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Abstract
Selection of the best quality embryo is the key for a faithful implantation in in vitro 
fertilization (IVF) practice. However, the process of evaluating numerous images 
captured by time-lapse imaging (TLI) system is time-consuming and some important 
features cannot be recognized by naked eyes. Convolutional neural network (CNN) is 
used in medical imaging yet in IVF. The study aims to apply CNN on day-one human 
embryo TLI. We first presented CNN algorithm for day-one human embryo seg-
mentation on three distinct features: zona pellucida (ZP), cytoplasm and pronucleus 
(PN). We tested the CNN performance compared side-by-side with manual label-
ling by clinical embryologist, then measured the segmented day-one human embryo 
parameters and compared them with literature reported values. The precisions of 
segmentation were that cytoplasm over 97%, PN over 84% and ZP around 80%. For 
the morphometrics data of cytoplasm, ZP and PN, the results were comparable with 
those reported in literatures, which showed high reproducibility and consistency. The 
CNN system provides fast and stable analytical outcome to improve work efficiency 
in IVF setting. To conclude, our CNN system is potential to be applied in practice for 
day-one human embryo segmentation as a robust tool with high precision, reproduc-
ibility and speed.
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1  | INTRODUC TION

In vitro fertilization (IVF) has contributed to more than 8 million 
births since the first birth in 1978.1,2 With four decades of efforts, 
IVF has developed into an available, efficient and safe assisted re-
productive technology (ART) for infertile couples. After ovarian hy-
perstimulation, multiple embryos can be obtained while only one or 
two will be selected for embryo transfer. Thus, choosing embryos 
with highest developmental potential from the same batch of con-
trolled hyperstimulated oocyte-derived embryos is one of the most 
important tasks of IVF specialists.3 Up to date, the conventional 
morphology assessment is still the mainstream method for embryo 
selection either during the cleavage or blastocyst stage.3-8 In con-
trast, the evaluation of a day-one human embryo is generally con-
sidered to have little value except for fertilization check.9 Day-one 
human embryo, as the first stage of an embryo begins at the fertil-
ization however before the first embryo cleavage, plays an essential 
role in embryo development and thus the morphology assessment 
should attract more attention.

The important features of a day-one human embryo include the 
zona pellucida (ZP), cytoplasm and pronucleus (PN, during a faith-
ful fertilization). Studies have reported the associations between 
the embryo development and the three morphological features. 
Detecting the abnormal darkness, thickness and birefringence of 
ZP precisely may contribute to predict a successful hatching event 
that can lead to successful implantation.10 Cytoplasm occupies the 
largest portion of the day-one human embryo, and the associa-
tions of the area size (at 2D level) and embryo development were 
reported.11 The conventional assessment of PN on the day-one 
human embryo is mainly based on the number, size and location of 
PN. However, the results of the associations of PN locations and 
embryo quality remain controversial.12-14

To select embryos with high quality, time-lapse imaging (TLI) 
technology has been introduced in IVF laboratories with mor-
phokinetics scoring system.15 By using the in-built microscope and 
camera, the embryos can be assessed in situ without taking them 
out of the incubator, thus giving undisturbed culture conditions.16 
Moreover, images of the developing embryo are taken every five 
to ten minutes. As a result, a sequence of images of embryo devel-
opment is generated as a time-lapse video that can provide more 
information than the traditional method. However, analysing the 
time-lapse video is time-consuming, and some short appearing fea-
tures cannot be properly captured or recognized by human naked 
eyes.

Convolutional neural network (CNN) is a deep learning ar-
chitecture mimicking the natural mammalian visual perception 
system.17 It can obtain effective representations of the original 
image, which makes it possible to recognize visual patterns directly 
from raw pixels with little-to-none pre-processing.18 At present, 
it has been applied in medical image segmentation, lesion detec-
tion, image classification and retrieval.19 For instance, CNN was 
used to segment computer tomography images of liver, head 
and neck, which were of assistance in radiotherapy treatment, 

post-operative follow-up, organs-at-risk detection and atheroscle-
rosis perdiction.20-22

In the field of reproductive medicine, TLI generates massive 
image data, which requires embryologists to evaluate each image in 
the sequence to select a good-quality embryo.16 The assistance of TLI 
gets the evaluation into trouble due to the time-consuming process 
and minor changes that might be overlooked. CNN may be a poten-
tial tool to solve this bottleneck. The study aims to evaluate whether 
CNN for day-one human embryo morphokinetic features segmenta-
tion could be applied in practice as a robust tool with high precision 
and reproducibility. We also examined the segmented values from 
the morphokinetic parameters of day-one human embryo cytoplasm, 
ZP and PN, and compared the values with those in other studies to 
further confirm the precision of the segmentation algorithm.

2  | MATERIAL S AND METHODS

2.1 | Ethics approval

The inform consent was obtained from all patients. This study was 
approved by the Joint Chinese University of Hong Kong—New 
Territories East Cluster Clinical Research Ethics Committee (CREC 
No: 2017.580).

