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The lack of a nucleus is the defining cellular feature of bacteria and archaea. Consequently, 
transcription and translation are occurring in the same compartment, proceed 
simultaneously and likely in a coupled fashion. Recent cryo-electron microscopy (cryo-EM) 
and tomography data, also combined with crosslinking-mass spectrometry experiments, 
have uncovered detailed structural features of the coupling between a transcribing bacterial 
RNA polymerase (RNAP) and the trailing translating ribosome in Escherichia coli and 
Mycoplasma pneumoniae. Formation of this supercomplex, called expressome, is 
mediated by physical interactions between the RNAP-bound transcription elongation 
factors NusG and/or NusA and the ribosomal proteins including uS10. Based on the 
structural conservation of the RNAP core enzyme, the ribosome, and the universally 
conserved elongation factors Spt5 (NusG) and NusA, we discuss requirements and 
functional implications of transcription-translation coupling in archaea. We furthermore 
consider additional RNA-mediated and co-transcriptional processes that potentially 
influence expressome formation in archaea.
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INTRODUCTION

The controlled and coordinated expression of genes plays a fundamental role in all cellular 
life forms and occurs in two steps: transcription of DNA to RNA by RNA polymerase (RNAP) 
and translation of RNA to protein by the ribosome. Cellular RNAPs share a conserved core 
architecture (Hirata et  al., 2008; Korkhin et  al., 2009; Werner and Grohmann, 2011; Jun et  al., 
2014; Griesenbeck et  al., 2017). However, the archaeal RNAP structure, subunit composition, 
and use of basal transcription factors (TF) are more closely related to eukaryotic RNAP II 
than the bacterial counterpart. Ribosomes are large ribonucleoprotein particles that consist of 
two subunits that entail ribosomal proteins (r-proteins) and rRNAs. While the general organization 
and function of the ribosome is universally conserved, the complexity and protein content of 
ribosomes increases from bacteria to archaea to eukaryotes (Armache et  al., 2013; Yusupova 
and Yusupov, 2014; Ferreira-Cerca, 2017). In fact, differences in the transcriptional and 
translational apparatus reflect the increase in complexity during evolution (Armache et al., 2013). 
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For example, major differences in ribosome subunit composition 
are already apparent in the four phylogenetically distinct (super-)
phyla: Thaumarchaeota, Aigarchaeota, Crenarchaeota, and 
Korarchaeota (TACK); Euryachaeota; Diapherotrites, Parvarchaeota, 
Aenigmarchaeota, Nanoarchaeota, and Nanohaloarchaeota 
(DPANN); and Asgard archaea.

Prokaryotes lack a nucleus, so transcription and translation 
occur in the same cellular compartment, the cytoplasm. 
Biochemical evidence and electron micrographs of lysed bacteria 
led to the early proposal and realization that translation occurs 
co-transcriptionally (Byrne et  al., 1964; Miller et  al., 1970). 
This prompted the question whether coordination or coupling 
of elongating RNAP with the pioneering ribosome mutually 
influences transcription and translation. Data from bacteria 
provided direct evidence that rates of transcription and translation 
are interdependent, at least in some species and for some 
transcription units (Landick et  al., 1985; Proshkin et  al., 2010; 
Castro-Roa and Zenkin, 2012; Zhu et  al., 2019; Johnson et  al., 
2020; Stevenson-Jones et  al., 2020). However, recent work in 
Bacillus subtilis showed that coupling of transcription and 
translation is not conserved across all bacteria (Johnson et  al., 
2020). Recently, single-particle cryo-electron microscopy (cryo-
EM) and cryo-electron tomography (cryo-ET) was used to 
elucidate structural details of the coupled bacterial RNAP and 
ribosome, a macromolecular assembly termed “expressome.” It 
highlighted roles of transcription elongation factors NusG and/
or NusA that physically connect RNAP with the ribosome 
(Demo et  al., 2017; Kohler et  al., 2017; O’Reilly et  al., 2020; 
Wang et  al., 2020; Webster et  al., 2020).

