biotypes
(Supplementary Table S6a, b). The three biotypes differed
significantly on the frequency of any alcohol use in past
12 months, frequency of drinking 5+ drinks in past 12 months,
heaviest frequency of any alcohol use in heaviest 12-month
drinking period of participant’s lifetime; and frequency of drinking
5+ drinks during heaviest 12-month drinking period of partici-
pant’s lifetime. Specifically, biotype 3 and 2 showed most and
least frequent drinking, respectively. Biotype 2 relative to 1 and 3
overall demonstrated higher scores for depression, anxiety,
avoidant personality, ADHD, hyperactivity and antisocial person-
ality but only significantly higher for antisocial personality score.
Considering the differences in alcohol use and psychiatric metrics,
we named AM biotype 1, 2 and 3 each as mild, comorbid, and
moderate AM, respectively.
We compared the selected 521 FC features between each of the

AM biotypes and the control group. Supplementary Table S7
shows the test results and reproducibility of the Wilcoxon rank-
sum tests of the FC features that significantly differentiated any
AM biotype from control (P < 0.05, Bonferroni corrected). Moder-
ate AM identified the greatest number of FC features (n= 65), as
compared to mild (7) and comorbid (16) AM, that differed
significantly from controls. In Fig. 3, we showed the top findings of

Fig. 2 Feature selection, cluster analysis and classification of AM subjects. a Manhattan plot showing how significantly each FC feature (a
point in each column) is correlated with the alcohol use and clinical metrics (columns on the left; please refer to the section of alcohol use
metrics in Table 1 for the full feature names) and differentiates AM from control (column on the right); the higher it is positioned on the plot,
the more significant it is. The FC features showing a correlation at P < 0.005 (i.e., above the horizontal line) were included in UMAP. b K-means
clustering results on the basis of the three dimensions revealed by UMAP. c Classification performance of the ANN classifier with AM biotype
knowledge as compared with baseline ANN (i.e., without biotype knowledge). The implementation of these ANNs is described in
Supplementary Methods. G-score = the square root of the product of the sensitivity and specificity of a classifier. *P < 0.05, **P < 0.01,
***P < 0.005 in permutation tests.
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these FC features. Mild AM vs. control showed higher cerebellar FC
with the dorsolateral prefrontal cortex (dlPFC), lower supramar-
ginal gyrus (SMG) FC with the caudate, and lower cerebellar FCs
with the temporal pole (TP), superior temporal gyrus (STG),
somatosensory and primary motor cortex. Comorbid AM vs.
control showed lower dlPFC FC with the cerebellum and higher
dlPFC, premotor and supplementary motor cortical FCs with the
temporal, including the temporal pole, and parietal cortices.
Moderate AM relative to control showed higher insula FC with the
SMG, lower premotor and supplementary motor cortical FCs with
the temporal pole, medial temporal gyrus and cerebellum, and
lower dlPFC FCs with the temporal pole, medial temporal gyrus,
and hippocampus. Thus, the three AM biotypes demonstrated FC
features that can be distinguished from controls.

Distinguishing alcohol misuse from control with vs. without
biotyping
On the replication set, we compared the baseline ANN model and
ANN model with AM biotype knowledge on the basis of the AUC
and G-score as shown in Fig. 2c. With AM biotyping, ANN model
achieved the highest AUC (0.70, P < 0.005) and G-score (0.65, P <
0.005), as compared to the results without AM biotyping knowl-
edge (AUC= 0.60, not significant; G-score= 0.61, P < 0.05).

Genetic association analysis
We collected the mild, comorbid, and moderate AM classification
scores from the ANN model and used them as the quantitative
traits representing these biotypes in genetic analysis. We also
extracted the output of the baseline ANN model treating it as the
quantitative trait of AM vs. control. Genetic association tests were
performed for the four traits first using the 524 training subjects
(447 EAs and 77 AAs) in the discovery set, with age, sex and race
as covariates, and then the identified SNPs were tested in the
replication set (Supplementary Table S8). As Bonferroni correction
for all SNPs is highly conservative and would “overcorrect” for
SNPs that are not truly independent, we estimated the number of
independent SNPs for Bonferroni correction. Specifically, following

Duggal et al. [56], we performed blocks of linkage disequilibrium
(LD) on the selected SNPs and evaluated the number of
independent SNPs by counting 1 SNP per LD block, plus all SNPs
outside the blocks.
Table 2 lists the top five SNPs that were identified for each of

the four traits. A SNP (rs16930842) in the gene LINC01414 was
significantly associated with the comorbid AM biotype (P= 3.52E
−05, LD adjusted Bonferroni correction gave P < 0.05). This finding
was successfully replicated using 63 EAs and AAs combined in the
replication set (P < 0.05).

