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Earlier cohort studies using conventional regression models have consistently shown an increased cancer risk among
individuals with type 2 diabetes. However, reverse causality and residual confounding due to common risk factors could exist,
and it remains unclear whether diabetes per se contributes to cancer development. Mendelian randomization analyses might
clarify the true association between diabetes and cancer risk. We conducted a case—cohort study with 10,536 subcohort
subjects and 3,541 newly diagnosed cancer cases derived from 32,949 eligible participants aged 40-69 years within the Japan
Public Health Center-based Prospective Study. With 29 known type 2 diabetes susceptibility variants, we used an inverse
variance-weighted method to estimate hazard ratios for the associations of diabetes with risks of total and site-specific
cancers. The hazard ratios of cancer per doubling of the probability of diabetes were 1.03 (95% confidence interval [CI],
0.92-1.15) overall, 1.08 (95% Cl: 0.73-1.59) for the pancreas, 0.80 (95% Cl: 0.57-1.14) for the liver and 0.90 (95% Cl:
0.74-1.10) for the colorectum. Additional analyses, using publicly available large-scale genome-wide association study data
on colorectal cancer in Japan, resulted in a narrower Cl (hazard ratio: 1.00; 95% Cl: 0.93-1.07). In this prospective Mendelian
randomization study with a large number of incident cancer cases, we found no strong evidence to support associations
between diabetes and overall and site-specific cancer risks. Our findings suggest that there is little evidence to support the
genetic role of type 2 diabetes in cancer development in the Japanese population.

Introduction

Over the decades, a number of cohort studies reported associa-
tions between type 2 diabetes and increased cancer risks, espe-
cially liver, colorectal and pancreatic cancers."> More recently,
studies have shown that high levels of blood glucose™ or glycated
hemoglobin Alc’ are associated with cancer incidence. These

associations are biologically plausible, given that hyperglycemia
increases mitochondrial glucose oxidation, thereby promoting
DNA damage through oxidative stress. Because diabetes or high
glucose levels could be prevented through lifestyle modifications
or medications, these could be potential strategies for cancer
prevention.
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While type 2 diabetes is implicated in cancer development, the two conditions share multiple risk factors, raising questions
about the actual contribution of diabetes to cancer risk. Here, a Mendelian randomization (MR) analysis was used to clarify the
relationship between diabetes and cancer in a Japanese cohort. Based on data for 32,949 individuals, including 3,541 incident
cancer cases, MR analysis revealed no strong genetic evidence supporting a link between diabetes and cancer risk, including
site-specific and overall risk. This finding was confirmed by investigation of data from a genome-wide association study of

colorectal cancer from the BioBank Japan Project.

However, the causal relationship between diabetes and cancer
risk has not been established yet. Diabetes and cancer have
many common risk factors such as unhealthy diet, physical inac-
tivity, smoking and adiposity, which raise the likelihood of residual
confounding. If diabetes occurs secondary to precancerous state or
subclinical cancer, reverse causation could also be present.

A Mendelian randomization (MR) approach may overcome
the limitations of traditional observational study designs by using
Mendel’s law. The MR approach utilizes the random allocation of
genotypes at conception, which makes genotypes to be indepen-
dent of potential confounders and also avoids reverse causation.®

Large-scale MR studies have been increasingly reported in
recent years.”® However, these studies often consist of mixed
populations mainly from traditional case—control studies, with
high risk of selection bias and heterogeneity, and lack important
information about lifestyle factors prior to the onset of cancer.
Thus, MR studies from prospective cohort studies with detailed
covariates at baseline would probably give less biased estimates
than those from case—control studies. Therefore, we performed
an MR analysis to clarify the true association between diabetes
and cancer risk using genotyped and imputed genetic data from
the Japan Public Health Center-based Prospective (JPHC) Study.

Methods

Study population

The JPHC study was initiated in 1990 (cohort I) and 1993-1994
(cohort II). All subjects were Japanese from 11 public health cen-
ter (PHC) areas and were aged 40-59 years in 1990 (cohort I)
and 40-69 years in 1993 (cohort II) at the time of their first sur-
vey. The JPHC Study has been described in detail previously.’
Our study population was derived from a cohort of 33,736 sub-
jects from nine PHC areas across Japan, who responded to the
baseline questionnaire and provided blood samples during the
health checkup. We excluded 787 participants who had past
history of cancer or cancer incidence before their return of the
self-administered questionnaire. Our study was approved by the
institutional review board of the National Cancer Center, Japan.