2.2 | Human time-lapse images

2.2.1 | Fertilized oocyte for TLI

The studies were conducted from 2017.07.01 to 2019.12.31, in 
ART Unit, Department of Obstetrics and Gynaecology, Faculty of 
Medicine, The Chinese University of Hong Kong.

We set the inclusion and exclusion criteria in this study.
Inclusion criteria:

1. Consecutive women underwent IVF treatment.
2. Patients planned to use a time-lapse incubator for embryo culture.

Exclusion criteria:
Day-one human embryos with blur imaging, large obstructions 

on embryo area, more than half embryo area blocked by the well 
or degeneration, transferred or cryopreserved before day 5 were 
defined as incorrectly segmented embryos. Patients had more than 
half of her embryos which were not able to be segmented correctly 
were excluded.

2.2.2 | Ovarian stimulation, retrieval and fertilization

In the process of ovarian stimulation and retrieval, we referred to 
the information provided in a published paper.23 Briefly, the long 
luteal gonadotropin-releasing hormone (GnRH) agonist was used 
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to down-regulate the pituitary. Buserelin nasal spray (Suprecur; 
Hoechst, Hørsholm, Germany) was given to the cases for no less 
than 14 days from the midluteal phase of the preceding cycle. The 
concentrations of low serum luteinizing hormone and oestradiol 
(E2) were used for confirming the complete pituitary desensitiza-
tion. Additionally, the ultrasound examination was used to exclude 
the functional ovarian cysts and ensure the thickness of endome-
trial (<5 mm). After achieving adequate down-regulation, human 
menopausal gonadotropin (hMG) (Pergonal; Serono, Aubonne/
Switzerland) or recombinant follicle-stimulating hormone (FSH) 
(Gonad-F; Serono; or Puregon; Organon, Skovlunde, Holland) was 
used to start the ovarian stimulation. The dose was decided in re-
gard to the ages and the previous treatment responses. The pres-
ence of more than three mature follicles (>18 mm) was considered 
as adequate responses. The transvaginal oocyte retrieval was con-
ducted about 36 hours later.

After retrievals, the fertilization of the embryos was conducted 
like that described in another published paper.24 Hyaluronidase 
(Vitrolife, Goteborg, Sweden) was used to remove the cumulus 
cells, followed by cultivation for more than 1 hour. Four to Six hours 
after the retrievals, insemination by IVF or intracytoplasmic sperm 
injection (ICSI) was conducted.

2.2.3 | TLI setting

The time-lapse incubator used in this study for TLI was 
EmbryoScope®, with the interval of 10 minutes. The CO2 was set as 
6.0%, and the temperature was maintained at 37.0°C. The one-step 
culture medium G-TL (Vitrolife, Switzerland) was used for routine 
embryo culture, which is the bicarbonate buffered medium contain-
ing human serum albumin and hyaluronan.

For the incubation of embryos, we used the EmbryoSlide® 
(Vitrolife, Switzerland). The incubator can hold up six dishes. Each 
dish can culture twelve embryos at one time, and it has individually 
numbered wells inside. After filling in the medium in the wells, oil 
was quickly used to overlay the medium to avoid the evaporation. 
The process of both the medium preparation and oil overlay was 
maintained at a cold temperature to avoid the evaporation as well. 
The dishes were kept overnight to make them balanced and then 
the embryos were loaded. The diameter of EmbryoSlide® (Vitrolife, 
Switzerland) is 250 μm. Therefore, the total area of the well was 
49062.5 μm2. We have measured the number of pixels of the well 
of the culture dish in all the time-lapse images. The number of pixels 
inside the well was 16077.98 ± 192.35. The relationship between a 
pixel and its actual size was 1 pixel = 0.3275 μm2.

2.3 | CNN for day-one embryo morphology 
segmentation on images of TLI

CNN usually consists of the convolution layer, pooling layer and fully 
connected layer. The convolutional layer detects and extracts the 

visual features of images.25 The feature maps generated from the 
convolutional layer are processed by the pooling layer, and these lay-
ers repeat several times.26,27 At last, the information extracted is pro-
cessed by the fully connected layer (Supporting Information 1-I).28

The CNN system was set in an environment with ubuntu 20 
Operation system, 1080 Ti graphics processing unite, i7-8700 cen-
tral processing unit (3.2 GHz) and 16G random access memory. Our 
method contained two types of neural networks: one was the gen-
erative adversarial network for enhancing images; the other one 
was the hierarchical fully convolutional network for segmenting 
enhanced images. The generative adversarial network denoised 
and highlighted the area of interest in the images, consequently re-
ducing the difficulty for the following procedures. The hierarchical 
fully convolutional network constrained the spatial relations among 
the areas of interest during segmentation and hence increased the 
accuracy of segmentation.