In contrast, little is known about the coupling of transcription 
and translation in archaea. It is unclear if direct interactions 
between RNAP and ribosomes occur or if their association is 
solely mediated by the shared mRNA. Likewise, the contribution 
and regulatory role of accessory transcription factors is unknown 
(McGary and Nudler, 2013; Artsimovitch, 2018). Based on the 
structural information of the bacterial expressome(s), we discuss 
whether a coupling between the archaeal RNAP and ribosome 
can take place in a comparable manner. While molecular 
structures often guide hypotheses about underlying molecular 
mechanisms, they rarely suffice to provide the complete picture. 
We discuss how additional functional evidence obtained in vivo, 
including reporter gene assays and systems biology data such 
as transcriptome analyses and ribosome profiling, can shed 
light on the coupled gene expression in archaea. Finally, gene 
expression takes place in the context of other essential 
physiological processes. Hence, events like RNA processing and 
degradation, and their impact on transcription, translation, and 
their coupling are important to consider.

STRUCTURAL INSIGHTS INTO THE 
BACTERIAL EXPRESSOME

Attempts to gain structural insights into bacterial expressomes 
were based on two approaches: (i) cryo-EM of samples formed 
by direct reconstitution of purified Escherichia coli components 
on mRNA substrates, which direct a precise spacing between 

RNAP and the 70S ribosome (Wang et  al., 2020; 
Webster et  al., 2020), or (ii) direct visualization using cryo-ET 
in combination with in-cell cross-linking mass spectrometry 
in Mycoplasma pneumoniae (O’Reilly et al., 2020). With sufficient 
mRNA separating the two machineries, RNAP adopts a wide 
range of orientations, the assembly is highly flexible, and the 
mRNA is the only consistent connection (Figure 1A). In E. coli, 
adding NusG restrains RNAP and aligns the mRNA with the 
ribosomal helicase (Figure 1B), proposed to prevent secondary 
structure formation in the transcript (Webster et  al., 2020). 
Addition of the TF NusA stabilizes the NusG-coupled expressome 
(Wang et al., 2020; Figures 1D,E). In contrast, in M. pneumoniae, 
NusA alone appears to couple the two machineries without a 
role for NusG, albeit in a different relative orientation (O’Reilly 
et  al., 2020; Figure  1F). This is consistent with the weak 
sequence conservation in the NusG KOW domain of E.  coli 
and M.  pneumoniae and suggests that a different mechanism 
for coupling evolved in this minimal genome species.

All three studies concluded that short spacings between 
RNAP and the ribosome, either directed by the mRNA or by 
adding a drug to halt RNAP, form expressomes that resemble 
an earlier lower-resolution reconstruction formed by collision 
of a translating ribosome with a stalled RNAP (Figure  1C; 
Kohler et  al., 2017). Importantly, while RNAP is still mobile 
in this collided conformation, NusG cannot simultaneously 
bind RNAP and the ribosome and therefore cannot form a 
physical link.

While it is tempting to suggest uncoupled, NusG coupled, 
and collided expressome structures represent a ribosome 
approaching RNAP (in agreement with a reduction in RNA 
separating the two machineries), there is no other experimental 
evidence to support this chronological order of events, and 
this remains subject for further research.

IS TRANSCRIPTION COUPLED TO 
TRANSLATION IN ARCHAEA?

For the archaeon Thermococcus kodakarensis, DNA-attached 
polysomes have been visualized by electron microscopy (French 
et al., 2007) suggesting that transcription translation coupling 
(TTC) occurs in archaea. Given the bacterial expressome, 
the question arises whether the archaeal machineries are 
compatible with this architecture. To answer this question, 
the bacterial transcription and translation apparatus has to 
be  compared concerning (i) the overall RNAP architecture, 
(ii) the RNA length bridging the RNAP active site with the 
ribosomal P-site (carrying the peptidyl-tRNA), (iii) the presence 
of NusG or NusA-like factors, and (iv) the conservation of 
interaction surfaces.

