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Abstract 27 

The role of human behavior to thwart transmission of infectious diseases like COVID-19 is 28 

evident. Yet, many areas of psychological and behavioral science are limited in the ability to 29 

mobilize to address exponential spread or provide easily translatable findings for policymakers. 30 

Here we describe how integrating methods from operant and cognitive approaches to behavioral 31 

economics can provide robust policy relevant data. Adapting well validated methods from 32 

behavioral economic discounting and demand frameworks, we evaluate in four crowdsourced 33 

samples (total N = 1,366) behavioral mechanisms underlying engagement in preventive health 34 

behaviors. We find that people are more likely to social distance when specified activities are 35 

framed as high risk, that describing delay until testing (rather than delay until results) increases 36 

testing likelihood, and that framing vaccine safety in a positive valence improves vaccine 37 

acceptance. These findings collectively emphasize the flexibility of methods from diverse areas 38 

of behavioral science for informing public health crisis management. 39 

Key words: COVID-19; behavioral economics; demand; discounting; public policy 40 
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Integrating Operant and Cognitive Behavioral Economics to Inform Infectious Disease 42 

Response: Prevention, Testing, and Vaccination in the COVID-19 Pandemic 43 

The COVID-19 pandemic has spurred important conversations in nearly all sciences [1-44 

3]. While scientists scramble to find ways to address the crisis, a salient role for behavioral science 45 

has emerged. Robust evidence documents how human behavior is central to disease spread 46 

insofar as reduced travel and social distancing are predictive of lower infection incidence [4, 5] 47 

and face mask use effectively mitigates airborne transmission [6, 7]. As of this writing, only 48 

remdesivir has been approved by the FDA as an approved safe and effective pharmaceutical. 49 

Importantly, remdesivir and other therapeutics are designed for the treatment of existing COVID-50 

19 symptoms rather than for prophylactic prevention, leaving nonpharmaceutical interventions as 51 

critical for flattening the curve of transmission [8]. Furthermore, while effective vaccines have been 52 

developed and approved under emergency use authorizations, behavioral science remains 53 

necessary for ensuring necessary vaccination rates by informing the development of public health 54 

programs to counteract factors like vaccine mistrust, skepticism, and apathy [9, 10]. 55 

Theoretical commentaries have emphasized the role of understanding human behavior to 56 

thwart the transmission of infectious diseases like COVID-19 [11]. Yet, many areas of behavioral 57 

science and their accompanying experimental approaches may be limited in the ability to mobilize 58 

research to address exponential spread or provide easily translatable findings. For example, 59 

methods commonly used in behavioral psychology and the experimental analysis of behavior are 60 

limited due to a focus on steady state behavior and within-subject methods [12, 13]. Such designs 61 

are hallmarks of rigorous science, to be certain, but these methodological features are sometimes 62 

at odds with and constraints on the need for rapid and scalable behavioral solutions. Other 63 

behavioral science methods can provide critical data for COVID-19 response, but rely on technical 64 

procedures without direct or readily accessible applications that policymakers can act upon [14]. 65 

Here, we sought to address these shortcomings by showing how well-validated behavioral 66 

economic procedures developed in operant psychology frameworks may be combined with more 67 
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widely recognized cognitive psychology approaches to provide robust behavioral insights, policy-68 

relevant data, and research methods that are helpful to stakeholders during the COVID-19 69 

pandemic, specifically, but also for infection disease response, more broadly. 70 

Behavioral economics may be defined as an approach to understanding behavior and 71 

decision making that integrates behavioral science (commonly psychology) with economic 72 

principles [15]. As typically described in the scientific and popular press, this approach 73 

emphasizes the contributions of psychology to economics or the behavior of economics. Such a 74 

behavioral economic tradition often examines how mechanisms described by cognitive 75 

psychology can explain systematic deviations from neo-classical economic predictions (e.g., 76 

status quo biases; loss aversion) [16-19]. Less often considered, but equally relevant, is the 77 

reciprocal integration – the contributions of economics to psychology theory or the economics of 78 

behavior [20, 21]. Research in this tradition has applied economic principles to understand 79 

decision making using methods developed within operant psychology frameworks (e.g., 80 

purchasing of competing goods from an economist’s perspective may be the division of operant 81 

behavior among competing reinforcers from a behavioral psychologist’s perspective). This 82 

approach involves evaluation of behavioral mechanisms including delay discounting (i.e., the 83 

devaluation of an outcome by delay), probability discounting (i.e., the devaluation of an outcome 84 

by probability/certainty), and behavioral economic demand (i.e., relationship price and 85 

consumption that considers this relation may differ across individuals and contexts) to determine 86 

how these measurable factors influence choice and behavioral allocation as well as individual 87 

difference variables impacting these relationships. 88 

The unique lens by which behavioral economics is used to describes behavior not only 89 

provides novel means of interpreting socially important concerns, but also the various facets of 90 

the dependent variables generated in these experiments render them especially useful for 91 

informing translational public policy [20, 22-24]. For example, operant arrangements can quantify 92 

the effective price at which demand for a commodity shifts from inelastic (when a one unit increase 93 
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in price is met with less than one unit decrease in consumption) to elastic (when a one unit 94 

increase in price is met with more than one unit decrease in consumption) for the consumer, while 95 

also modeling expected revenue on the part of the supplier. Moreover, comparisons of demand 96 

metrics have the potential to determine how imposing different environmental contexts (e.g., 97 

availability of reinforcer substitutes, closed economics, framing effects) alters the basic reinforcing 98 

value of the commodity for an individual as well as individual factors predictive of that influence. 99 

Similarly, discounting procedures can identify the effective delay [25] or probability [26] at which 100 

behavior is altered to a given level of performance; for example, the delay associated with, say, 101 

a 50% reduction in the value of procuring a COVID-19 test. Such metrics are ripe for modeling 102 

policy effects and can provide novel and important behavioral information that is directly relatable 103 

to policy makers considering a behavior change program [23, 27, 28]. 104 

To date, researchers considering the behavior of economics and economics of behavior 105 

have remained largely independent. We argue that this separation is not of theoretical necessity 106 

and that there are many shared interests in cognitive-behavioral factors affecting decision making. 107 