Firstly, we fixed the images collected from TLI in a uniform 
scale and converted them into grey images. The original image 
was compressed into 512*512 pixels with the greyscale ranging 
from 0 to 255. The bilateral filter with different smoothing coef-
ficients was used to smooth and denoise the input images. Next, 
we trained the generative adversarial network for enhancing im-
ages and the structure of the generative adversarial network here 
was cycleGAN trained by the Adam algorithm.29 Then, we used the 
enhanced images dataset gained to deliver the image segmentation 
training dataset. After training the hierarchical fully convolutional 
network, we conducted image segmentation using the dataset. In 
this network, the input was the enhanced images. At the same time, 
the output was each pixel’s probabilities of belonging to the back-
ground, cytoplasm, ZP and nucleus of the whole image.

2.4 | Day-one embryo morphometrics labelling

The structures of the embryos, namely ZP, cytoplasm and PN, in 
each image were labelled by two experienced embryologists.

We used solid colours (Red: #FF0000, Yellow: #FFFF00 and Blue: 
#0000FF) to label the edge of each structure (i.e. ZP, cytoplasm and 
PN). The pure colours were easy for the computer to recognize the 
input information. When labelling, we magnified an image and fo-
cused on the structure of interest. Then, we confirmed the edge 
of the structure and marked down the trajectory with pure colour. 
Once one embryologist had finished the labelling for one sample, 
another embryologist examined the labelled result by naked eyes.

2.5 | Statistical analysis

2.5.1 | Cross-validation for day-one embryo static 
cytoplasm segmentation

The experimental design of rotating the images between the test 
and training followed the widely used statistical cross-validation 
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protocol.30 The purpose of cross-validation is to lower the risk of 
overestimating or underestimating the true performance of the 
proposed system, which is achieved by out-of-sample testing. We 
used cross-validation to train and test the performance of the pro-
posed system. We divided the dataset into 5 parts randomly. One 
part was chosen as the test data and the others were chosen as the 
training data. Each part was designed as the test data once in 5 tri-
als. Then, we trained five separate recognition systems using four 
out of the five subsets and performed validation of the fifth hold-
out subset (Supporting Information 1-II).

2.5.2 | Intersection over Union (IoU)

The Intersection over Union was a statistic used for gauging the 
similarity and diversity of sample sets. The IoU (a, b) between the 
predicted area a and the ground truth b is defined as IoU (a, b) = |a ∩ 
b|/|a ∪ b| (Supporting Information 1-III).

Then, the difference of IoUs between the training phase and 
test phase in each trial as well as between trials was analysed with 
the Student’s t test. The P-value was set as 0.05 to reject the null 
hypothesis.

2.5.3 | Comparison of continuous data

For normally distributed continuous variables, the Student t test 
was used to compare the difference. For non-normal distribution 
parameters, the Wilcoxon signed-rank test was used. The com-
parison was two-sided, and the P-value of significance was set 
as <0.05.

2.5.4 | Augmented dickey-fuller test (ADF)

The ADF test is a method for detecting unit roots in autoregressive 
and autoregressive moving average time series. The presence of a 
unit root indicates the time series was not stationary, but that dif-
ferencing would reduce it to stationarity.31 The null hypothesis of it 
was that the data were non-stationary. The P-value was set as 0.05 
to reject the null hypothesis.

The cut-off for defining whether a parameter was stationary 
was set as 70%, which indicated for a parameter, if over 30% of the 
samples were accepted the stationary hypothesis of the ADF test, 
it would be considered as a stationary parameter.

2.5.5 | Shapiro-Wilk test

The Shapiro-Wilk test is a test of normality in frequentist statis-
tics.32 The null hypothesis of this test was that the population is 
normally distributed. The P-value was set as 0.05 to reject the 
null hypothesis.

3  | RESULTS

3.1 | Day-one human embryo morphokinetic 
features segmentation in time-lapse images

There were 1218 images obtained from 24 day-one embryos of 14 
patients. The demographic information of the patients is shown in 
the Table 1. We labelled 1218 for cytoplasm segmentation, 682 for 
PN recognition and 408 for ZP recognition. The differences of the 
numbers of labelled structures are that 1) the PN did not exist for 
the whole length of the embryos development and in this dataset, 
we can only label 682 frames of embryos; we only selected the im-
ages of the normal fertilized embryo with 2PN for training; 2) from 
the prior knowledge of embryology, the ZP would not change dur-
ing the development of the embryo stage so that our embryologists 
labelled only 17 frames of each embryo, which was to reduce the 
workload of labelling. The flowchart of the CNN system is shown 
in the Figure 1.

3.1.1 | Cytoplasm segmentation

The results of 5-fold cross-validation in of total precision of cyto-
plasm segmentation were shown in Table 2. In each trial, on aver-
age, 974.4 images were used for training, while 243.6 images were 
used for testing. Accuracy was measured by the IoU. The proposed 
system showed high precision in cytoplasm segmentation. In each 
trial, IoU value was greater than 96.20% in both training and test 
phase. The average IoU of the proposed system achieved up to 
97.01 ±1.33% in test phase and 97.23±1.43% in the training phase. 
There was no statistic significant between the training phase and 
test phase in each trial as well as between trials. Examples on the 
segmentation of cytoplasm were shown in Figure 2.