Follow-up and case—cohort selection

We followed up the subjects from the start of the study period
until December 31, 2009. Changes in residence status and deaths
were ascertained through the residential registry. Among the
study population of 32,949 subjects, 1,946 (5.9%) died, 1,085

(3.3%) moved out of the study area and 84 (0.3%) were lost to
follow-up. Cancer occurrence was documented through active
notifications from the major hospitals in the study areas and data
linkage with population-based cancer registries. Death certifi-
cates were also used as a supplementary information source. The
site and histological features of each cancer case were coded
according to the International Classification of Diseases for Oncol-
ogy, Third Edition (ICD-O-3)."° For the registry system used,
4.1% of the cases only had information available from the death
certificates. For analysis, the earliest date of diagnosis was consid-
ered for cases with multiple primary cancers occurring at different
times. For the present case—cohort study, all incident cancers were
included as case subjects. Cancer was newly diagnosed in 3,750
subjects (2,028 men and 1,722 women) during a median follow-
up of 15.9 years. A subcohort sample of 13,024 participants was
randomly selected from the base cohort participants irrespective
of the cancer and follow-up status, comprising approximately 40%
of the base cohort. We further excluded 298 subjects with past his-
tory of cancer and four with missing follow-up times, from the
subcohort sample, leaving 12,722 subcohort subjects and 3,750
incident cancer cases potentially eligible for the analyses.

Laboratory assays

For the potential gain in power or the reduction in variance, given
a fixed maximum cost for our study, a case—cohort design was
chosen for the present analyses on genetically predicted diabetes
in relation to cancer risk. For each participant, DNA was
extracted from a buffy coat of white blood cells using FlexiGene
DNA kits (Qiagen, Hilden, Germany). DNA samples of the par-
ticipants were analyzed using the HumanOmniExpressExome-8
v1.2 BeadChip, the HumanOmniExpress-12 BeadChip, or the
HumanOmni2.5-8 BeadChip arrays (Illumina Inc., San Diego,
CA). The genotyping for our study was conducted at the Genetics
Division or the Department of Clinical Genomics, Fundamental
Innovative Oncology Core (FIOC), National Cancer Center
Research Institute or at the RIKEN Center for Integrative Medical
Sciences. Among the potentially eligible subjects, we excluded
those with inappropriate samples, no calls, call rate per sample of
<0.99, inconsistent sex, non-Japanese samples based on principal
component analysis using the smartpca,'’ or contaminated sam-
ples. Applying these sample exclusion criteria, genotype data were
available for 12,158 subcohort subjects and 3,680 incident cases.
We further excluded closely related samples using concordance
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rate, leaving 10,536 subcohort subjects and 3,541 incident cases.
For imputation, we excluded single nucleotide polymorphisms
(SNPs) using standard SNP quality control (call rate per SNP of
<0.99, minor allele frequency of <0.01, p-value of Hardy-
Weinberg equilibrium in the control group of <1 X 107%, a large
allele frequency difference between the study sample and the refer-
ence panel, or SNPs on the Y chromosome). Then, we performed
imputation of ungenotyped SNPs using SHAPEIT and IMPUTE2
with the 1,000 Genome Project Phase 3 (all ethnic groups) as a ref-
erence panel.

We selected a total of 29 SNPs, identified through published
genome-wide association studies (GWASs), up until July 2014, and
replicated in Asian populations as follows: GCKR, rs780094'%;
IRSI, rs2943641'%; DNER, rs1861612'%; UBE2E2 rs6780569';
PSMDG, rs831571'% IGFBP2, rs4402960'"; MAEA, rs6815464'%
CDKALI, 1s7756992'% ZFAND3, 1s9470794';  KCNKIG,
rs1535500'%; JAZF1, rs864745'%; GCC/PAX4, rs6467136'%; ARF5/
PAX4/SNDI, 1s10229583%%; MIRI29/LEP, 1s791595>; ANKI,
1s515071%%  SLC30A8, rs13266634'%; GLIS3, rs7041847'%
CDKN2A/B, 1s2383208”% GPSMI, rs11787792°'; CDC123/
CAMKID, 1s12779790"; HHEX, r1s1111875'; TCF7L2,
rs7903146'"; KCNQI, rs2237892%%; KCNJ11, rs5219'7; FTO,
1s80501367% C2CD4A, rs7172432'% SLCI6AI13, rs312457°;
PEPD, 1s3786897'; FITM2/R3HDML/HNF4A, rs6017317.'¢
Among the 29 SNPs, 11 were genotyped and 18 were imputed
(Supporting Information Table S1). With the exception of
rs7041847 (INFO as a measure of imputation accuracy of
0.5168), all imputed SNPs showed high imputation quality
(INFO > 0.9). Thus, we performed an analysis excluding
rs7041847 on GLIS3; however, the results did not materially
change, and rs7041847 was included in the main results.

