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Background: The worldwide increase in pediatric overweight and obesity, in

parallel with the global increase in the consumption of sucrose and fructose, is

associated with non-alcoholic fatty liver disease (NAFLD). Elevated branched-

chain amino acids (BCAAs) are a metabolic feature related to obesity and an

early risk factor for insulin resistance and NAFLD. However, few studies have

assessed metabolic risk factors and nutritional status in maple syrup urine

disease (MSUD) patients under restricted BCAA and high carbohydrate diets.

Methods and results: Herein, we present a pilot report of a 17-year-old boy

with classic MSUD with poor diet compliance and high fructose consumption,

mainly during early adolescence. At that time, he was overweight and

developed features ofmetabolic syndrome, including persistently elevated liver

enzymes and hepatic steatosis. He underwent liver transplantation at the age of

13 years to prevent the risk of progressive cognitive impairment. Two months

later, NAFLD relapsed in the graft, despite a better BCAA balance and weight

loss. Nevertheless, 6 months after dietary restriction of fructose consumption,

NAFLD had sustainably improved.

Conclusion: Childhood overweight and fructose overconsumption are

wellestablished driving forces in the development of pediatric NAFLD.

However, their role in the early onset and progression of NAFLD in the

allograft remains to be established. Furthermore, it is not known whether

the dysmetabolic state associated with elevated BCAAs may be contributory.

Further studies are required with a cohort of MSUD subjects to validate our

findings and to ascertain the possible interaction between a BCAA imbalance

and dietary intake in the development of NAFLD.

KEYWORDS

NAFLD (non-alcoholic fatty liver disease), graft liver steatosis, fructose, recurrent

NAFLD, maple syrup urine disease (MSUD), liver transplant
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Introduction

Maple syrup urine disease (MSUD, OMIM 248600) is an

autosomal recessive inherited metabolic disorder (IMD) caused

by biallelic variants in one of the three genes: BCKDHA,

BCKDHB, and DBT. The resultant branched-chain α-ketoacid

dehydrogenase (BCKDH) deficiency impairs the metabolism of

the branched-chain amino acids (BCAAs), leucine, isoleucine,

and valine (1, 2). Lifetime stringent dietary therapy (protein-

restricted and synthetic amino acid supplements) is the

cornerstone of management, but is challenging and does not

fully prevent metabolic crisis and cognitive and psychiatric

disabilities (1, 3). Orthotopic liver transplantation (OLT)

restores about 10% of BCKDH activity, allowing better

biochemical control under a partially unrestricted diet and

providing protection from metabolic crises (1, 4).

Despite the evidence suggesting that elevated BCAAs are

a metabolic feature associated with obesity and an early risk

factor for insulin resistance and non-alcoholic fatty liver disease

(NAFLD) (5, 6), few studies have assessed the nutritional status

of patients with IMDs. However, it is accepted that being

overweight may be a concern and that the reduction of protein

intake can predispose to the consumption of a high-fat, high-

sugar (from sucrose and/or high fructose) diet (7). Additionally,

the worldwide increase in pediatric overweight and obesity

parallels the global diet modifications including the rise of

sucrose (table sugar) and fructose consumption, mainly present

in sugar-sweetened beverages (8–10). The hepatic oversupply of

these substrates is a major mediator of non-alcoholic fatty liver

disease (or “fructoholic liver disease”) (8, 9, 11–13), correlating

with the severity of hepatic fibrosis in a dose-dependent manner

(14, 15).

Herein, we present a pilot case report of a child with classic

MSUD with poor metabolic control who developed NAFLD and

other features of metabolic syndrome. He underwent OLT to

prevent further cognitive decline. After OLT, besides achieving

a better BCAA balance, he developed recurrent NAFLD, which

only regressed after the restriction of fructose consumption.

We highlight the role of fructose on NAFLD pathogenesis

and related metabolic syndrome and speculate on the possible

interaction between BCAA and nutritional status (beyond

BCAA-restricted diets).

Case description

Our patient was a 17-year-old male, the second child of

a non-consanguineous couple. Prenatal screening and delivery

were unremarkable. On the 7th day of life, he was admitted

due to poor feeding, hypotonia, and episodes of apnea.