A primary goal of this paper is to provide a clear demonstration of how these approaches when 108 

integrated can provide scalable behavioral solutions for public health crisis mitigation. To this end, 109 

we provide examples that relate to policy designed to reduce transmission and improve treatment 110 

within the COVID-19 pandemic. We translated behavioral economic discounting and demand 111 

assays widely used and validated in behavioral psychology [29-34] to study 1) engagement in 112 

social distancing, 2) cooperation with face mask use, 3) procurement of diagnostic testing, and 4) 113 

intentions for vaccination. Within these examples, we evaluate specific experimental 114 

manipulations well characterized by cognitive psychology approaches to behavioral economics 115 

(e.g., framing effects) to provide clear and translatable implications for public policy design. 116 

  117 
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General Methods 118 

Sampling and Study Overview 119 

This paper summarizes a programmatic series of seven experiments conducted across 120 

four samples recruited during the COVID-19 pandemic (Sample 1 N = 133; Sample 2 N = 414; 121 

Sample 3 N = 497; Sample 4 N = 322). Sampling occurred asynchronously in March 2020 122 

(Sample 1), May 2020 (Sample 2), July 2020 (Sample 3), and September 2020 (Sample 4). All 123 

samples were recruited using crowdsourcing (Amazon Mechanical Turk) with checks used to 124 

verify fidelity of responding. One experiment was formally pre-registered (Experiment 7; 125 

https://osf.io/56f2z) while others followed standard analyses based on the experimental design. 126 

Methods and Results will be presented thematically from prevention behavior to diagnostic testing 127 

to vaccination following a general summary of the experimental methods and data cleaning 128 

processes. 129 

Across all studies, we required participants to be age 18 or older and have United States 130 

residence. Additional attention and validity checks were included for each sample. All studies 131 

were reviewed and approved by local Institutional Review Boards (University of Kansas or Johns 132 

Hopkins University). Participants reviewed a study cover letter to provide electronic informed 133 

consent prior to participation.  134 

Sample Characteristics and Systematicity Checks 135 

Sample 1 (Experiment 1 and 4) 136 

 Sample 1 was recruited from 13 March 2020 to 17 March 2020. Participants were required 137 

to have a 95% or higher approval rate, 100 or more previously approved tasks, and current United 138 

States residence to view and complete the study. Compensation for full study completion was $1 139 

USD. A total of 227 participants completed the full assessment. 140 

 Data cleaning consisted of evaluation of behavioral economic tasks for systematic 141 

responding as well as evaluation of qualitative responses for English language proficiency and 142 

comprehension. Probability discounting task (Experiment 1) and behavioral economic demand 143 
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tasks (Experiment 4) were evaluated using standardized systematic data checks [35, 36]. A total 144 

of 31 participants failed checks on the probability discounting procedure, 18 on the demand 145 

procedure, and 44 on both procedures. These results closely corresponded to flagged responses 146 

on the qualitative data checks with only one additional participant removed based on inattentive 147 

qualitative responses. This resulted in an analyzed sample of 133 participants. The analyzed 148 

sample was an average of 39.5 years old (SD = 12.1), 59.8% female, and 80.6% White. 149 

Sample 2 (Experiment 5) 150 

 Sample 2 was recruited from 13 May 2020 to 10 June 2020. Participants were required to 151 

have a 95% or higher approval rate, 100 or more previously approved tasks, and current United 152 

States residence to view and complete the study. Compensation for full study completion was $1 153 

USD. A total of 499 participants completed the full assessment. 154 

 Data cleaning included evaluation of the diagnostic test delay discounting task 155 

(Experiment 5) for reversals (i.e., reversing from stating “No” they would not get a test to “Yes” 156 

they would get a test). Any participant with one or more reversal on any task was removed (i.e., 157 

1 task = 7 participants; 2 tasks = 8 participants; 3 tasks = 9 participants; 4 tasks = 61 participants). 158 

This resulted in an analyzed sample of 414 participants. The analyzed sample was an average of 159 

32.6 years old (SD = 10.9), 58.3% female, and 71.5% White. 160 

Sample 3 (Experiment 2, 3, and 6) 161 

 Sample 3 completed the assessment from 4 August 2020 to 12 August 2020. Participants 162 

were initially recruited from mTurk in March 2020 as a part of a longitudinal cohort with repeated 163 

assessments throughout the COVID-19 pandemic. Participants were required to have a 97% or 164 

higher approval rate, more than 100 previously approved tasks, and current United States 165 

residence to enroll in the parent study. Data collection for this project occurred in Wave 3 of data 166 

collection and included 531 participants who completed the full assessment. Participants were 167 

compensated $3.50 USD for completion of this assessment. 168 
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 Data cleaning included evaluation of social distancing discounting tasks (Experiment 2) 169 

and vaccine demand tasks (Experiment 6) for systematic responding. Discounting tasks were 170 

evaluated using standardized criteria [35] and demand tasks were evaluated for reversals from a 171 

“No” response. A total of 12 participants failed checks on the discounting procedure, 12 on the 172 

demand procedure, and 6 on both procedures. An added attention check was included asking 173 

about recent use of a fake drug (“oxypentone”) that an additional 6 participants endorsed. This 174 

resulted in an analyzed sample of 497 participants. The analyzed sample was an average of 40.0 175 

years old (SD = 11.4), 56.9% female, and 78.7% White. 176 

Sample 4 (Experiment 7) 177 

Sample 4 was recruited from 12 September 2020 to 23 September 2020. Participants 178 

were required to have a 95% or higher approval rate, 100 or more previously approved tasks, and 179 

current United States residence to view and complete the study. Compensation for full study 180 

completion was $1 USD. A total of 485 participants completed the full assessment. 181 

Data cleaning included evaluation of the vaccine demand tasks (Experiment 7) for 182 

systematic responding. Tasks were evaluated for reversals from a “No” response, which were 183 

considered non-systematic (i.e., indicating “No” for intention to get a vaccine and then reversing 184 

to “Yes” at a lower efficacy). A total of 163 participants failed checks. This resulted in an analyzed 185 

sample of 322 participants. The analyzed sample was an average of 38.8 years old (SD = 11.6), 186 

44.5% female, and 76.7% White. 187 

Experiment Methods and Data Analysis 188 

 All experimental materials are available in the Supplemental Materials. Data were 189 

collected via Qualtrics and analyses conducted in R Statistical Analysis (see 190 

https://osf.io/wdnmx/?view_only=37323f9431aa4c91a0e7209054058dbe for limited datasets and 191 

code for primary analyses). 192 

  193 
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Social Distancing 194 

Social distancing is a first-line prevention strategy for reducing COVID-19 transmission. In 195 