TA B L E  1   Demographic information of the patients

Total (n = 14) (Median & IQR)

Insemination: IVF/ICSI 7/7

Age (year) 35 (34-38)

E2 at trigger (pmol/L) 13491.5 (10694.75-27180.0)

LH at trigger (IU/L) 2.55 (1.025-3.17)

P4 at trigger (nmol/L) 2.625 (1.05-3.725)

Gn dose total (mg) 1.5 (1.5-1.75)

Stimulation period (day) 10.5 (10-12)

Protocol: Antagonist (Flexible)/
Antagonist pre-treatment OC

9/5

Note: The method of insemination, age, level of different hormones at 
trigger, treated dose, stimulation period and treatment protocol was 
presented in the table to show the characteristics of the participants 
with median and interquartile.
Abbreviations: IQR, interquartile range; E2, estradiol; LH, luteinizing 
hormone; P4, progestrone; Gn, gonadotropin; IVF, in vitro fertilization; 
ICSI, Intracytoplasmic sperm injection; OC, oral contraceptive.
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3.1.2 | PN segmentation

As the training images were of 2PN, we defined the left upper PN 
as PN1 and the other one as PN2. In most cases, the precision of 
PN segmentation was averaged over the IoU of both PN1 and PN2. 
However, in some frames, the pronuclei were fusing, and the inner 
boundaries of them were blurred (Figure 1-II-B). We considered the 
fusing PN as one object, and the IoU has counted the merged out-
line of labelled and recognized.

The results of 5-fold cross-validation in of total precision of PN 
segmentation were shown in Table 2. In each trial, on average, 545.6 
images were used for training, while 136.4 images were used for 
testing. Accuracy was measured by the IoU. The proposed system 
showed high precision in PN segmentation. In each trial, IoU value 
was greater than 80.00% in both training and test phase. The average 
IoU of the proposed system achieved up to 90.30 ±8.25% in test 
phase and 91.35±8.96% in the training phase. There was no statis-
tical significance between the training phase and test phase in each 

F I G U R E  1   Flowchart of the CNN 
system. From 24 day-one embryos of 14 
patients, we obtained total 1218 images. 
Among the images, the cytoplasm, PN 
and ZP were labelled by experience 
embryologists. We trained the CNN 
system with the labelled image and 
compared its performance with experts. 
With the results, the accuracies, ZMP 
values and elapsed time of two methods 
were compared to validate the advantages 
of the CNN system

Structure Trial
Training 
instances

Training 
accuracy (%)

Test 
instances

Test accuracy 
(%)

Cytoplasm 1 933 97.28 ± 1.26 285 97.21 ± 1.12

2 987 97.06 ± 1.37 231 96.64 ± 1.34

3 975 97.09 ± 1.45 243 97.34 ± 1.56

4 995 97.47 ± 1.67 223 96.28 ± 1.78

5 982 97.24 ± 1.89 236 97.57 ± 1.34

Average 974.4 97.23 ± 1.43 243.6 97.01 ± 1.33

PN 1 586 91.35 ± 8.96 96 90.30 ± 8.25

2 543 85.68 ± 8.45 139 83.74 ± 7.30

3 461 82.73 ± 10.57 221 81.05 ± 7.19

4 542 80.44 ± 7.38 140 81.83 ± 10.61

5 596 87.22 ± 8.50 86 83.50 ± 9.35

Average 545.6 85.45 ± 8.77 136.4 84.08 ± 11.34

ZP 1 235 81.83 ± 6.09 173 80.24 ± 5.17

2 342 82.96 ± 5.62 66 75.80 ± 5.91

3 335 81.13 ± 6.23 73 82.29 ± 5.17

4 342 79.98 ± 5.59 66 82.97 ± 5.38

5 378 79.74 ± 5.95 30 76.71 ± 6.91

Average 326.4 81.12 ± 5.61 81.6 79.62 ± 7.34

Note: Instances of trainings and tests were recorded in the 5-fold cross-validation. Accuracy was 
measured by the IoU. Additionally, the difference of IoUs between the training phase and test 
phase in each trial as well as between trials were analysed with the Student t test.
There was no statistically significant difference between the training phase and test phase in each 
trial as well as between trials.