In contrast to bacterial RNAPs, archaeal-eukaryotic RNAPs 
contain subunits Rpo4/7 (the stalk domain), which binds nascent 
RNA (Todone et  al., 2001; Meka et  al., 2005) and stimulate 
RNAP processivity (Hirtreiter et  al., 2009) suggesting the stalk 
guides the RNA away from RNAP once it emerges from the 
RNA exit channel. Complexes between bacterial RNAP and 
70S ribosomes could be  observed for RNA spacers as short 
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as 29  nt separating the RNAP active site from the ribosomal 
P-site (Wang et  al., 2020). However, NusG-mediated coupling 
appears to be compatible only with spacer lengths greater than 
at least ~34 nt (Webster et al., 2020). Cryo-EM reconstructions 
(Bernecky et  al., 2016; Ehara et  al., 2017) and single-molecule 
FRET studies (Andrecka et  al., 2008) of eukaryotic elongation 
complexes showed that transcripts of 14–29  nt reach the stalk 
base. Longer RNAs could not be  mapped and appeared to 
be  flexible. This suggests the attachment of longer RNAs to 
the stalk is transient or they are no longer associated with 
the stalk. In the context of the archaeal RNAP and assuming 
that the nascent RNA binds the stalk, for TTC to occur, a 
longer mRNA segment is required that can traverse the stalk 

before being fed into the ribosome in contrast to the bacterial 
situation. Alternatively, the mRNA might be  detached from 
Rpo4/7 and directly enter the ribosome.

In the E. coli expressome, RNA-dependent TTC is further 
mediated by NusG, which is the only universally conserved 
TF (Werner, 2012). In archaea and eukaryotes, the NusG 
homolog is called Spt5 and forms a heterodimer with Spt4. 
NusG/Spt5 has an N-terminal NGN domain and a C-terminal 
KOW domain, which bind the RNAP clamp domain and the 
r-protein uS10, respectively (Figure  2A). At the majority of 
genes, archaeal Spt4/5 associates with the elongation complex 
proximal to the promoter and reflects the RNAP association 
pattern (Smollett et  al., 2017). This suggests early Spt4/5 

A B C

D E F

FIGURE 1 | Structures of the bacterial expressomes. (A) At mRNA spacings separating the RNA polymerase (RNAP) active site by more than ~35 nucleotides from 
the ribosomal P-site, and in absence of any coupling factor, RNAP adopts a wide range of orientations relative to the ribosome (uncoupled state; compare extent of 
translations and rotations). (B) Addition of the coupling factor NusG (turquoise) results in the formation of a physical link between RNAP and the ribosome (through 
uS10, orange) and restrains the rotational freedom. The emerging mRNA transcript (magenta) aligns with the ribosomal helicase (r-proteins uS3 and uS4, dashed 
circle; NusG coupled state). (C) Once the ribosome approaches RNAP further (mRNA spacings less than ~34 nucleotides), the expressome adopts a conformation 
similar to a previously observed collided state, where NusG can no longer form a physical bridge (collided state). (D–F) Comparison of transcription factor coupled 
states in Escherichia coli and Mycoplasma pneumoniae. The NusG-coupled state (E) gets stabilized by NusA in a similar relative orientation [D, compare outline with 
model, differences are within rotational freedom indicated in panel (A)]. In contrast, the NusA-coupled state observed in M. pneumoniae requires a major change in 
position and orientation of RNAP (F), compare outline and model, E. coli RNAP and ribosome were docked into deposited cryo-electron tomography (cryo-ET) map 
(O’Reilly et al., 2020).
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recruitment to RNAP even for short transcripts and thus a 
coupling function may also occur early in transcription. NusG/
Spt5 are structurally conserved (Figures 2B,C; Hirtreiter et  al., 
2010; Martinez-Rucobo et  al., 2011; Liu and Steitz, 2017). 
Hence, the interaction interfaces between NusG/Spt5 and RNAP 
and/or the ribosome might also be  conserved.