Experiments 1 and 2 we evaluate how the likelihood of engaging in social distancing varies as a 196 

function of probabilistic community COVID-19 risk. In Experiment 1, participants completed a 197 

probability discounting task evaluating the likelihood of attending a large social gathering given 198 

varying probabilities of community risk for a hypothetical disease under varying symptom framing 199 

conditions. In Experiment 2, participants completed a probability discounting procedure 200 

evaluating the likelihood of engaging in a social activity based on community COVID-19 risk under 201 

different risk framing conditions based on a widely disseminated risk assessment infographic from 202 

the Texas Medical Association [37]. 203 

Methods 204 

Experiment 1 (Sample 1) 205 

 Participants completed a probability discounting task to evaluate likelihood of attending a 206 

large social gathering given the probability of disease risk in the community. The study vignette 207 

described a situation involving planned attendance at a large social event. The task included two 208 

experimental manipulations related to the symptoms’ description. First, the symptom type 209 

comprised a within-subject manipulation. A “Mild” version of the task described symptoms 210 

including dry cough, fatigue, fever, shortness of breath, and headache. A “Severe” version of the 211 

task included these symptoms in addition to difficulty breathing (requiring a medical ventilator). 212 

All participants completed these two task manipulations with a randomized order of completion. 213 

Second, the symptom framing was a between-subject manipulation. Half of participants saw the 214 

two task symptom variations with corresponding labels for the symptom severity (e.g., “this group 215 

of symptoms is classified as [mild/severe]”) in the “Label” condition (n=69). The other half of 216 

participants saw the same symptoms, but with no labels included in the “No Label” condition 217 

(n=64). Participants rated their likelihood of attending the social event at varying probabilities that 218 

someone in their community was presenting the symptoms described. Participants emitted 219 
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responses on a visual analog scale (VAS) from 0 (extremely unlikely to attend) to 100 (extremely 220 

likely to attend). Symptom probabilities included 0%, 5%, 10%, 25%, 50%, 75%, 90%, 95%, and 221 

100%. 222 

Group discounting data were analyzed and plotted using the hyperbolic discounting 223 

equation that includes a non-linear scaling parameter [38]. Individual discounting data were 224 

analyzed as area under the curve (AUC) to provide a model free estimation of the impact of 225 

symptom probability on the discounting of event attendance [39]. Lower AUC values indicate 226 

greater sensitivity to risk (the desirable outcome from a social distancing standpoint). We 227 

standardized responses to the 0% likelihood value to isolate the impact of symptom probability 228 

from no-risk event attendance. We used an ordinal variation of AUC, here and throughout, to 229 

address concerns with normality and disproportional influence of delay or probability steps [40]. 230 

AUC values were analyzed using a 2 x 2 mixed ANOVA with the between-subject factor of Label 231 

(No Label versus Label) and within-subject factor of Symptom Type (Mild versus Severe). 232 

Generalized linear mixed effect models were used to test the likelihood of 100% likelihood of 233 

attendance at 0% community transmission risk (a bimodal distribution was observed; therefore, 234 

this outcome was dichotomized for analysis). 235 

Experiment 2 (Sample 3) 236 

Similar to Experiment 1, participants completed a probability discounting task to evaluate 237 

likelihood of engaging in a social activity based on community COVID-19 risk. Participants were 238 

first asked to select a preferred social activity from a low-to-moderate risk category (i.e., play golf 239 

with others, go to a library or museum, or walk in a busy downtown) and from a high risk category 240 

(i.e., go to a sports stadium, go to a movie theater, or attend a religious service with 500+ other 241 

worshipers). These groupings were based on the risk categorizations made by the Texas Medical 242 

Association in June 2020 [37]. Participants then read a vignette describing the opportunity to 243 

engage in that activity. A risk framing manipulation (between-subject) varied risk categorization 244 

with half of participants (N=246) completing task that included labels for the risk severity (e.g., 245 
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“According to health authorities in your area, this activity is of [Low/High Risk]”) and the other half 246 

of participants (N=251) receiving no risk information. The two risk categories were completed in 247 

a randomized order. Participants rated their likelihood of going to the social activity at varying 248 

probabilities that someone at the activity was displaying COVID-19 symptoms. Participants 249 

emitted responses on a VAS from 0 (definitely would not go) to 100 (definitely would not go). 250 

Symptom probabilities included 0%, 1%, 5%, 10%, 25%, 50%, 75%, 99%, and 100%. 251 

Group discounting data were analyzed and individual AUC values calculated as in 252 

Experiment 1. AUC values were analyzed using a 2 x 2 mixed ANOVA with the between-subject 253 

factor of risk Label (No Label versus Label) and within-subject factor of Risk Level (Low-to-254 

Moderate versus High). Generalized linear mixed effect models were used to test the likelihood 255 

of 100% likelihood of attendance at 0% community transmission risk. 256 

Results 257 

Experiment 1: Framing Effects of Symptom Severity for a Hypothetical Disease 258 

Responding at an aggregate level showed systematic and expected decreases in 259 

attendance likelihood based on community symptom risk (Figure 1). Individual AUC values 260 

revealed a significant main effect of Symptom Type, F1,131 = 12.75, p < .001, reflecting higher 261 

AUC values for the Mild than Severe symptoms, dz = 0.31. The main effect of Label, F1,131 = 2.87, 262 

p = .09, or Symptom Type by Label interaction, F1,131 = 0.01, p = .91, were not statistically 263 

significant. Generalized linear mixed effect models testing the likelihood of attendance at 0% 264 

community risk also showed no significant differences by Label or Symptom Type, p values > .09. 265 

Experiment 2: Framing Effects of Activity Risk for COVID-19 266 

Responding at an aggregate level showed systematic and expected decreases in social 267 

activity likelihood based on community symptom risk as in Experiment 1 (Figure 2). Standardized 268 

AUC values revealed a significant main effect of Risk Level, F1,495 = 113.62, p < .001, and a Risk 269 