Definition of diabetes

Diabetes was defined by (i) a self-reported diabetes diagnosis
and/or use of a glucose-lowering medication via a self-administered
questionnaire at baseline or (ii) high blood glucose levels during
the health checkups at baseline: > 126 mg/dl for those who fasted
for >8 hr or >200 mg/dl for nonfasting subjects®® (defined by
<8 hr or missing data on fasting hours). Blood glucose levels were
available for 8,659 subjects among the subcohort and 2,815 inci-
dent cancer cases. In a validation study conducted in a subpopula-
tion of the JPHC Study, 94% of subjects with self-report of diabetes
were confirmed to have diabetes, after a medical chart review.”

Statistical methods

To investigate whether the reported diabetes susceptibility SNPs
were associated with diabetes in our study, we fitted the logistic
regression model with adjustment for age, sex and study areas under
the additive genetic model among the 10,536 subcohort subjects
(Supporting Information Table S2). Next, we examined the impact
of diabetes susceptibility SNPs on total cancer and cancer risks at
major sites: stomach (ICD-O-3: C16), colorectum (C18-C20), liver
(C22), pancreas (C25), lung (C34), breast (C50) and prostate (C61)
(Supporting Information Tables S3-S10). We further divided the
participants into five groups based on quintiles of the total number

Diabetes and cancer risk

of risk alleles of the diabetes susceptibility SNPs (Supporting Infor-
mation Table S1) among the subcohort subjects. Then, we fitted the
logistic regression model with adjustment for age, sex and study
areas to estimate the odds ratios for diabetes by each quintile among
the 10,536 subcohort subjects. We also fitted the weighted Cox
model®® with stratification by study areas to examine hazard ratio
for cancer by each quintile, with adjustment for age (continuous)
and sex (men vs. women) among the 10,536 subcohort subjects and
3,541 incident cases. Furthermore, to compute p values for linear
trend, we included the total number of risk alleles as a continuous
variable to the logistic and Cox models.

For conventional analyses on associations between diabetes
and total cancer risk and risks of cancer at major sites, we used
the weighted Cox proportional hazards model with stratifica-
tion by study areas and adjustment for age (continuous), sex
(men vs. women), body mass index (BMIL continuous),
smoking (never, past or current smokers; categorical), alcohol
intake (none, occasional or regular: 1-150 g/week; or regular
drinkers: >150 g/week; categorical), coffee consumption (almost
none, 1-2 days/week, 3-4 days/week, 1-2 cups/day, 3-4 cup-
s/day or >5 cups/day; categorical) and physical activity (none,
1-3 days/month or >1/week; categorical). To address missing
data on BMI, smoking, alcohol intake, coffee consumption and
physical activity, we performed multivariate normal imputation
(the SAS PROC MI procedure) with 100 rounds of multiple
imputations. We included all covariates, follow-up length and
outcome status to account for missing data. We then averaged
the estimates from each imputed dataset according to Rubin’s
rules using the SAS PROC MIANALYZE procedure.