DISCUSSION AND CONCLUSION
We employed connectivity markers to group subjects with alcohol
misuse (AM). We identified three clusters of AM subjects (biotypes)
—mild, comorbid, and moderate—each with a distinct pattern of
functional connectivities (FCs) and clinical characteristics including
alcohol use metrics that can be differentiated from controls. The
comorbid AM biotype also carried potentially unique genetic
markers. These findings add significantly to extant effort in
characterizing and developing diagnostic biomarkers of alcohol
misuse [57–59]. Importantly, with AM subtyping, replication
achieved superior AUC and G-score in predicting AM as compared
to the analyses without AM biotype differentiation. These results
together suggest that reducing the heterogeneity in the FC
features among AM subjects by subtyping helps in distinguishing
problem drinkers from controls.
FC features are highly non-linear [60, 61]. Linear dimension

reduction, such as principal component analysis, did not yield any
clustering solutions (data not shown). As a non-linear algorithm,
UMAP reduces the dimension of FC features with an iterative
process to search for coordinates in a lower dimensional space
that preserves the sample proximity. Here, the UMAP dimensions
helped K-means and hierarchical clustering of AM biotypes. Thus,
the FC features partake in the classification in a non-linear manner
and, as a result, it may not be possible to explain how individual
connectivity features compose the UMAP dimensions that

a) Mild AM vs. Control (lateral view of left hemisphere, topside, lateral view of right hemisphere, medial view of left 

hemisphere, bottom side and medial view of right hemisphere)

b) Comorbid AM vs. Control (lateral view of left hemisphere, topside, lateral view of right hemisphere, medial view of left 

hemisphere, bottom side and medial view of right hemisphere)

c)Moderate AM vs. Control (lateral view of left hemisphere, topside, lateral view of right hemisphere, medial view of left 

hemisphere, bottom side and medial view of right hemisphere)

Fig. 3 Top FC features differentiating each of the mild AM biotype (a), comorbid AM biotype (b) and moderate AM biotype (c) from
control subjects. FC features used in the cluster analysis were considered. All FC features (n= 7) that differed significantly (Wilcoxon rank-sum
tests, P < 0.05, Bonferroni corrected) between mild AM and control groups and the top-10 features that differed most significantly between
the other two biotypes from controls were listed. ROIs were colored according to the Brodmann area they belong to, and node size was scaled
by its node degree. The edges were colored according to the feature effects: red: AM biotype > control, on average; blue: AM biotype <
control, on average. The edge thickness corresponded to the negative-logged P-value. Detailed information about FC features in a, b and
c can be found in Supplementary Table S7.
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distinguish AM biotypes. However, by examining which FC
features were selected more frequently and prominently by the
classifier, we could attempt to understand their roles and relate
these findings to those reported in the literature.
With AM biotyping, we identified FC features that distinguished

individual AM biotypes from controls. For instance, while
demonstrating predominantly lower FCs, mild and moderate AM
showed lower supramarginal gyrus (SMG) FCs with the caudate
and higher SMG FCs with the insula, respectively, relative to
controls. The SMG is a hub of the ventral attention network; a
post-hoc explanation is that, while mild alcohol misuse influences
the functional integrity of the saliency network, more severe
alcohol misuse may lead to compensatory increase in SMG
connectivity to support processing of salient stimuli and working
memory/executive control, as subserved by the insula and
caudate. These findings are broadly consistent with studies
implicating the saliency/attention networks in alcohol use severity
and relapse [62–64]. Both mild and comorbid AM biotypes
showed less drinking severity (relative to moderate AM) and
lower dorsolateral prefrontal cortex (dlPFC) FCs with the
cerebellum, as compared to controls. An earlier study showed
that youth with vs. without a family history of alcoholism showed
less response in both the dlPFC and cerebellum during risky
decision-making [65]. As impulsivity and sensation seeking
represent a critical feature of early alcohol use, one might
speculate that disrupted dlPFC cerebellum FCs may characterize
this early stage of alcohol misuse and/or dispose individuals to

problem drinking. Finally, characterized by higher antisocial
scores, comorbid but not mild or moderate AM showed higher
dlPFC FCs with the temporal, including the temporal pole, and
parietal cortices. The temporal cortex is known for its role in
processing social emotions and interaction with the PFC in
decision making in social contexts [66]. Inmates with higher
psychopathic traits showed altered hemodynamic response in the
dlPFC and functional connectivity between temporal, parietal and
prefrontal cortices when viewing morally laden interactions [67].
These findings appear to suggest a distinct neural marker of
comorbid AM that may not be directly related to alcohol misuse.
Genetic association tests identified a significant SNP