TA B L E  2   The segmentation accuracy 
of day-one human embryo cytoplasm, PN 
and ZP with 5-fold cross-validation
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F I G U R E  2   (I) Illustration of the segmentation of cytoplasm: Red circles represented the predicted area, while the green circle represented 
the labelled area (ground truth). The yellow circle represented the overlap of labelled and ground truth. IoU and cytoplasm size (CytoSize) 
were shown in the left upper corner. In Figure 2-I-A, two images came from the same zygote. The one on the left was captured before 
cleavage while the one on the right is cleaving, which was an irregular shape. The performances of segmentation on these two images were 
over 95%. In Figure 2-I-B, on the left image, cumulus cells (green arrow) blocked a part of the cytoplasm edge while on the right image; a big 
PB blocked the edge of another cytoplasm. Nevertheless, the IoU in both images was over 97% indicating the noise robust of the proposed 
system. (II) Illustration of the segmentation of PN: Figure 2-II-A showed the segmentation of respective PN, and green circles represented 
the labelled area while the white circles represent the segmented area. We used white colour to distinguish the type of segmentation 
with Figure 2-II-B. The average IoU of Figure 2-II-A was 88.43%. Figure 2-II-B showed the segmentation of fusion PN. The boundaries 
between PN were blurred so the labelled area was considered as the whole green circle and the segmented area was the whole red circle, 
correspondingly. The IoU of Figure 2-II-B was 86.22%. (III) Illustration of the segmentation of ZP: Figure 2-III-A showed the example of high 
precision (87.10%) segmentation of ZP. The green circle represented the labelled area, while the red circle represented the segmented area. 
Only a small part of the ZP was blocked by the edge of the well (from seven o’clock position to nine o’clock position). Figure III-B showed 
the example of low precision (69.51%) segmentation of ZP. More than one-fourth ZP was blocked by the edge of the well (from five o’clock 
position to nine o’clock position). Moreover, the ZP in seven o’clock position was hardly seen, which was not available for labelling by the 
embryologists or precise segmentation by the proposed system. (IV) Illustration of the calculation of zygote morphokinetic parameters: 
Figure 2-IV-A left was an original image captured by time-lapse incubator and Figure 2-IV-A right was the pixelated and segmented one. 
The pixels belonged to ZP were labelled in red; the pixels belonged to cytoplasm were labelled in green, and the pixels belonged to PN were 
labelled in blue. It was easy to notice that if a pixel belonged to one of the structures but not located at the edge, all its neighbours were the 
pixels in the same colour. To distinct the PN, we defined the one closer to the centroid of cytoplasm as pn1, and the other as pn2. Figure 
2-IV-B left showed the centroid (red), cytoplasm radius (yellow), ZP inner radius (green) and outer radius (blue). Figure 2-IV-B right showed 
the calculation of ZP thickness and perivitelline space. (V) Examples of time series of the morphokinetic parameters: Figure 2-V-A, B, C 
and D were the examples of the original and segmented time-lapse images from a zygote. Figure 2-V-A represented the beginning frame 
captured right after fertilization check. Figure 2-V-B was the middle frame between Figure 2-V-A and Figure 2-V-D. Figure 2-V-C was the 
beginning of PN fusion. Figure 2-V-D was the frame right after PN fading. Figure 2-V-E, F, G and H gave examples of time series data of the 
zygote morphokinetic parameters. Figure 2-V-E was the cm_size, and it had a significant trend of decrease from the beginning to the end. 
Figure 2-V-F was the pn_size_mean. It was static before fusion, and its value sharply decreased when fusion began. Figure 2-V-G was the 
zp_thickness. Though it fluctuated, it did not have a significant trend. Figure 2-V-H was the zp_g_mean. Similar to Figure 2-V-G, though the 
value fluctuated, it was no trend on it. Both these two parameters were stationary
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trial as well as between trials. Examples on the segmentation of PN 
were shown in Figure 2-II.

3.1.3 | ZP segmentation

The results of 5-fold cross-validation in of total precision of ZP seg-
mentation were shown in Table 2. In each trial, on average, 326.4 

images were used for training, while 81.6 images were used for test-
ing. Accuracy was measured by the IoU. The proposed system showed 
high precision in ZP segmentation. In each trial, IoU value was around 
80.00% in both training and test phase. The average IoU of the pro-
posed system achieved up to around 83% in both test and training 
phases. There was no statistically significant difference between the 
training phase and test phase in each trial as well as between trials. 
Examples on the segmentation of ZP were shown in Figure 2-III.

TA B L E  3   The descriptions, ADF test results and values of the morphokinetic parameters

Structure
Morphokinetic 
parameters Description Selection based

Number of 
samples followed 
stationary 
hypothesis (%)

Stationary or 
non-stationary 
parameter

Value of the parameters 
(n=24)c 

Cytoplasm cm_size Size of cytoplasm (Zhao, et al., 
2019)40

0/24(0) Non-stationary 10073.35 ± 689.19 μm2c 

cm_r_mean Mean of cytoplasm 
radius

Derivation 0/24(0) Non-stationary 56.37 ± 1.93 μmc 

cm_r_std Deviation of 
cytoplasm radius

Derivation 0/24(0) Non-stationary 1.45 (0.99-2.3)

cm_i_mean Mean of cytoplasm 
greyscale

(Scott, 2003)41 0/24(0) Non-stationary 119.37 (108.88-132.87)

cm_i_std Deviation of 
cytoplasm greyscale

Derivation 0/24(0) Non-stationary 40.69 (37.86-43.11)