Level by Risk Framing interaction, F1,495 = 26.47, p < .001. This interaction reflected no significant 270 

between-subject effect of Label for the Low Risk activity, t495 = 0.067, p = .95, d = -0.01, but in the 271 
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Label group significantly lower AUC values (i.e., greater sensitivity to risk) for the High Risk activity 272 

than the Low Risk activity, t495 = 2.967, p = .003, d = -0.27. A significant Risk Level by Risk Framing 273 

interaction was also observed at the 0% probability of a symptomatic attendee, b = -2.59, p < 274 

.001. This interaction reflected no differences by Risk Framing in the likelihood of attendance at 275 

0% risk for the Low Risk Activity, OR = 0.84, p = .40, but a lower likelihood of attendance for the 276 

High Risk Activity for the Label Risk Framing condition, OR = 0.48, p < .001. 277 

Discussion 278 

These findings collectively show that social distancing can be effectively modeled using 279 

probability discounting procedures. Social activity was systematically devalued by likelihood of 280 

non-specific (Experiment 1) and COVID-19 specific (Experiment 2) community disease risk. 281 

Importantly, we found that a framing manipulation modeled after popular public health messaging 282 

targeting social distancing increased sensitivity to risk likelihood for a high-risk activity while not 283 

appreciable changing behavior for a low-risk activity. This is important given the potential for risk 284 

framing to have an untoward effect of reducing risk sensitivity for low-risk settings when presented 285 

in these kinds of behavioral contrasts (i.e., boomerang effects) [41]. 286 

Facemask Use 287 

Consistent face mask use in social interactions is one of the most widely recommended 288 

and effective means of reducing COVID-19 transmission [6, 7]. Despite this effectiveness, the use 289 

of face masks remains controversial and underutilized [42]. Evaluating individual and contextual 290 

factors that influence face mask use may help to identify areas for intervention – either at a 291 

population level (stemming from between-person differences) or at a contextual level (stemming 292 

from within-person differences). 293 

In Experiment 3 (Sample 3) we evaluated the role of social factors in determining face 294 

mask use. The notion that face mask use may relate to social context is reasonable given that 295 

one of the primary benefits of mask use is prevention of transmission to others. With respect to 296 

behavioral economic theory, social discounting is a well-described behavioral mechanism by 297 
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which the value of an outcome is devalued by the “social distance” or subjective “closeness” of a 298 

person to the participant (e.g., a co-worker would be more socially distant than a sibling or parent). 299 

Empirical work on social discounting finds that the value of an outcome is hyperbolically devalued 300 

by social distance in a way that is mechanistically similar to delay and probability discounting [43-301 

45]. Participants in Experiment 3 completed a traditional social discounting task using monetary 302 

consequences and a novel social discounting task with face mask use as the consequence. 303 

Methods 304 

Experiment 3 (Sample 3) 305 

 Participants completed social discounting tasks evaluating responding for face mask and 306 

monetary outcomes [45]. Prior to completion of the social discounting tasks, participants were 307 

asked to think of the 100 people closest to them with 1 being the dearest friend or relative in the 308 

world and 100 being a mere acquaintance. Participants were then asked to record their relation 309 

to people at numbers 5, 10, 20, 50, and 100 on this list, all of which were people instructed to be 310 

someone they did not live with or see in the past month. This information was included in the 311 

response options to personalize responding. In the face mask version of the task, participants 312 

were instructed to report their likelihood of wearing a face mask when interacting with people at 313 

each of these social distances using a 100-point VAS. Three conditions were presented including 314 

1) when the participant was COVID-19 asymptomatic, 2) COVID-19 symptomatic without a 315 

positive test, and 3) COVID-19 symptomatic with a positive test. These conditions were presented 316 

in that order as a means to model the progression that a person may experience in decision-317 

making (i.e., asymptomatic to positive). Participants also completed a social discounting task for 318 

money based on prior methods [43]. In this task, participants were asked to select between 319 

receiving an amount of money for themselves alone or $75 USD for the N person on the list. 320 

Participants completed this task for the 5, 10, 20, 50, and 100 on their social list. Participants were 321 

also asked about responding for a stranger in each task. 322 
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Non-systematic data were removed for Experiment 3 specific to Experiment 3 rather than 323 

for all experiments using Sample 3 data. This was done given the unorthodox nature of the social 324 

discounting task and unusual pattern of response consistently observed (see below), meaning 325 

that non-systematic responding was less likely to represent non-specific responding. Of the 497 326 

participants in the Sample 3 analyzed set, 45 showed non-systematic responding on any of the 327 

social discounting tasks for face masks for an Experiment 3 analyzed sample of 452 participants. 328 

Group discounting data were analyzed as in Experiment 1. Generalized linear mixed effect 329 

models were used to test the likelihood of using a face mask across all social distances as a 330 

function of condition (asymptomatic, symptomatic no test, symptomatic test). 331 

Results 332 

Prior to data collection, we expected that the likelihood of using a face mask would be 333 

devalued by social distance such that the greater the social distance, the lower likelihood of mask 334 

use. Surprisingly, an opposite pattern of behavior was observed – participants reported greater 335 

likelihood of mask use with increasing social distance in an orderly fashion (Figure 3; bottom 336 

right). These data suggesting a systematic discounting pattern, but only if the discounted outcome 337 

was social interaction without a face mask rather than use of a face mask. In fact, when recoding 338 

responses to measure likelihood of interaction without a face mask, a systematic discounting 339 

pattern was observed with the likelihood of interacting without a mask discounted hyperbolically 340 

by social distance (Figure 3; bottom left). Critically, responding on the monetary social discounting 341 

task followed an expected and typical pattern in which the amount of money foregone to a social 342 

partner was systematically and hyperbolically discounted by increasing social distance (Figure 3 343 

top panel). 344 

 A clear effect of symptomatic status was also observed such that face mask use was more 345 

likely (i.e., likelihood of forging a mask was lower) when a participant was symptomatic whether 346 

with or without a positive test (Figure 3). This pattern of response was attributable, in part, to an 347 

increase in the proportion of participants reporting they would wear a mask when interacting with 348 
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any social partner in the asymptomatic condition (44.9%) to the symptomatic condition (78.8%, 349 

OR = 32.1, p < .001) and positive test condition (94.0%, OR = 604.1, p < .001). 350 