For instrumental variable analyses, we used estimates for
each SNP-cancer association (the first stage model: Supporting
Information Tables S3-S10) and estimates for each SNP-
diabetes association (the second stage model: Supporting Infor-
mation Table S2) as described above. To increase the statistical
power of detecting a significant association, we also utilized the
publicly available results for SNP-colorectal cancer associations
from the BioBank Japan (BBJ) Project (sex-combined: 6,692
colorectal cancer patients and 27,178 controls; Supporting
Information Table S11).*° Using the estimates for 29 SNPs, we
employed an inverse variance-weighted (IVW) method, a sum-
mary data-based MR analysis,”>!
the association between diabetes and cancer risk. The original
MR estimate represents the change in the log hazard for cancer

to estimate MR estimates for

per unit increase in the log odds of diabetes. A one-unit
increase in the log odds of diabetes corresponds to an exp (1) =
2.72-fold multiplicative increase in the odds of diabetes. To
enable clearer interpretation of this relation, we have multiplied
the original MR estimate by loge2 (= 0.693), yielding the
change in log hazard per twofold increase (doubling) in the
odds of diabetes. Because diabetes was a rare disease in Japan
during the study period, the odds approximates the probability.
We then exponentiated the estimates to obtain the hazard
ratios for cancer per doubling in the probability of diabetes.”
MR analyses derive valid estimates where the following
assumptions are met®>: (i) the SNPs are correlated with diabetes,
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(ii) the SNPs affect cancer risk only through their effects on diabe-
tes and (iii) the SNPs are independent of any confounding factors
for the association between diabetes and cancer risk. For assump-
tion (i), because we selected SNPs that were identified through the
GWAS and replicated in Asian populations, such SNPs are likely
to be correlated with diabetes in the source population.

For assumptions (ii) and (iii), we searched the PhenoScanner
database (available at http://www.phenoscanner.medschl.cam.
ac.uk/phenoscanner)®* and the Haploreg database (available at:
http://archive.broadinstitute.org/mammals/haploreg/haploreg.php)
to examine whether the chosen SNPs had pleiotropic effects on
other phenotypes.’> Some SNPs were associated with traits such
as fasting insulin levels at the GWAS significance level
(p < 5.0 X 107°); rs780094 on the GCKR was significantly associ-
ated with fasting insulin-related traits;'* rs7756992 on the
CDKALI was associated with insulin-related traits;*® rs864745 on
JAZF1 was associated with Crohn’s disease’” but not likely to
directly affect diabetes status; 17903146 on TCF7L2 was associated
with proinsulin and insulin levels;*® and rs2237892 on KCNQI was
associated with BMI>® Furthermore, among the subcohort subjects
of our study, we examined whether SNPs were significantly associ-
ated with established risk factors for cancer, including BMI,
smoking, alcohol intake and physical inactivity after applying the
Bonferroni correction by dividing the p-value of 0.05 by the number
of SNPs examined (p < 0.05/29 ~ 1.72 X 107).

Manual pruning of SNPs that potentially have horizontal
pleiotropic effects is not generally recommended, because such
pruning might lead to an instrument that is not biologically
meaningful.*’ Instead, as a sensitivity analysis, we conducted an
MR-Egger regression, which provides valid estimate even in the
presence of unbalanced pleiotropy.*' We further performed the
leave-one-out analysis by recalculating the MR estimates with
the IVW method by sequentially dropping one SNP at a time to
examine whether a single SNP that might have a large horizon-
tal pleiotropic effect would influence the MR estimates.”*

Thresholds for nominal significance were set at a two-sided
p-value of <0.05. Statistical analyses were conducted using
SAS (version 9.4; SAS Institute, Cary, NC) or R (version 3.4.2;
R Foundation for Statistical Computing, Vienna, Austria).

Results
Among the subcohort subjects (1 = 10,536), 5.8% (n = 613) had
diabetes at baseline. Among them, 447 were known to have diabetes,
while 166 were identified to have diabetes by blood glucose testing
during the health checkups. Among those with incident cancer
(n=3,541), 84% (n=298) had diabetes at baseline. Of them,
230 were known to have diabetes and 68 were identified to have the
condition by blood glucose testing. Compared to subjects without dia-
betes, those with diabetes tended to be older individuals and smokers,
had a higher BMI, engaged in more physical activity, drank alcohol
more frequently and consumed coffee less frequently (Table 1).
Among the 29 SNPs, four (rs7756992, rs2383208, rs1111875 and
152237892) were nominally significantly associated with diabetes in
our study (Supporting Information Table S2). Quintiles of the total
number of risk alleles were positively associated with diabetes in a
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Table 1. Baseline characteristics among subcohort subjects
(n=10,536)
Subjects Subjects
without with
All subjects diabetes diabetes
Characteristic® n=10,536 n=9,923 n=613
Age, years 553.9+79 53.7+7.9 56.6+7.7.6
Men, % 35.1 33.7 57.3
BMI, kg/m? 23.6 £3.0 23.6+3.0 24.24+3.3
Missing data, % 0.9 0.8 1.6
Smoking status
Current smoking, % 17.9 17.2 29.2
Past smoking, % 10.0 9.7 16.2
Missing data, % 0.5 0.5 0.3
Physical activity
>1 day/week, % 17.5 17.4 20.4
Missing data, % 1.4 1.4 1.3
Alcohol consumption
Current drinking,! % 28.1 27.2 41.4
Missing data, % 2.7 2.6 3.4
Coffee consumption
21 day/week, % 30.9 31.4 21.9
Missing data, % 1.0 0.9 1.1