ZP zp_thickness 75th and above of ZP 
thickness

(Rienzi, Vajta, 
&Ubaldi, 2011)10

24/24(100) Stationary 16.92 (15.75-18.05) μm

zp_thickness_std Deviation of ZP 
thickness

Derivation 23/24(95.83)b  Stationary 3.36 (2.13-4.43)

zp_g_mean Mean of ZP greyscale (Sauerbrun-Cutler, 
et al., 2015)42

23/24(95.83)b  Stationary 137.04 (121.69-154.37)

zp_g_std Deviation of ZP 
greyscale

Derivation 23/24(95.83)b  Stationary 30.54 (25.77-35.26)

pvs_mean Mean of perivitelline 
space

(Rienzi, et al., 
2008)43

1/24(4.17)b  Non-stationary 2.7 (1.96-3.64) μm

PN pn1_sza  Mean value of PN size (Scott, 2003)41 0/24(0)d  Non-stationaryd  503.19 
(434.38-557.54) μm2d pn2_sza  Mean value of PN size (Scott, 2003)41

pn _dista  Distance of pn1 to pn2 (Beuchat, et al., 
2008)13

0/24(0) Non-stationary 21.3 (18.59-23.78) μm

pn1_dist_cena  The distance of pn1 
to the geometrical 
centroid of cytoplasm

Derivation 0/24(0) Non-stationary 9.25 (7.32-10.87) μm

pn2_dist_cena  The distance of pn2 
to the geometrical 
centroid of cytoplasm

Derivation 0/24(0) Non-stationary 14.24 (12.5-16.85) μm

pn_fading The duration from 
fertilization to PN 
disappearance

(Kaser and 
Racowsky, 
2014)44

Note: We selected morphokinetic parameters of cytoplasm, ZP and PN. The selections were based on the literature and on our previous studies. 
Stationary tests were conducted and parameters with the proportion higher than 70% following the hypothesis were considered as non-stationary 
parameters. The descriptions and values of the parameters were given in the table as well.
aThe pn1 was defined as the PN that closer to the centroid of the cytoplasm. 
bThe portion of accepting the stationary hypothesis is larger than 30%. 
cNormal distribution. 
dpn_size_med. 
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3.2 | Segmented values from the 
morphokinetic parameters

Because we used the images from the time-lapse incubator, for 
morphometry, it had a series of values with time in a sample. These 
values were the dynamicity of the morphometry, which were so-
called ‘morphokinetic’. The morphometrics, with its morphokinetic 
values measured in a day-one embryo, were defined as zygote (day-
one human embryo) morphokinetic parameters (ZMP). The ZMP 
discussed were listed in Table 3.

3.2.1 | Stationary test

For a day-one embryo, it had lots of images captured at different 
time. Our CNN system segmented all its images, and the embryo 
had sequent values from the segmentation for different morphoki-
netic parameters. They were time series data, which is ‘an ordered 
sequence of values of a variable at equally spaced time intervals’ 
(Figure 2-IV).33

For the stationary parameters, the value of each embryo was 
represented with the median of its time series value, which was a 

Structure
Morphokinetic 
parameters Our data

Data from other 
studies Resources

Cytoplasm cm_size 10073.35 ± 689.19 
μm2

9678±1245 μm2 Diéguez, 
et al.35

cm_r_mean 56.37±1.93 μm Max: 59±4 μm

Min: 53±7 μm

ZP zp_thickness 16.92 
(15.75-18.05) μm

16.6±3.2 μm Bertrand, 
et al.36

17.7±2.5 μm Høst, et al.37

PN pn_size_med 503.19 (434.38-
557.54) μm2

Diameter: Large: 
25.2 ± 3.6 µm

Manor, et al.38

Diameter: Small: 
18.4 ± 3.9 µm

Diameter: Male: 
16.5 ± 2.7 to 
24.1 ± 2.2 µm

Payne, et al.39

Diameter: Female: 
15.3 ± 2.5 to 
22.4 ± 2.3 µm

Note: With the descriptive data of the morphokinetic parameters, the comparison of the values 
of morphometrics with published literature was conducted. We extracted data of the same 
parameters from other studies to compared with the data from CNN system to further confirm the 
accuracy and present reproducibility.

TA B L E  4   Comparison with other 
studies

Structure Operation Manual operation CNN (1 trial)

Cytoplasm Number of images 1218 1218

Average time/image 200s 0.01s

Total time 243,600s 12.18s

PN Number of images 682 682

Average time/image 150s 0.01s

Total time 102,300s 6.82s

ZP Number of images 408 408

Average time/image 300s 0.01s

Total time 122,400s 4.08s

Elapsed time of the labelling/
segmentation

468,300s 12.18sa 

Note: We recorded the numbers of images and average time consumed of both of the manual 
labelling and CNN segmentation in different structures. The labelling of the three structures 
(in total 2308 images) was conducted one by one, while the CNN segmentation was conducted 
parallelly, which could obtain the results of three structures at a short time.
aSegmented images of the three structures were produced parallelly. 