On admission, he presented with hypoglycemia (30 mg/dL),

metabolic acidosis (Ph = 7.30), and increased urinary ketone

bodies (3 + range on the dipstick test). The plasma amino acids

chromatography revealed a marked elevation in BCAAs (leucine

1,889 µmol/L (normal range 47–109 µmol/L), isoleucine 432

µmol/L (normal range 27–94µmol/L), valine 895 µmol/L

(normal range 8–246 µmol/L), and allo-isoleucine 257 µmol/L

(normal range 1.2–3.4 µmol/L). A molecular study showed

homozygous deletion of exons 2, 3, and 4 in the BCKDHA gene,

establishing the diagnosis of classic MSUD.

Ventilatory support, intravenous high glucose, insulin

infusion, and supplementation with oral BCAA-free formula

were started, with normalization of leucine levels achieved on

the 6th day of treatment. Neurological stability and normal oral

intake enabled him to be discharged during the 3rd week of life.

The patient had regular a follow-up in our Metabolic

Diseases Unit with nutritional, metabolic, and neurocognitive

assessments. He was prescribed a long-term treatment

consisting of guided dietary intake, with a strict low-protein diet

and a BCAA-free formula to provide adequate macronutrients,

prevent catabolism, and maintain plasma BCAA within

the target treatment range. Basal leucine requirements

were achieved using infant formula; valine and isoleucine

supplements were added to maintain metabolic homeostasis.

Up to preschool age, he had good metabolic control

and neurocognitive development was age-appropriate. In the

following years, dietary treatment was not strictly followed along

with overconsumption of sweetened beverages (juices and soft

drinks) and a high content of simple carbohydrates/added sugar

(processed foods). At the age of 7 years, he was overweight

(BMI = 27 kg/m2, percentile >99th) and his blood chemistry

was remarkable for hyperuricemia and intermittent elevated

liver enzymes (1–2x upper limit of normal—ULN). During

early adolescence, despite the absence of serious metabolic

decompensations, chronic non-compliance with the BCAA-

restricted diet led to persistently elevated leucine levels (400–

500 µmol/L) and cognitive impairment (intelligence coefficient

score below average). In parallel with obesity (abdominal

predominant), other features of metabolic syndrome ensued

hypertriglyceridemia (196 mg/dL), low HDL (35 mg/dL), high

blood pressure, and peripheral insulin resistance.

At the age of 11 years, he was evaluated in our Pediatric

Gastroenterology Unit due to persistently elevated liver enzymes

(on admission: AST 93 UI/L, ALT 194 UI/L, GGT 208

UI/L). Abdominal ultrasound showed liver enlargement and a

heterogeneous echostructure, compatible with diffuse hepatic

steatosis. Further laboratory work-up excluded primary liver

disease (autoimmune liver disease, hepatitis B and C, and alpha-

1 antitrypsin deficiency).

A serum level of ceruloplasmin of 18.2, and 20 mg/dL

on repeat testing, triggered further work-up for Wilson’s

disease: 24-h urinary copper excretion was 0.798 µmol/day,

and Kayser–Fleischer rings were absent, but hepatic copper

concentration was 17.67 µmol/g of tissue. Genetic testing

revealed simple heterozygosity in the ATP7B gene-c.1607T >C

(p.Val536Ala)—Leipzig score of 4. Liver histopathology showed
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FIGURE 1

Hematoxylin and eosin (H&E) × 100. Photomicrograph illustrating predominantly macro-vesicular steatosis without hepatocyte ballooning or

Mallory bodies; the presence of mononuclear inflammation and septal fibrosis.

macro-vesicular steatosis (> 60%) and portal fibrosis (Figure 1).

Poor metabolic control with progressive cognitive impairment

culminated in OLT at the age of 13 (cadaveric ABO-matched

young donor with no underlying medical disease; graft without

steatosis). The postoperative period was uneventful, and he was

discharged on the 13th day. The patient was under combined

immunosuppression with tacrolimus (target blood trough levels

of 6–10 ng/mL) and prednisolone for the first few months.

Prednisolone was progressively tapered and stopped. During

the following 3 months, he had a noticeable decrease in BCAA

levels (leucine from 500 to 150 µmol/L), despite the increase

in dietary proteins (natural protein intake >1 g/kg/day),

and weight reduction. Regardless of this improvement, he

maintained elevated transaminases (ALT 4xULN, AST, andGGT

2xULN), hyperuricemia (although lower than pretransplant

levels), and hypertriglyceridemia. Liver graft histology revealed

macro-steatosis relapse with∼40% hepatocytes affected, with no

features of graft rejection (Figure 2). Sustained high sucrose and

fructose intake, particularly sugar-sweetened beverages (> 100

g/day), along with a lack of physical exercise was identified as

contributory factors.