First, we  focus on the NusG-mediated contact between 
RNAP and ribosome because biochemical data suggest this 
to be  the prevalent arrangement of the expressome in vivo 
(Saxena et  al., 2018; Washburn et  al., 2020). The binding site 
of NusG/Spt5 on RNAP is conserved according to structural 
data in all three kingdoms of life (Figures  2B,C; Klein et  al., 
2011; Martinez-Rucobo et  al., 2011; Ehara et  al., 2017; Kang 
et  al., 2018). While structural data on archaeal Spt5 (aSpt5) 
interacting with the archaeal ribosome are missing, the length 
and mobility of the linker connecting the NGN and KOW 
domain in aSpt5 resembles NusG. Thus, a similar interaction 
as observed for the bacterial NusG-coupled expressome is 
feasible. Furthermore, bacterial RNAP exhibits substantial 
rotational and translational freedom with respect to the 
ribosome even in the NusG-coupled expressome. Modeling 
of an archaeal expressome based on bacterial RNAP orientations 
(Webster et  al., 2020) shows that most orientations would 
require a different stalk orientation to avoid steric overlap 
with the 30S subunit (Coureux et  al., 2020). Archaeal RNAP 
might either be  more restricted in its orientation relative to 
the ribosome or adopt different orientations compatible with 
the stalk that have been modeled to be possible without steric 
clashes between RNAP and the ribosome (Kohler et al., 2017).

Bacterial uS10 provides a hydrophobic pocket for the KOW 
domain of NusG to insert several hydrophobic residues (Webster 
et  al., 2020). Residues V84 and M88  in uS10 form one edge 
of the hydrophobic pocket in close proximity to F141, F144, 
and I164  in the NusG-KOW domain (Burmann et  al., 2010; 
Webster et  al., 2020). V84 and M88  in uS10 and F141 and 
I164  in the KOW domain are conserved among bacterial and 
archaeal proteins (Figures 2B,C; Melnikov et al., 2018) suggesting 
the hydrophobic interaction between NusG/Spt5-KOW and 
uS10 might be  conserved. Moreover, the structure of bacterial 
and archaeal uS10 is conserved (Figure  2C) and residues in 
the putative interaction surface (β-strand 1 and 4, α-helix 2) 
of archaeal uS10 with Spt5 are highly conserved among archaeal 
uS10 proteins suggesting that the amino acid identity might 
play a role for the function and interaction of archaeal uS10 
(Coureux et  al., 2020; Figure  2B). Despite the conserved 
phenylalanine residues and overall sequence conservation of 
aSpt5, organisms of the euryarchaeal and crenarchaeal phylum 
do not share a high sequence conservation with bacterial 
KOW sequences.

The interactions in the expressome are not conserved across 
all bacteria and alternative coupling mechanisms have evolved. 
In M. pneumoniae, the bacterial elongation and termination 
factor NusA couples RNAP and the ribosome (O’Reilly et  al., 
2020). Commonly, bacterial NusA proteins contain an N-terminal 
domain (binds RNAP), and a S1 and two KH domains (bind 
RNA). Mycoplasma pneumoniae NusA contains an additional 
flexible C-terminal extension not found in E. coli or B. subtilis, 

which contacts multiple r-proteins on the ribosome (Figure 1D). 
Consequently, the relative orientation of the ribosome to RNAP 
differs significantly from the E. coli expressome architecture 
(Figure  1D). NusA is also able to stabilize NusG-coupled 
expressomes in E. coli mediated by one of the KH domains 
(Wang et  al., 2020). NusA-like homologs can be  found in all 
archaeal phyla indicating a widespread distribution of this 
transcription factor but its function is unclear (Shibata et  al., 
2007). The domain organization differs significantly from bacterial 
NusA because archaeal NusA (aNusA) only contains KH domains 
but lacks the NTD, S1 domain and C-terminal extension that 
interacts with the ribosome in M. pneumoniae. Nevertheless, 
the structure of the bacterial and archaeal KH domains in 
NusA are highly conserved (Figures  2D,E) and aNusA also 
binds RNA (Shibata et  al., 2007). It has been suggested that 
the RNAP interaction platform and S1 domain of Rpo7  in 
conjunction with the two KH domains of aNusA form the 
domain complement of bacterial NusA (Figure  2F; Belogurov 
and Artsimovitch, 2015; Fouqueau et  al., 2018).

It is noteworthy that the archaeal domain of life encompasses 
highly diverse organisms, of which only a few model organisms 
have been studied so far. As documented for the bacterial 
world (Irastortza-Olaziregi and Amster-Choder, 2020; Johnson 
et al., 2020), expressome formation might occur in some archaeal 
species but not in others.