TA B L E  5   Comparisons of the time 
consumed by the two methods
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continuous variable. For the whole values of a specific parameter (eg 
zp_thickness), the Shapiro-Wilk test was used to test its normality. 
Normally distributed continuous variables were described as mean 
and standard deviation, and for those not following a normal dis-
tribution, they were described as medians and interquartile ranges.

For the non-stationary time series, the common practice of these 
data was to predict their future trends based on their fluctuation.34 
However, in our study, the time series data of ZMP served as a part of 
the ‘fingerprint’ for themselves. There is no simple descriptive analysis 
for such time series data. We used the value of the median frame to 
represent the value of a non-stationary parameter of a day-one embryo.

All the samples of the fourteen morphokinetic parameters were 
examined by the ADF test to figure out the stationarity. The number 
of the portion rejected the stationary was lower than 5% in the cyto-
plasm and PN related parameters, which indicated they were non-sta-
tionary parameters. Most of the ZP related parameters were higher 
than 95%, except the pvs_mean (Table 3). Examples of the time series 
curve of the morphokinetic parameters were shown in Figure 2-V.

3.2.2 | Descriptive analysis for stationary parameters

Morphology metrics of the day-one embryo structures were sum-
marized into several parameters that were shown in Table 3. The 
stationary parameters were zp_thickness, zp_thickness_std, zp_g_
mean and zp_g_std. For the stationary parameters, the value of 
each day-one embryo was represented with the median of its time 
series value, which was a continuous variable. All of them were not 
normally distributed. The median and interquartile range (IQR) of 
these parameters were showed in Table 3. The zp_thickness was the 
value of length. The other parameters were dimensionless.

3.2.3 | Descriptive analysis for non-
stationary parameters

From Table 3, the non-stationary parameters were cm_size, cm_r_
mean, cm_r_std, cm_i_mean, cm_i_std, pvs_mean, pn_size_med, pn_
dist, pn1_dist_cen and pn2_dist_cen. We used the value of the median 
frame to represent the value of a non-stationary parameter of a day-
one embryo. The cm_size and cm_r_mean were normally distributed. 
The value of them was shown in mean±standard deviation. The me-
dian and IQR were shown in other parameters (Table 3). The cm_size 
and the pn_size_med were values of area while the cm_r_mean, pvs_
mean, pn_dist, pn1_dist_cen and pn2_dist_cen were values of length. 
The other parameters were dimensionless.

3.2.4 | Comparison with other studies

With the descriptive data, we were able to compare with the values 
of morphometrics reported by other studies. The comparisons were 
shown in Table 4.

For the cytoplasm, the median data of time series was 
10073.35 ± 689.19 μm2, and the radius was 56.37 ± 1.93 μm. The 
morphometrics of the size of zygote reported by Dieguez et al. were 
9678 ± 1245 μm2 with a maximum radius of 59 ± 4 μm and minimum 
diameter of 53 ± 7 μm.35 Our data were comparable, which sup-
ported the precision of our segmentation algorithm. Moreover, the 
standard deviation of our data was smaller than Dieguez’s study, 
and it may be due to the more precision measurement method.

For the ZP, our data showed that the IQR of thickness was 16.92 
(15.75-18.05) μm. The Bertrand’s team reported the ZP thickness of 
fertilized oocytes was 16.6±3.2μm, and Høst’s team reported the 
ZP thickness of fertilized oocyte was 17.7 ± 2.5 μm.36,37 Although 
our distribution of ZP thickness was different from these two teams 
(non-normal distribution vs normal distribution), the range value of 
our data was comparable with their results. It should be noted that 
both the methods used in Bertrand’s team and Høst’ team were 
measurement of limited times with naked eyes by the embryolo-
gists, and our method used the whole ZP information.

For the PN size, our data was 503.19 (434.38-557.54) μm2. 
Though the PN size changed with time, this result was the median 
of the PN time series, and it could represent the size of the PN in 
most of its time. The IQR range of our PN size data was comparable 
with those reported in Manor’s team and Payne’s team.38,39

3.3 | Elapsed time of the labelling/segmentation

During the manual segmentation by embryologists, it cost aver-
agely 200s for each cytoplasm labelling, 150s for each PN label-
ling, and 300s for each ZP labelling. The time consumed to label 
the images of cytoplasm, PN and ZP were 243,600s, 102,300s and 
122,400s, respectively. Totally, elapsed time of the manual labelling 
was 468,300s.

As to the automatic segmentation by CNN, the output of 
the segmentation of the cytoplasm, PN and ZP was produced 
parallelly. The elapsed time of the segmentation was 12.18s. 
Comparisons of the time consumed by the two methods were 
summarized as Table 5.

4  | DISCUSSION

In this study, we first presented the CNN algorithm for day-one 
human embryo segmentation and tested its performance side-by-
side with manual labelling. We then measured the segmented ZMP 
data and compared them with those reported by other studies to 
validate the precision of the segmentation of our CNN algorithm. 
Our CNN system has three distinctive advancements—high preci-
sion, high reproducibility and high speed.