(rs16930842) of LINC01414 for the comorbid AM at a LD adjusted
Bonferroni corrected P-value (P= 3.51E-5), a finding validated in
the replication set (P= 0.01). LINC01414 was reported in an early
GWAS to be correlated with AUD and antisocial behavior [68],
consistent with the current findings.
Several limitations need to be considered for the study. First,

the discovery and replication samples were recruited from a single
study site; an independent test sample would be needed to
eliminate potential site confounds. On the other hand, we did not
use the replication set in training the classifiers, thus providing
more objective validation as compared with many other AUD
classification studies (e.g., [37, 39, 69]). Second, although
considered large for imaging studies, the HCP sample size was
relatively small for genetic association tests. Thus, we did not
perform a GWAS; rather, we extracted SNPs from prior GWAS and

Table 2. Top SNPs of main effect on different traits (ranked by P-value).

Rank SNP Chr Gene Discovery Replication

MAF P-value1 MAF P-value1

Mild AM vs. control

1 rs7977619 12 CACNA1C 0.073 6.27E-05 0.079 9.39E-01

2 rs151401 4 SLC39A8 0.198 1.40E-04 0.23 4.61E-01

3 rs8058681 16 ZFHX3 0.193 3.49E-04 0.183 6.63E-01

4 rs13107325 4 SLC39A8 0.064 5.00E-04 0.063 6.18E-01

5 rs233807 4 SLC39A8 0.194 8.71E-04 0.238 2.28E-01

Comorbid AM vs. control

1 rs16930842*+ 8 LINC01414 0.081 3.52E-05 0.071 1.14E-02

2 rs17717967 14 OTX2-AS1 0.079 7.57E-05 0.063 4.10E-01

3 rs6977715 7 DPP6 0.237 2.13E-04 0.167 7.47E-01

4 rs59129900 7 AUTS2 0.091 3.78E-04 0.079 1.30E-01

5 rs6553691 4 GALNT7 0.075 5.04E-04 0.087 2.13E-01

Moderate AM vs. control

1 rs3911063 3 CADM2 0.328 5.25E-05 0.31 6.65E-01

2 rs7629375 3 CADM2 0.43 2.60E-04 0.397 9.29E-01

3 rs4600827 3 CADM2 0.368 5.03E-04 0.357 9.52E-01

4 rs13082138 3 CADM2 0.372 5.36E-04 0.357 9.52E-01

5 rs4888559 16 ZFHX3 0.483 6.35E-04 0.46 2.71E-01

AM vs. control

1 rs3911063 3 CADM2 0.328 1.17E-04 0.31 8.09E-01

2 rs12580201 12 ACSS3 0.184 1.35E-04 0.143 6.80E-01

3 rs7188162 16 FTO 0.106 3.79E-04 0.079 8.58E-01

4 rs9937234 16 FTO 0.116 1.09E-03 0.135 7.83E-02

5 rs12448205 16 FTO 0.237 1.19E-03 0.175 7.06E-01

Chr: chromosome, MAF: minor allele frequency.
*P < 0.05 on training samples in the discovery set (n= 524), LD adjusted Bonferroni corrected.
+P < 0.05 on samples in the replication set (n= 63).
1 Significances were tested by Wald test.
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identified one significant SNP with LD adjusted Bonferroni
correction. Third, although the current data enable analyses of
brain circuits, genetics, and behavior at the level of individual
subjects [70], the HCP was not a study specifically of alcohol
misuse; more alcohol use-related information (e.g., withdrawal
symptom severity) would have helped in explaining the differ-
ences among mild, comorbid and moderate AM biotypes. Finally,
other neural markers such as gray matter volumes and graph-
theoretic network measures can also be used as features in our
biotyping and classification scheme [71–74]. We intend to pursue
these metrics as features in more studies.

CODE AVAILABILITY
The anonymized code will be made available to all interested parties upon request.
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