Seven months post-OLT, after nutritional optimization with

fructose reduction and an increase in daily physical activity,

the patient had a BMI in the 85–97th percentile, normal

transaminases, normal triglycerides, and leucine serum levels

around 200 µmol/L. Although graft histology had improved, it

still revealed 15–30% of macro-steatosis. Two years later, after

sustained nutritional improvement along with weight reduction,

he had normal liver enzymes and a graft histology with 5% of

steatosis (Figure 3).

Discussion

MSUD is a complex metabolic disorder due to a pathogenic

defect in any BCKAD subunit, resulting in elevated BCAAs,

leucine, isoleucine, and valine, and their corresponding α-

ketoacids (2). In the classical form (< 3% residual enzyme

activity), MSUD can present with metabolic encephalopathy

manifested by acute ketoacidosis and neurological symptoms

such as seizures, apnea, and coma within the first days of

life (1, 3, 16). In Portugal, MSUD has been included in the

newborn screening (NBS) program since 2006, thus allowing

the identification of newborns either asymptomatically or in the

early onset of their symptoms. Our patient, however, presented

before the implementation of the NBS program, and thus, the

diagnosis was based on the typical clinical presentation and

biochemical data, confirmed by the molecular study.

Despite advances in early diagnosis with the NBS,

patients with classic MSUD still remain at risk for chronic
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FIGURE 2

H&E (A) × 40, (B) x 100. Liver graft with macro- and meso-steatosis (40%); no features of graft rejection.

metabolic instability and cognitive impairment. BCAAs are

important precursors for various physiologic processes, such

as protein synthesis, gluconeogenesis, fatty acid synthesis,

cholesterol synthesis, and cellular signaling (17). Leucine and

its corresponding ketoacid appear to be the most neurotoxic

(16), causing cerebral edema and lesions of hypomyelination
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FIGURE 3

H&E (A) × 40, (B) x 100. Liver graft with micro and macrovacuolar steatosis (< 5%) with slight portal and centrolobular fibrosis.

in newborns and infants (18). In the older child, chronic

amino acid imbalances pose a risk for abnormal brain imaging,

intellectual disability, and hyperactivity/attention deficit (1, 19).

Current management of MSUD consists of dietary therapy

and liver transplantation, which partially restore functional

BCKDH activity (3). Although strict dietary treatment from
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infancy typically yields good outcomes, it requires the restriction

of BCAAs by limiting natural protein in the diet and

supplementation of essential amino acids and a low-protein diet.

This restrictive diet is challenging to maintain, and management

of each metabolic decompensation requires a high caloric intake

(up to 150% of usual energy intake) yielding the patients at

risk for nutritional imbalances (1, 20). Notably, dietary protein

restriction (below 9% of total energy or <1.0 g/kg/day) and high

carbohydrate intake (especially refined sugars) have been linked

to excessive hepatic lipid accumulation and the development of

NAFLD (21, 22).

The liver plays an essential role in maintaining nutritional

homeostasis, and therefore, inadequate dietary intake can

adversely affect body composition and biological functions.

In this respect, in our patient, dietary compliance allowed

favorable metabolic control, while ensuring adequate growth

and a positive neurocognitive outcome until preschool years.

Subsequent irregular compliance with the BCAA-restricted

diet and poor metabolic control was probably responsible for

his cognitive delay and a cofactor in the development of

NAFLD and the associated metabolic dysfunction. Furthermore,

he also maintained a calorically unrestricted diet containing

beverages and processed foods that placed him at risk for

metabolic and nutritional imbalance. In fact, this pattern of

consumption is positively correlated with the development of

obesity, NAFLD, and other features of metabolic syndrome in

early adolescence: hypertriglyceridemia, high blood pressure,

and insulin resistance (23).

NAFLD is becoming one of the most common causes

of chronic liver disease in children in developed countries,

and non-alcoholic steatohepatitis (NASH)-related cirrhosis is

an increasingly recognized indication for OLT in adults (24).

NAFLD, which is associated with insulin resistance, obesity,

and hyperlipidemia, is considered the hepatic manifestation

of metabolic syndrome. Recently, a proposal has been

made to rename NAFLD as metabolic-associated fatty liver

disease (MAFLD), due to the heterogeneous etiology and the

aforementioned metabolic risks (25). Diet is an important and

wellestablished modifiable risk factor for NAFLD. In fact, the

epidemic of pediatric NAFLD parallels the increase in childhood

obesity and is positively correlated with the rise in sucrose

(table sugar) and fructose consumption, mainly present in sugar-

sweetened beverages (8, 10, 26).