One of the advancements of our CNN is high precision, embod-
ies in the high accuracy of the segmentation of all the structures 
when compared side-by-side with the manual labelling. We are the 
first group invented and tested the CNN system on segmentation 
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the full structures of the day-one human embryo in time-lapse im-
ages. We applied the system in segmenting the cytoplasm, PN and 
ZP of human time-lapse images. For the human time-lapse images, 
the precisions of the segmentation were that cytoplasm over 97%, 
PN over 84% and ZP around 80%.

The difficulties in ZP and PN segmentation should be noted. 
There were few studies on the segmentation on ZP and PN.36-39 
Previous studies only focused on the morphology images of single 
time points with naked eyes. It was hard to compare due to subjec-
tivity that whether the precision of ZP and PN was high enough. For 
ZP segmentation, not all the embryos were in the centre of the em-
bryo culture well, and in routine practice, more than half of them 
were located close to the edge of the well, in which parts of the ZP 
were blocked by the shadow of the well edge. This situation made 
embryologists difficult to label the whole part of the ZP, and for the 
blocked part of the ZP, our embryologists could only label by their 
experience, which was more subjective. For PN segmentation, the 
PN was small compared with the cytoplasm and the pixels labelled by 
the embryologists may not provide enough information to reveal the 
intrinsic morphology patterns. Also, the overlap of male and female 
PN made it difficult to distinguish the complete PN edge for each 
other, which compromised the quality of labelling.

Despite of the difficulties, the rest of the ZP (occupied most 
of the proportion) and PN were segmented correctly. Moreover, 
when calculating the ZP parameters, we could choose the maxi-
mum, minimum or mode to eliminate the impact of the blocked ZP. 
Considering the blocked and overlapped parts were labelled sub-
jectively, the precision should be higher. Nevertheless, we were 
satisfied with this precision values of ZP and PN.

The second advancement is high reproducibility, the system en-
ables automatic recognition in the comparable parameters as those 
in other studies. In order to demonstrate whether the precisions 
were enough to figure out the corresponding morphometrics for 
further application, we calculated the actual morphometrics of cy-
toplasm, PN and ZP and compared them with the reported results. 
For the morphometrics data of cytoplasm, ZP and PN, results such 
as cytoplasm size, thickness of ZP and PN size were comparable 
with those reported in other studies.35-39 From the comparison 
with the descriptive data reported by other studies, we further con-
firmed the precision of the segmentation algorithm.

The morphometrics data of the three structures calculated are 
the new potential morphometrics that measured by our novel seg-
mentation algorithm. Because they were of kinetic – so-called time 
series data, the traditional method for statistical analysis was not 
suitable for some of them. Therefore, we found out the stationary 
of these parameters first. For the stationary parameters, we treated 
them as tradition value by representing their time series with the 
median value. For the non-stationary parameters, we choose the 
median value of their time series data as a sectional screenshot 
for representative, though it lost the kinetic information. With 
the descriptive data, we were able to compare with the morpho-
metrics value reported by other studies. Therefore, we have more 

confidence in the biological information provided by those deriva-
tion parameters that have not been discussed before.

The third advancement is high speed, capable to label in the 
short-elapsed time of the segmentation time compared with the 
laborious manual labelling. In total, there were 1218, 682 and 408 
images for cytoplasm, PN and ZP segmentation respectively. It 
cost more than 130 hours to finish the manual labelling. In routine 
IVF practice, it is impossible for embryologist to spend lots of 
time in labelling the embryos for further morphological analysis. 
Nevertheless, in our study the CNN system only needed 12.18 
seconds to finish the segmentation, which makes the further 
morphological analysis on day-one embryo is ready for routine 
practice.

The process of analysing the plentiful images of embryos gener-
ated by TLI is toilsome. Some minor but important changes cannot 
be recognized by naked eyes. The automatic process of the CNN 
segmentation saved much time for the embryologists to analyse the 
day-one embryos. Our system would be a helpful tool to reduce 
the workload to a great extent compared with manual labelling and 
improved the work efficiency.

Additionally, our CNN system did not incur any adverse conse-
quences on embryo; it is a novel non-invasive procedure that can 
be applied anytime, anywhere without any limitation in IVF clinics 
equipped with the time-lapse incubator. We can analyse the fea-
tures of the day-one human embryo that could not be usually per-
ceived quantitatively by the naked human eye. At the same time, 
the inter-observer and intra-observer variations can be prevented 
with the automatic process of CNN system, which contribute to a 
more objective result.

In future, we will establish a cloud service platform, test its per-
formance and run the prediction model on it with more collabo-
rated IVF centres. During the test, we will collect more results of 
embryo development as well as image data, which will be used to 
improve our CNN segmentation system and get more precise ZMP. 
It may also provide a considerable potential for the selection of 
embryos and prediction of the embryo development, making the 
process faster, easier and more accurate with three distinctive ad-
vancements. In conclusion, our CNN system is ready to be applied 
in practice for day-one human embryo segmentation as a robust 
tool with high precision, reproducibility and speed.
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