CO-TRANSCRIPTIONAL PROCESSES 
AND TRANSCRIPTOMIC FEATURES 
AFFECTING TRANSCRIPTION-
TRANSLATION COUPLING IN ARCHAEA

The expressome structures illustrate the highly coordinated 
interplay of two molecular machineries. However, the expressome 
is not an isolated complex but operates with high specificity 
in a crowded cytoplasm where myriads of molecular processes 
occur simultaneously. In archaea, a number of transcriptional 
and co-transcriptional steps have been identified that might 
prevent the immediate loading of the ribosome onto the mRNA. 
Among others, processes like co-transcriptional RNA processing, 
binding of non-coding RNAs (ncRNAs) to and association of 
RNA chaperones and transcription termination factors with 
the RNA may influence expressome formation and will be shortly 
discussed in this section (compare Figures  2G–I).

Coupling of the ribosome to RNAP requires the mRNA to 
span the distance between the RNAP active site and the 
ribosomal P-site to provide enough space for both machineries 
(Figure  2G). Typically, regulatory sequences that confer 
translation initiation are encoded in the 5' untranslated region 
(5'-UTR). Some archaeal mRNAs have a short 5' UTR or none 
at all (analyzed for Haloferax volcanii, Thermococcus onnurineus, 
Pyrococcus abyssi, Saccharolobus solfataricus, Heyer et al., 2012; 
Xu et  al., 2012; Beck and Moll, 2018). The relative number 
of leaderless mRNAs ranges between 1.4 and 72%. The mechanism 
of mRNA recognition and ribosome association appears to 
be highly diverse in prokaryotes, and we do not know whether 
the initiation mechanism influences and correlates with 
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FIGURE 2 | Structural criteria and cellular processes that might mediate and influence transcription-translation coupling in archaea. (A) Possible scenarios 
for transcription translation coupling (TTC) in archaea derived from structural insights into expressome formation in bacteria: NusG/Spt5-coupled expressome 
formation is a possible scenario 1 representing the archaeal equivalent to the NusG-coupled state in E. coli (Webster et al., 2020). In addition, one could also 
imagine NusA-coupling (scenario 2), similar to what has been observed in M. pneumoniae (O’Reilly et al., 2020) or no coupling at all (scenario 3). (B) Analysis 
of conserved regions in archaeal Spt5 and uS10 using ConSurf (Ashkenazy et al., 2016). About 100 archaeal Spt5 and uS10 sequences were aligned, and 
their conservation score projected color-coded from white (0, not conserved) to dark green or dark-red (9, highly conserved), respectively, on the surface of 
Pyrococcus furiosus Spt5 and Pyrococcus abyssi uS10 structure. (C) Superimposition of archaeal and bacterial Spt5/NusG and (bacteria: dark-green, PDB: 
6ZTJ, E. coli; archaea: light-green, PDB: 3P8B, P. furiosus) and uS10 (bacteria: orange, PDB: 6ZTJ, E. coli; archaea: red, PDB: 6SW9, P. abyssi). Residues 
important for the interaction with NusG are highlighted. (D) Conservation analysis of archaeal NusA proteins. Conservation scores from white (0, not 
conserved) to dark-blue (0, highly conserved) were calculated based on the comparison of archaeal NusA proteins and projected on the surface of 
Aeropyrum pernix NusA. A superimposed model of bacterial RNA (Beuth et al., 2005) is shown in pink. (E) The E. coli NusA structure (gray, PDB: 6FLQ) 
overlayed with A. pernix NusA (Shibata et al., 2007) (blue, PDB: 2CXC). (F) Cartoon depiction of the archaeal RNAP highlighting the hypothesis that the S1 
domain of the stalk-forming subunit Rpo7 and the archaeal NusA form a homologue of bacterial NusA. TTC in archaea may be affected by co-transcriptional 
processes and features depicted in (G–I), including 5'UTR length and processing (G), co-transcriptional binding of non-coding RNAs (ncRNAs) (H) and the 
transcription termination pathway (I).
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expressome formation (Wen et  al., 2020). mRNAs that lack a 
ribosomal binding site (RBS) can also emerge from RNA 
processing events at the 5'-end that lead to cleavage of the 
5'-UTR (Qi et  al., 2017; Figure  2G). As shown for several 
bacterial (Mäder et al., 2004; Ramirez-Peña et al., 2010; Lioliou 
et al., 2012) and for the archaeal organisms Methanocaldococcus 
jannaschii and Marinobacter psychrophilus (Zhang and Olsen, 
2009; Qi et  al., 2017), processing of the mRNAs can stabilize 
transcripts and regulate translation of r-proteins (Qi et  al., 
2017) and mRNAs from multicistronic operons. In this case, 
the timing of mRNA processing and translation seems important 
to avoid conflicts between these two processes.