Despite dietary counseling, patient compliance was poor

and the progressive cognitive decline culminated in OLT. Liver

transplantation restores about 10% of BCKDH activity, being

an effective long-term alternative to dietary treatment, sufficient

to control BCAA metabolism under most circumstances, and

providing protection from further cognitive decline (1, 4) and

increased quality of life (1, 27, 28), which were both achieved in

our patient.

However, the metabolic syndrome persisted after OLT,

and significant changes in the levels of transaminases

in the posttransplant period raised the hypothesis of

recurrent NASH, which was confirmed by liver histology.

In fact, our patient’s pretransplant overweight and liver

steatosis were predictive of an unfavorable outcome. It is

wellestablished in the literature that pretransplant obesity,

insulin resistance, hyperlipidemia, a sedentary lifestyle, and

increased fat and fructose intake are among the most common

risk factors for recurrent NAFLD among patients with

known NASH (29–31).

Nevertheless, the early recurrence of NAFLD in the allograft

was puzzling at first sight but suggested that metabolic

dysregulation was capable of rapidly reproducing the disease

in a healthy organ (histology of the donor’s liver was reviewed

and revealed no steatosis). When the diet was once again

revised, the patient assumed high levels of consumption of added

sugars, particularly fructose-sweetened beverages. The liver is

the primary organ to metabolize fructose, and overwhelming

fructose consumption is a driving force in the development

of NAFLD/NASH via de novo lipogenesis, hepatic insulin

resistance, lipotoxicity, and oxidative stress (13, 32). Fructose

overconsumption also induces gut dysbiosis, visceral adiposity,

and intracellular cortisol concentration (12, 33). Recent evidence

suggests that the pathogenesis of NAFLD is due to the distinct

characteristics of its metabolism by fructokinase C, ultimately

resulting in uric acid generation that mediates fat accumulation

(12, 34). Likewise, there is a strong association between high

uric acid levels and pediatric NASH patients, as reported in

our case.

A median fructose intake of >20 g/day or >10–30% of total

energy intake induces the accumulation of fat in hepatocytes

(35). Moreover, to develop a fatty liver, it usually takes at

least 8–24 weeks on a high-fructose diet (9), which correlates

well with the rapid development of graft steatosis in our

patient. The pattern of fructose consumption is important in the

pathogenesis of NAFLD because if it is accompanied by dietary

fiber, fructose absorption will be slower, in contrast to diets with

sugar additives and sugar-sweetened beverages, most commonly

sucrose and the sweetener high-fructose corn syrup, which have

the most detrimental effect (13).

Restriction of fructose consumption may ameliorate and

reverse the effects on hepatic steatosis and related metabolic and

biochemical parameters (12) and may be more important than

weight loss for improving markers of cytolysis in children with

NAFLD (36).We believe that in our patient, targeting reductions

in fructose intake, particularly in beverages and processed

foods, was the major therapeutic strategy to ameliorate graft

steatosis. Additionally, we speculate that in this case, the

consequences of excessive fructose intake and the benefits of

fructose reduction may be independent of metabolic control.

However, distinguishing and isolating the contribution of

improved diet aspects from metabolic control may be not

straightforward, particularly in the pretransplant setting. For

instance, an elevated fasting blood BCAA concentration is
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considered a metabolic hallmark of obesity, insulin resistance,

dyslipidemia, and NAFLD. Although it is not established

whether BCAAs are drivers of insulin resistance and its

comorbidities or only biomarkers of metabolic dysregulation

(37), two recent studies reported a positive association between

plasma BCAA and intrahepatic lipid content (38, 39). Therefore,

it is plausible that elevated plasma BCAA levels could have

been a contributing factor to insulin resistance and NAFLD

in our patient. However, causality cannot be concluded since

the mechanisms of elevated BCAA levels leading to hepatic fat

accumulation are still unknown. Further studies with a larger

cohort of MSUD subjects will be important to validate our

report and evaluate the possible interaction between BCAA

dyshomeostasis and nutritional status (beyond BCAA-restricted

diets) in the development of NAFLD.

Conclusion

To the best of our knowledge, this is the first case report

of NAFLD in a patient with MSUD, who developed recurrent

NAFLD post-liver transplantation. This pilot case report

provides insights into the complexity of MSUD beyond leucine

toxicity and highlights the need for the study of nutritional status

and dietary intake beyond a BCAA-restricted diet.
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