Discussion 351 

 These findings collectively show that face mask use is sensitive to social factors well 352 

described by social discounting and behavioral economic procedures. Our assumption based on 353 

existing social discounting research was that one would be more likely to wear a mask with those 354 

who are interpersonally close given concern about infecting those they care about. However, it 355 

appears that the increased value of maskless interaction with those one is interpersonally closer 356 

to may overshadow any additional concern for that person’s safety. Unsettlingly, these findings 357 

suggest that the value of mask-less social interaction is the more salient factor considered when 358 

deciding whether to use or not use a mask based on social relations to others. Relevant to note 359 

is that participants were asked to respond to these questions for people that they had not seen in 360 

the past month and did not live with. Therefore, these findings cannot be accounted for by 361 

responding based on people who they person has already had recent close and mask-less 362 

contact with. Although additional work is needed to tease apart specific factors contributing to 363 

these findings, these data are in line with other literature emphasizing the value of facial 364 

expression for emotional and social interaction [46, 47]. This unexpected, but systematic finding 365 

emphasizes that efforts to convey the relevance of mask use even when interacting with those 366 

you know well is warranted when promoting consistent face mask use. 367 

Diagnostic Testing 368 

COVID-19 testing is key for identifying infection status to prevent future transmission as 369 

well as to inform contact tracing. However, difficulties in obtaining testing and subsequent delays 370 

related to receiving results have been a noted criticism of COVID-19 efforts. Experiments 4 and 371 

5 were designed to evaluate these testing decision-making processes. Participants in Experiment 372 

4 completed a task evaluating demand for a diagnostic test following possible exposure to a 373 

hypothetical disease with the symptoms of cough, fever, and shortness of breath. Experiment 5 374 
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was designed to build on these findings with direct applications to COVID-19 by evaluating the 375 

impact of cost and delay for COVID-19 diagnostic testing. 376 

Methods 377 

Experiment 4 (Sample 1) 378 

Participants completed a hypothetical purchase task procedure to evaluate behavioral 379 

economic demand for a diagnostic testing kit for a hypothetical disease. Specifically, participants 380 

read a vignette indicating that they had attended a social event with over 200 people and one 381 

week later developed symptoms including cough, fever, and shortness of breath. Participants 382 

were also instructed that one other person in their county had developed an infection, that a 383 

nearby hospital or clinic had a testing kit, but that there were no others in the area, that this kit 384 

was approved by the Centers for Disease Control and Prevention (CDC), and that they had their 385 

typical income and savings available when making these decisions. Participants were asked to 386 

report the likelihood of purchasing a testing kit given a series of out-of-pocket costs ($0 [free], $1, 387 

$5, $10, $20, $30, $40, $50, $75, $100, $150, $200, $500, $1,000, $2,000, and $5,000/kit). 388 

Participants emitted responses on a VAS from 0 (extremely unlikely to get tested) to 100 389 

(extremely likely to get tested). 390 

Individual demand data were evaluated using curve observed values including demand 391 

intensity (reported likelihood of consumption at zero price), Omax (individual maximum expected 392 

expenditure), Pmax (price at individual maximum expected expenditure), and breakpoint (BP1; last 393 

price at which any likelihood of consumption occurred). Demand intensity was analyzed as a 394 

dichotomized variable of 100% likelihood of getting a testing kit at zero price versus < 100% 395 

likelihood given the observation of clustering (i.e., 81.2% of participants indicating they would 396 

definitely get tested if free). Omax and Pmax were also square-root transformed prior to analysis to 397 

reduce variable skew. Bivariate correlations were conducted as Spearman correlations between 398 

four preventive health behaviors (i.e., hand washing, face touching, social distancing, and 399 

avoiding large groups; recorded on a 1 to 5 scale of never to all the time) and demand measures. 400 
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Group mean demand curve was also fit using the exponential demand equation [48] to evaluate 401 

the analytical Pmax value reflecting the point at which a one-log unit increase in price is met by a 402 

one log-unit decrease in consumption [49]. 403 

Experiment 5 (Sample 2) 404 

Participants completed a delay discounting procedure in which decisions to obtain testing 405 

were assessed across systematically varied delays (15 minutes to 28 days). We evaluated two 406 

within-subject manipulations in a factorial design. First, cost was manipulated with a test as Free 407 

or $125 in out-of-pocket expenses (based on the distribution of out-of-pocket costs for COVID 408 

testing at the time of the study). Second, delay framing was manipulated with one set of tasks 409 

evaluating delay to receiving a test kit with immediate results and the other set evaluating delay 410 

to receiving results after an immediate test. Delays were held consistent across these two delay 411 

types such that the only stated differences were in the framing of the delay. Participants completed 412 

the testing delay condition prior to the results delay condition with price randomized within these 413 

two conditions. Participants were asked if they would get a testing kit given a series of delays (15 414 

min, 60 min, 1 day, 2 days, 3 days, 5 days, 7 days, 14 days, and 28 days). Response options for 415 

Experiments 5 as well as Experiments 6, and 7 were simplified as dichotomous yes/no choices 416 

rather than the VAS used in prior tasks. This design feature was selected to streamline responding 417 

and better model actual decision-making in which decisions are a discrete yes or no choice. 418 

Group data were modeled as in Experiment 1. Maximum delay for each condition was 419 

used as a within-subject measure and calculated as the individual median value between last 420 

accepted and first rejected delay. Higher maximum delay values are indicative of acceptance of 421 

longer imposed delays. Maximum delay values were analyzed using a 2 x 2 repeated measures 422 

ANOVA with the within-subject factors of risk Price (Free versus $125) and Delay Framing (Delay 423 

to Test versus Delay to Result). 424 

  425 
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Results 426 

Experiment 4: Sensitivity of Diagnostic Testing to Cost 427 

Demand for a diagnostic test systematically decreased with increases in cost with the 428 

exponential demand model describing aggregate demand well (Figure 4; R2 = 0.99). The group 429 

average demand curve indicated an analytical Pmax value of $207 indicating the price at which the 430 

demand curve shifts from inelastic or sub-proportional sensitivity of consumption to price to elastic 431 

or super-proportional sensitivity of consumption to price. Evaluation of individual demand curve 432 

values indicated that greater engagement in hand washing was significantly associated with 433 

greater demand when free, r = .23, p = .009, and maximum expenditure for a test, r = .21, p = 434 