Data are presented as mean + standard deviation.
Alcohol consumption at least once per week.
Abbreviation: BMI, body mass index.

dose-response manner (p-value for liner trend = 1.25 X 10~°) but
were not significantly associated with cancer risk (overall: p-value
for linear trend = 0.95; stomach: 0.44; colorectum: 0.18; liver: 0.94;
pancreas: 0.38; lung: 0.89; breast: 0.35; prostate: 0.52; Fig. 1).
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Figure 1. Diabetes/cancer risk by quintiles of total number of risk alleles
for diabetes. Abbreviation: Cl, confidence interval. Hazard ratios were
estimated using the weighted Cox model to examine cancer risk by each
quintile comparing to the lowest quintile with adjustment for age
(continuous), sex (except for prostate and breast cancer), and study areas
among the 10,536 subcohort subjects and 3,541 incident cases. Odds
ratios were estimated using the logistic regression model with adjustment
for age, sex, and study areas to examine the association of diabetes by
each quintile comparing to the lowest quintile among the 10,536
subcohort subjects.
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MR Test

Diabetes and cancer risk

Inverse variance weighted / MR Egger
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SNP effect on outcome
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0.1 0.2 0.3
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Figure 2. Scatter plot showing the associations of the SNP effects on the diabetes (log odds ratio) against the SNP effects on the total cancer
(log hazard ratio). Abbreviations: MR, Mendelian randomization; SNP, single nucleotide polymorphisms. The inverse variance-weighted
estimates are represented by a dotted light blue line, and the Egger regression estimates by a dark blue line.

In contrast to conventional analyses showing a positive associ-
ation between diabetes and cancer risks, the MR analysis indicated
no strong evidence to support associations between diabetes and
risks of total cancer and cancer subtypes (Figs. 2 and 3). The IVW
hazard ratios per doubling of the probability of diabetes for cancer
were 1.03 (95% confidence interval [CI], 0.92-1.15) overall, 1.08
(0.73-1.59) for the pancreas, 0.80 (0.57-1.14) for the liver and
0.90 (0.74-1.10) for the colorectum (Fig. 3). The Egger estimates
resulted in slightly wider confidence intervals. We also examined
whether the selected variants were known associated risk factors
of cancer. After the Bonferroni correction, statistically significant
findings were observed between three SNPs and associated risk
factors: rs780094 at the GCKR and BMI, p-value = 5.8 x 10™%
18050136 at the FTO and BMI, p-value = 6.87 x 10™'% and rs5219
at the KCNJ11 and regular alcohol drinking, p-value = 1.64 x 107;
data not shown). However, p values for intercepts from the Egger
regression did not suggest the possibility of pleiotropic effects
(Fig. 3). Furthermore, the leave-one-out analyses, performed by
sequentially dropping one SNP at a time, resulted in similar findings
(Fig. 4). Additional analyses, using publicly available genetic data on

SNP-colorectal cancer associations from the BB] Project (29 SNPs),
resulted in a narrower confidence interval (hazard ratio for colorec-
tal cancer = 1.00 [0.93-1.07]; Fig. 3 and Supporting Information
Table S11).