Co-transcriptional binding of a small regulatory ncRNA 
to an mRNA is a common posttranscriptional regulation 
mechanism in prokaryotes that influences RNA stability and 
translational efficiency of mRNAs in response to changing 
environmental conditions (Babski et  al., 2014; Hör et  al., 
2018). For H. volcanii and Methanosarcina mazei small ncRNAs 
have been detected that can potentially bind to the 5' UTR 
thereby potentially masking the RBS (Jäger et al., 2009; Soppa 
et  al., 2009; Heyer et  al., 2012; Gelsinger and DiRuggiero, 
2018; Figure  2H). For example, the small RNA41 in M. mazei 
binds multiple RBS in a polycistronic mRNA and decouples 
transcription and translation (Buddeweg et  al., 2018).

In bacteria, ncRNA-mRNA hybridization is often mediated 
by the RNA chaperone Hfq, which belongs to the Sm protein 
family (Vogel and Luisi, 2011). Hfq can bind RNA 
co-transcriptionally (Kambara et  al., 2018) and plays a role 
in transcription termination/antitermination (Rabhi et al., 2011; 
Sedlyarova et  al., 2016), ribosome biogenesis (Andrade et  al., 
2018) and ribosome association with the mRNA in bacteria 
(Chen et  al., 2019). In archaea, a bona fide Hfq protein is 
rarely encoded. More often, single or multiple genes encode 
an archaeal Sm-like protein (SmAP; Reichelt et  al., 2018). 
Similar to bacterial Hfq, archaeal SmAPs were shown to bind 
RNAs (Nielsen et  al., 2007; Fischer et  al., 2010; Märtens et  al., 
2015). Hence, co-transcriptional association of a ncRNA at 
the 5' UTR (potentially supported by a SmAP) would prevent 
ribosome association with the 5' UTR (Figure  2H). 
Co-immunoprecipitation experiments showed that SmAPs not 
only bind RNAs but also r-proteins (Fischer et  al., 2010). It 
is conceivable that SmAPs participate in posttranscriptional 
regulation, translation, or act as a bridging factor to recruit 
ribosomes to the mRNA (Figure  2H).

Lastly, the transcription termination pathway might 
be decisive whether TTC can occur, or vice versa (Figure 2I). 
In archaea, transcription terminates via two mechanisms that 
are not necessarily mutually exclusive: (i) intrinsic termination 
at poly(U) stretches (Santangelo and Reeve, 2006; Hirtreiter 
et  al., 2009, 2010; Santangelo et  al., 2009; Dar et  al., 2016; 
Berkemer et  al., 2020) or (ii) factor-dependent termination 
assisted by the archaeal termination factor aCPSF1/FttA that 
binds the nascent RNA (Sanders et al., 2020; Yue et al., 2020). 
Importantly, aCPSF1 also enhances termination at poly(U) 
stretches. Termination via aCSPF1 involves cleavage of the 
transcript at the 3'-end. In Methanococcus maripaludis deletion 
of aCPSF1 resulted in altered expression levels for the 