.015. Similarly, greater avoidance of face touching was significantly associated with greater 435 

demand when free, r = .23, p = .009, and maximum expenditure for a test, r = .19, p = .027. 436 

Experiment 5: Delay to Test versus Delay to Result in COVID-19 Testing 437 

Assessment of aggregate discounting curves showed systematic reductions in testing 438 

intentions with increases in delay for each condition (Figure 5). Tests of individual subject values 439 

(crossover delay from yes to no testing intention) found significant mains effects of Price, F1,413 = 440 

523.8, p < .001, and Delay Framing, F1,413 = 23.1, p < .001, and a Price x Delay Framing 441 

interaction, F1,413 = 30.4, p < .001. Evaluation of this interaction indicated that longer delays were 442 

tolerated when the delay was to receive a test rather than receive results when tests were free, 443 

t413 = 5.64, p < .001, dz = 0.28, but that there were no significant differences by framing when tests 444 

had out-of-pocket costs, t413 = 0.73, p = .47, dz = 0.04. 445 

These findings are highlighted in differences for ED50 values (Figure 5 vertical lines) 446 

summarizing the delay at which half the population is likely to procure a test. Specifically, when 447 

participants had to pay $125 for test, ED50s of approximately 1 day (23 and 24 hours) were 448 

observed in both framing conditions. In contrast, when Free, the ED50 was 4.25 days longer (102 449 

hours) for the shipping delay than results delay condition with lower sensitivity to delay in the 450 

shipping delay condition. 451 
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Discussion 452 

Experiments 4 and 5 collectively show that diagnostic testing is sensitive to factors 453 

including testing cost and delay. Importantly, these data emphasize how delays imposed on 454 

receiving test results may exert a particularly strong impact for discouraging testing, emphasizing 455 

how rapid testing may improve testing rates even if a delay is imposed on getting the test. That 456 

responding was more sensitive to delayed results than delayed testing is possibly explained by a 457 

dominant response (i.e., getting a test) outcome (i.e., receiving a result) contingency at play and 458 

how delays for this response-outcome contingency are exaggerated under a delayed results 459 

scenario. 460 

Vaccination Intentions 461 

Recent emergency authorization of and attempts at distribution of vaccines for COVID-19 462 

have highlighted challenges related to vaccine skepticism and the role of behavior change and 463 

motivation as key steps for encouraging vaccine uptake. Experiment 6 evaluated demand for both 464 

a COVID-19 vaccine and an influenza vaccine based on the efficacy of those vaccines. We used 465 

an experimental vignette in which the participant was at a health care provider and could “bundle” 466 

an additional vaccine with the one they were already receiving. Experiment 7 evaluated a choice 467 

framing condition in which COVID-19 vaccination safety was framed positively or negatively. 468 

Methods 469 

Experiment 6 (Sample 3) 470 

Participants read vignettes describing a scenario in which approved influenza and COVID-471 

19 vaccines were available. The instructions indicated these vaccines would be the only ones 472 

available, that they would be free of cost, would have to be administered now, and were approved 473 

by the FDA. Scenarios were presented to model going to a healthcare provider for one vaccine 474 

and having an option to bundle another vaccine at that visit. Participants responded across a 475 

series of efficacies defined as percentage reduction in influenza/COVID-19 symptom risk (100% 476 

to 0% effective in 10% increments). Participants were randomized to complete different choice 477 
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framing conditions (between-subject). In an opt-in condition, the response option was preselected 478 

as “No” and participants were required to change the selection to “Yes” if they wanted the vaccine 479 

(n = 245). In an opt-out condition, the response option was preselected at “Yes” and participants 480 

were required to change the selection to “No” if they wanted the vaccine (n = 252). All participants 481 

also completed a version in which no response was preselected and were randomized to 482 

complete this before or after the choice framed condition. 483 

Group data were modeled using demand methods as in Experiment 4. Individual values 484 

for minimum required efficacy for each vaccine task were calculated as the individual median 485 

value between last accepted and first rejected vaccine efficacy. Individuals who rejected the 486 

vaccine at all values were assigned a value of 100 and those accepting at all values were 487 

assigned a value of 0. Higher minimum required efficacy values are indicative of a need for higher 488 

vaccine efficacy for vaccine intention. Minimum required efficacy were first analyzed using a 2 x 489 

2 x 2 mixed ANOVA with the within-subject factors of risk Vaccine Type (COVID-19 and 490 

Influenza), Response Type (Default versus No Default) and the between-subject factor of Framing 491 

Condition (Opt-In versus Opt-Out). A secondary analysis was conducted with only the first framing 492 

condition completed as a 2 x 3 mixed ANOVA with the within-subject factor of Vaccine Type 493 

(COVID-19 versus Influenza) and Response Condition (No Default, Opt-In, and Opt-Out). 494 

Experiment 7 (Sample 4) 495 

Experiment 7 was conducted with a preregistration (https://osf.io/56f2z). Participants 496 

completed demand tasks in which we varied development timeline (within-subject) as either a 7-497 

month (for late October 2020 delivery) or 12-month (for late March 2021 delivery) process to 498 

model scenarios presented in news media at the time of data collection (September 2020). 499 

Participants were randomized to a safety framing condition (between-subject) in which safety was 500 

described using a positive framing (“95% of the scientific community declares the vaccine safe”; 501 

n = 161) or a negative framing (“5% of the scientific community declares the vaccine unsafe”; n = 502 
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161). Assignment was stratified based on endorsement of receiving a flu vaccine in the past three 503 

years to ensure balance in general vaccination behavior between the two conditions. 504 

Group data were modeled using demand methods as in Experiment 4 and individual 505 

required minimum efficacy calculated as in Experiment 6. Minimum required efficacy data were 506 

first analyzed using a 2 x 2 mixed ANOVA with the within-subject factors of risk Development 507 

Timeline (7-month versus 12-month) and the between-subject factor of Framing Condition 508 

(Positive versus Negative Framing). A secondary analysis was conducted with only the first task 509 

completed as the same 2 x 2 ANOVA with Development Timeline as a between-subjects factor. 510 

A sensitivity analyses was also conducted including the covariates of age, gender, and 511 

conservativism (Social and Economic Conservatism Scale) [50]. This analysis used a linear mixed 512 

effect model including these covariates, the fixed effects of Development Timeline and Framing 513 