Discussion

In this population-based prospective study, we utilized the MR
methodology and examined the relation between diabetes and
cancer risk in a large number (3,541) of incident cancer cases
from 32,949 people as a source population, during a median
follow-up of 15.9 years. In our MR analysis, no strong evidence
was found to support associations between diabetes and the risks
of total cancer, colon cancer, pancreatic cancer or liver cancer.
These findings were robust to a number of sensitivity analyses.
To further complement our results, we utilized publicly available
large-scale GWAS results of colorectal cancer (the BB] Project)
and confirmed that genetically predicted diabetes was not associ-
ated with colorectal cancer. The results of our study support the
notion that diabetes per se might not be responsible for
the reported positive association between diabetes and cancer.
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Cancer site Cases/Subcohort* Conventional HR (95%CI) VW HR (95%Cl) Egger HR (95%Cl) P for Egger intercept : :;/gvge,:nSR
\
-
All sites 3541/10536 1.20 (1.04-1.39) 1.03 (0.92-1.15) 0.93 (0.77-1.13) 0.25 ‘
L
—d
Stomach 687/10536 1.40 (1.07-1.83) 0.98 (0.78-1.23) 0.81(0.55-1.21) 0.27
— 1L
=L
Colorectum 664/10536 1.05 (0.77-1.44) 0.90 (0.74-1.10) 0.93 (0.66—1.33) 0.82
—
Colorectum (two-sample) 6692/27178 NA 1.00 (0.93-1.07) 1.08 (0.96—1.21) 0.13
o EE
Liver 168/10536 1.40 (0.84-2.32) 0.80 (0.57—1.14) 0.79 (0.42—1.47) 0.94
Pancreas 129/10536 1.43 (0.77-2.64) 1.08 (0.73-1.59) 0.92 (0.46—1.82) 0.59
—
—
Lung 437/10536 1.40 (1.01-1.95) 1.00 (0.80-1.25) 1.02 (0.68—1.52) 0.92
Breast 239/6837 0.73 (0.32—1.66) 1.09 (0.82-1.44) 1.17 (0.69-1.97) 0.75
S|
dbe
Prostate 294/3699 0.95 (0.62—1.46) 1.13 (0.91-1.40) 1.28 (0.90-1.82) 0.38
e
| I |
0.5 1 1.5 2
HR (95%Cl)

Figure 3. Association between diabetes and cancer risk. Abbreviations: BB), BioBank Japan; Cl, confidence interval; HR, hazard ratio; IVW,
inverse variance-weighted; JPHC, Japan Public Health Center-based Prospective; MR, Mendelian randomization; NA, not applicable; SNP,
single nucleotide polymorphism. *Number of cases/controls are shown for the colorectum (two-sample). The conventional HRs for cancer
comparing people with diabetes to those without diabetes were estimated using the weighted Cox model with adjustment for age, sex
(except for breast and prostate cancer), study areas, body mass index, smoking, alcohol intake, coffee intake and physical activity. The IVW
HRs per doubling of the probability of diabetes were estimated using the IVW method with the estimates from the first and second stage
models for 29 SNPs. The Egger HRs per doubling of the probability of diabetes and p-values for the Egger intercept were estimated using the
MR-Egger method with the estimates from the first and second stage models for 29 SNPs. All results, except for the colorectum (two-sample),
are summary data-based MR analyses in one sample. For the colorectum (two-sample), we employed a summary data-based MR in two
samples (i.e., the JPHC data for SNP-diabetes associations and the BB data for SNP-cancer associations).

To the best of our knowledge, this is the first prospective MR
study that examined the association between type 2 diabetes and
risks of total cancer and site-specific cancer.

Our results are in general agreement with those reported
in earlier MR studies with case—control data mainly conducted
among European populations using a case—control strategy.7’8
A recent MR study led by researchers from the International
Agency for Research on Cancer investigated the associations
of type 2 diabetes and metabolic factors with pancreatic can-
cer among 7,110 pancreatic cancer patients and 7,264 con-
trols.” Using 43 of the susceptibility SNPs for type 2 diabetes,
their MR analysis indicated that diabetes was not signifi-
cantly associated with pancreatic cancer (odds ratio = 1.03;
95% CI =0.85-1.11; p=047). In contrast, their MR analysis
found BMI and hyperinsulinemia to be significantly associated

with pancreatic cancer. These findings and our prospective find-
ings seem to suggest that there is little evidence to support the
genetic role of type 2 diabetes in cancer development.