majority  of genes (Yue et  al., 2020). Furthermore, aCPSF1-
dependent termination gets stimulated by the presence of 
the stalk domain and Spt4/5 (Sanders et  al., 2020). Even 
though a direct interaction between aCPSF1 and the stalk 
or Spt4/5 has not yet been experimentally verified, a physical 
interaction is likely and would be consistent with the observed 
increased termination efficiency. It is tempting to speculate 
that aCPSF1 and the ribosome interact with RNAP-bound 
Spt4/5  in a mutually exclusive fashion similar to Rho and 
the ribosome with RNAP-bound NusG in bacteria. As a 
consequence, transcription termination and ribosome coupling 
might be  mutually exclusive. Ribosomes coupled to RNAP 
via Spt4/5 would prevent aCPSF1 interactions with the nascent 
RNA and prevent premature termination (Figure  2H). 
Alternatively, once aCPSF1 gains access to Spt4/5 it may 
interfere with TTC (Figure  2H). This would be  reminiscent 
of the recruitment of Rho by NusG-KOW to RNAP leading 
to transcription termination of non-coding/untranslated RNA 
transcripts (Washburn et al., 2020). Whether TTC or termination 
prevails could be  gene- or operon-specific, could be  a target 
for regulation, and may vary from species to species. Direct, 
mRNA-independent interactions between the bacterial RNAP 
and ribosome have been shown. It is possible that in some 
instances, e.g., during transcription of short mRNAs, the 
archaeal ribosome might bind the mRNA close to the RNAP 
exit channel and direct contacts between the elongating RNAP 
and the ribosome (Wang et  al., 2020; Webster et  al., 2020).

FUTURE PERSPECTIVES

Are transcription and translation coupled in archaea similar 
to bacteria? We  propose that this is likely, but definitive 
proof is still lacking. This problem can only be  solved by 
a multidisciplinary effort that reaches beyond a molecular-
structural analysis in vitro. In order to rationalize the 
underlying molecular mechanisms, we do need to understand 
the structural determinants of the RNAP-ribosome interactions 
and the potential role of general regulatory factors including 
NusG-Spt4/5 and NusA, as well as ribosomal proteins. 
A  crucial question to be  solved in the future is how 
co-transcriptional processes like SmAP binding, transcription 
termination, or RNA processing are coordinated with ribosome 
coupling in space and time. This also includes coordination 
of translation initiation and TTC. In bacteria, translation 
initiation was delineated in great detail showing that the 
30S subunit is recruited to the mRNA with the help of the 
initiator tRNA and initiation factors before the 50S subunit 
joins to form the translation-competent ribosome (see for 
example, Milon et  al., 2010; Tsai et  al., 2012). In archaea, 
the situation is more complex as additional (eukaryotic-like) 
initiation factors are involved (Benelli et al., 2016). Nonetheless, 
even in the archaeal initiation complex, uS10 remains exposed 
and might be  available for coupling to Spt5 (Coureux et  al., 
2020). Consequently, the 30S subunit is involved in translation 
initiation and coupling to RNAP, and it has to be  seen 
whether these processes are compatible or mutually exclusive. 
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To elaborate on the finer points of biologically relevant 
interaction networks a combination of cross-linking/mass 
spectrometry experiments like the recent elegant study of 
Rappsilber and colleagues are necessary (O’Reilly et al., 2020). 
Complementary to these efforts are structural biology, 
functional genomics, and systems biology approaches that 
hold great promise to ascertain (i) to which extent the 
coupling applies to all transcription units or whether it is 
limited to specific subset or classes of operons, and (ii) 
whether the coupling-uncoupling is a dynamic process and 
dependent on environmental cues and stresses, i.e., whether 
it is subject to regulation. Key to this approach are experiments 
that monitor changes in the global characteristics of 
transcription, such as genome-wide RNAP occupancy profiles 
and transcriptome analyses, in response to perturbations of 
translation by using ribosome inhibitors/antibiotics or 
ribosome variants. We have to develop high-resolution methods 
that combine ribo-seq/proteomics and RNAP NET-seq or 
ChIP-exo/transcriptomics and integrate the data to obtain 
a complete view of the interdependence of transcription and 
translation. Finally, it is important to note that archaea are 
evolutionary diverse and tractable archaeal model organisms 
are scarce. Despite the conservation of NusG, the molecular 
mechanisms of transcription that were revealed for Crenarchaea 
and Euryarchaea are distinct in many ways including the 
RNAP subunit composition and chromatin structure. Likewise, 
we  only know little about the mechanisms of translation 
across the archaeal phyla. The properties of their ribosomes 
are distinct including the molecular mechanisms of translation 
initiation, which might have an impact on the coupling of 
the leading ribosome to the RNAP.
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