Condition, and a random intercept term. A deviation from the preregistered analysis plan was 514 

made for this sensitivity analyses because education was not collected in the survey, and 515 

therefore, not available to include as a covariate. 516 

Results 517 

Experiment 6: Opt-In and Opt-Out Procedures for COVID-19 and Influenza Vaccine Bundles 518 

 Aggregate demand curves showed systematic decreases in demand for a vaccine with 519 

decreases in efficacy (Figure 6). The exponential demand model described aggregate demand 520 

well across each demand curve and allowed for estimation of vaccine coverage at a critical 521 

threshold (e.g., 70% coverage) [51]. Analysis of individual cross-over efficacies (i.e., the efficacy 522 

at which a participant went from intending to not intending vaccination) revealed a significant main 523 

effect of Vaccine Type, F1,495 = 39.3, p < .001, reflecting vaccine acceptance at lower efficacies 524 

for a COVID-19 vaccine than an influenza vaccine. Main effects and interactions involving the 525 

framing condition were not significant, p > .10.  526 
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Experiment 7: Development Timeline and Safety Framing for COVID-19 Vaccination 527 

Aggregate demand curves showed systematic decreases in demand for a vaccine with 528 

decreases in efficacy across each condition (Figure 7). At an individual level, significant main 529 

effects of Development Timeline, F1,320 = 9.04, p = .003, and Safety Framing, F1,320 = 14.86, p < 530 

.001, were observed. These effects reflected acceptance of less effective vaccines under a 531 

positive framing condition, d = 0.33, and when developed for longer, dz = 0.22. Controlling for age, 532 

gender, and political conservatism did not change the results of these findings. Evaluation of these 533 

effects with only the first development time completed (i.e., a purely between-subject design) 534 

indicated a similar main effect of Safety Framing, F1,318 = 7.32, p = .007, but found that the 535 

Development Timeline effect was no longer significant, F1,318 = 2.31, p = .13. Post-hoc analysis of 536 

this possible carryover effect indicated that the Development Timeline effect was statistically 537 

significant for participants that completed the 12-month condition first, t160 = 4.77, p < .001, dz = 538 

0.38, but not the 7-month condition first, t160 = 0.73, p = .47, dz = 0.06. 539 

Discussion 540 

Experiments 6 and 7 found that vaccination intentions were systematically related to 541 

efficacy, both for a COVID-19 vaccine and an influenza vaccine. Experiment 6 did not reveal a 542 

significant effect of choice framing, which is possibly due to the online setting and limitations of 543 

modeling these kinds of opt-in/opt-out procedures. A substantive framing effect for vaccine safety, 544 

however, was observed such that intentions were lower under a negative than positive framing. 545 

These findings are relevant in that news sources – even when presenting the same data – may 546 

focus on either positive (% of scientists approve) or negative (% of scientist disapprove) framings 547 

when conveying this information to its readership or viewership [for similar issues in climate 548 

change messaging see 52]. The current findings show how such framings could adversely impact 549 

the likelihood of obtaining a vaccine and ways in which public health messaging should be 550 

optimized to avoid such biases. 551 

  552 
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General Discussion 553 

The COVID-19 pandemic has emphasized how behavioral science is critical to informing 554 

public health crisis management. In the current study, we sought to determine how behavioral 555 

economic approaches developed from cognitive psychology and operant behavioral psychology 556 

traditions can be integrated to address existing and emerging issues in public health – doing so 557 

in a rapid and scalable manner. Adapting well validated methods from behavioral economic 558 

discounting and demand frameworks, we evaluated behavioral mechanisms contributing to the 559 

engagement in preventive health behaviors relevant to infectious disease transmission, namely 560 

those associated with the COVID-19 pandemic. We also evaluated how framing manipulations 561 

can alter decision-making in ways relevant to public health and policy implementation. These 562 

findings collectively emphasize how merging behavioral economics methods can rapidly generate 563 

empirical data to inform public health crisis management while retaining a strength informed by 564 

foundational conceptual frameworks for health behavior change. 565 

 The present study advances behavioral science in several ways with each contribution 566 

emphasizing its ability to address critical and acute public health crises that may not be amenable 567 

to prototypical experimental methods. First, this study translates operant discounting and demand 568 

methods to simulate decision-making in an uncommon context for which an individual has no 569 

direct experience. The COVID-19 pandemic is a public health crisis, the likes of which have never 570 

been experienced by anyone alive today. Although hypothetical discounting and demand tasks 571 

are presumed to reflect verbal behavior shaped by histories of consequences in similar choice 572 

contexts [53, 54], some decisions lack formal similarity with actual experience. Decisions 573 

regarding social isolation, diagnostic testing, or vaccinations for an infectious disease pandemic 574 

are relatively novel and require participants to consider generalized decision-making repertoires, 575 

such as deciding to take precautions in avoiding individuals with the common cold or influenza 576 

virus. A small, but growing, literature suggests that these kinds of tests of novel or as-yet-577 

unexperienced contexts can nonetheless significantly relate to real-world behavior of interest. For 578 
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example, in the public health domain, studies on sexual discounting relate to HIV-risk behavior 579 

[55, 56] and simulated purchasing of a novel fake ID relate to experienced negative alcohol 580 

outcomes in underage drinkers [57]. Moreover, there is evidence that tasks such as hypothetical 581 

sexual discounting [58] or hypothetical purchase tasks for drugs [59, 60] significantly predict 582 

domain-specific outcomes or behavior beyond general monetary discounting or demand for 583 

common commodities. The current study adds to this literature while extending to the study of 584 

infectious disease and pandemic response. 585 

 Second, the data provided by this approach permits safe modeling of potential public 586 

health policies. Hursh [20] previously outlined proposed strategies for how behavioral economics 587 

can inform health policy, suggesting the quantification of commodity valuation in behavioral 588 

economic analyses lend well to informing policy-making. Specifically, experimental research 589 

permits controlled and accurate measurement, which may lend new behavioral insights into 590 

econometric analyses of market behavior. This information may then inform the creation of 591 

experimental model projects to measure scalable policy-level interventions at the community-592 

level. Successful results thereby lead to policy formation, implementation, and evaluation; if there 593 

are failures, such results form a feedback loop wherein behavioral scientists can seek to modify 594 

procedures and policies to re-evaluate such effects. Related work in psychology and related fields 595 