The null findings observed in our prospective MR analyses
could be explained by several interpretations. One possibility
is that our study did not have sufficient power to detect a sig-
nificant association between type 2 diabetes and cancer risk.
As shown in post hoc power calculations, we had 80% power
to detect relatively small effect sizes for total cancer but not
for cancer sites (Supporting Information Table S12). To com-
plement the analysis, we used the two-sample MR analysis by
using the JPHC data for SNP-diabetes associations and the
BBJ data for SNP-colorectal cancer associations, which had
80% power to detect a small effect size (Supporting Informa-
tion Table S11); however, the findings were consistent overall.
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Figure 4. Leave-one-out analysis. Abbreviations: Cl, confidence interval;
HR, hazard ratio; IVW, inverse variance-weighted; MR, Mendelian
randomization; SNP, single nucleotide polymorphism. The leave-one-out
analysis was performed by recalculating the MR estimates using the IVW
method, by sequentially dropping one SNP at a time to examine whether
a single SNP that might have a large horizontal pleiotropic effect would
influence the MR estimates. The IVW HRs per doubling of the probability
of diabetes were estimated using the IVW method with the estimates
from the first and second stage models for 29 SNPs. [Color figure can be
viewed at wileyonlinelibrary.com]

Given the relatively wide confidence intervals for other cancer
sites, a small effect of diabetes on these cancer sites cannot be
ruled out. Another possibility is that type 2 diabetes suscepti-
bility variants tended to be associated with both lower insulin
levels and higher glucose levels. This may lead to vertical plei-
otropy in which such genetic variants are associated with
insulin and glucose levels on the same biological pathway
from diabetes to cancer, thus not violating the MR assump-
tions. However, such genetic variants could also be associated
with cancer through discrete pathways, which may lead to hori-
zontal pleiotropy that violates the MR assumptions. For
instance, variants in the KCNQI gene might affect insulin secre-
tion, leading to hyperglycemia and hypoinsulinemia, both of
which could affect cancer risks. In this case, a possible carcinoge-
nicity of hyperglycemia might have been wiped out by lower
insulin levels, leading to null associations. However, the leave-
one-out analysis also indicated null associations (Fig. 4).

Diabetes and cancer risk

Furthermore, the Egger regression did not suggest the possibility
of pleiotropic effects (Fig. 3). Finally, the impact of diabetes per
se on cancer development, if any, may be smaller than we
thought. The conventional regression analyses might have over-
estimated the true association, possibly due to uncontrolled con-
founding by common risk factors or reverse causation.

Our MR analysis provides evidence that the genetic mecha-
nisms responsible for type 2 diabetes may not play major roles
in cancer development. However, from a public health per-
spective, it is certainly important to control such shared risk
factors for the prevention of both diseases, because diabetes
and cancer share a number of established modifiable risk fac-
tors such as obesity, physical inactivity and smoking.

The strengths of our study include its prospective, nation-
wide, population-based design and high rate of follow-up.
Our findings might be generalizable to non-Japanese
populations, such as Asian populations with similar genetic
and environmental background. Nevertheless, several limita-
tions need to be addressed. First, we were unable to verify
assumptions (ii) and (iii) of MR analyses listed in the “Statis-
tical Methods” section. Although we exerted our best efforts
to address potential pleiotropic or confounding effects, the
possibility remains. Most importantly, as stated above, some
variants included in our study are known to be associated
with traits related to insulin rather than glucose, which may
lead to horizontal pleiotropy. This potentially violates the
assumption (ii) that SNPs affect cancer risk only through
their effects on diabetes. Instead of using diabetes susceptibil-
ity variants, the use of variants related to glucose levels with
such known function as glucose transporters might be better
to meet this assumption. Second, although we included a
large number of incident cases, the number of cases for each
cancer site was limited. Therefore, we were probably under-
powered to detect small effects for several cancer sites. How-
ever, the use of a publicly available large-scale GWAS on
colorectal cancer from the BBJ Project resulted in a similar
finding. Thus, similar analyses with the use of large-scale
GWAS results among Japanese or Asian populations for
other cancer sites should be performed, once the SNP-
outcome associations become available.

In conclusion, in this prospective MR study with a large
number of incident cancer cases, we found no strong evidence
to support the associations between diabetes and overall and
site-specific cancer risks. Our findings suggest that there is lit-
tle evidence to support the genetic role of type 2 diabetes in
cancer development in a Japanese population.
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