has harnessed hypothetical discounting and demand techniques to provide novel lenses by which 596 

to view population-level effects for hard-to-study behavioral questions – from a direct operant 597 

perspective, at least – such as tornado warnings [61], incremental cigarette taxation [27], texting-598 

while-driving interventions [62], and happy-hour pricing for alcohol [63];such findings speak 599 

directly to potential population-level decisions and have an added benefit of providing accurate 600 

quantitative markers for policy development and targets [20, 22, 23]. 601 

 Finally, this study has consequences for understanding behavioral phenomena directly 602 

concerning the spread of COVID-19: social distancing, face mask use, testing procurement, and 603 

vaccination intentions. Across several examples, we found that framing manipulations impacted 604 
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the pattern of response on the discounting and demand tasks used. Precisely, framing of high 605 

risk social activities increased sensitivity to risk for social distancing, framing delay as a delay to 606 

result increased sensitivity to delay for test procurement, and framing vaccine safety in a negative 607 

valence increased sensitivity to efficacy (thereby more steeply reducing vaccine acceptance). The 608 

use of simulated discounting and demand tasks, furthermore, provided a substantive benefit over 609 

traditional single discrete-choice forms of assessment (e.g., “Would you get a COVID-19 test?). 610 

Such single discrete-choice methods fail to isolate and control for factors that may contribute to 611 

differences observed between and within-people (e.g., differences in hypothesized delays, risk, 612 

efficacy, or safety). Responding under such methods may therefore be attributable to any of these 613 

uncontrolled factors with differing implications for public policy based on the specific 614 

mechanism(s) impacted. 615 

These contributions should be considered within the limitations of this study. For one, we 616 

restricted sampling to a crowdsourced platform. An extensive body of literature suggests the 617 

reliability and validity of data collected through crowdsourced platforms is favorable in 618 

comparisons to other convenience methods like undergraduate student pools [64, 65]. 619 

Nevertheless, crowdsourcing approaches are still convenience sampling and present some bias 620 

such that sampling favors towards younger participants [64]. Crowdsourcing in this context served 621 

as an ideal data collection method for generating a large and geographically diverse sample in 622 

the face of a rapidly changing public health context in which in-person study was challenging, if 623 

not impossible, for this purpose. Some tasks were also evaluated in the same sample of 624 

participants as noted for each analysis throughout. A relatively high number of participants 625 

displayed non-systematic responding, which may be related to the use of a comparably low prior 626 

task approval rate and/or the use of a one-step rather than two-step (i.e., screener and survey) 627 

sampling approach [66-68]. Relevant to the specific contributions of these data for COVID-19 and 628 

related pandemic responses, our findings are potentially limited by the use of a between-subject 629 

manipulation, specific features of the vignette, and collection at a single point in time. Decisions 630 
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on what was a between- and within-subject manipulation came after careful consideration to 631 

maximize a preference for within-subject designs while recognizing design options likely to result 632 

in substantive carry-over bias. These findings are also limited to the hypothetical scenarios used 633 

and it is likely that variations of these scenarios would produce further variations in behavior [69-634 

71]. Although the tasks presented were hypothetical in nature, extensive work have found 635 

hypothetical versions of these tasks are a reasonable proxy for procedures using real 636 

consequences [32, 72-75]. The flexibility of these procedures and ability to evaluate hypothetical 637 

decision-making for which incentivized responding is either unpractical or unethical is a major 638 

strength insofar as they afford the opportunity to evaluate and compare in short succession a 639 

variety of potential contexts relevant to public health response.  640 

The COVID-19 epidemic has challenged a spectrum of sciences to reconsider their ability 641 

to quickly translate methods to understand, model, and mitigate contagion. The field of behavioral 642 

and decision-making science has a rich and productive history addressing issues of societal 643 

importance including disease prevention and health promotion. Behavioral economics is, 644 

perhaps, a prime aspect of how behavioral science can leverage its methods toward this end, 645 

given its ability to address difficult-to-measure behavior and quantify outcomes that are readily 646 

translatable to public health researchers and officials. Here we show how merging conceptual 647 

ideas from a cognitive and operant psychology behavioral economics using both discounting and 648 

demand methods to provide novel understanding to behavioral components of a global pandemic 649 

(COVID-19). Ultimately, these data provide an example of the adaptability and translational utility 650 

of behavioral economics when current and future public health crises necessitate behavioral 651 

insight and solutions.  652 
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 825 

 826 

Figure 1. Probability Discounting of Social Event Attendance by Symptom Framing 827 

(Experiment 1). Plotted are group discounting curves by severity (mild = blue circles; severe = 828 

red circles) and label type (no label = open circles, dotted line; label = closed circles, solid line). 829 

Curves are plotted using the hyperbolic discounting equation including a non-linear scaling 830 

parameter [38]. 831 
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 833 

 834 

Figure 2. Probability Discounting of Social Event Attendance by Risk Framing (Experiment 835 

2). Plotted are group discounting curves by risk (low risk activity = blue circles; high risk activity = 836 

red circles) and label type (no label = open circles, dotted line; label = closed circles, solid line). 837 

Curves are plotted using the hyperbolic discounting equation including a non-linear scaling 838 

parameter [38]. 839 
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 841 

 842 

Figure 3. Social Discounting for Face Mask Use and Monetary Outcomes. Plotted are group 843 

discounting curves for money (top panel) and face mask use (bottom panels). Three face mask 844 

use conditions are presented: asymptomatic (red open circles, dotted line), was symptomatic 845 

without a COVID-19 test (red open circles, dotted line), and 3) was symptomatic with a positive 846 

COVID-19 test (red closed circles, solid line). Curves are plotted using the hyperbolic discounting 847 

equation including a non-linear scaling parameter [38]. S = stranger. 848 
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 850 

 851 

Figure 4. Behavioral Economic Demand for Diagnostic Testing (Experiment 4). Plotted are 852 

group mean data and individual data points for behavioral economic demand of diagnostic testing 853 

recorded on the hypothetical purchase task. Demand curve data are plotted using the exponential 854 

demand function [48]. The dotted line is the price representing shifts from inelastic or price 855 

insensitive to elasticity or price sensitive demand (Pmax). 856 

  857 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 1, 2021. ; https://doi.org/10.1101/2021.01.20.21250195doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.20.21250195
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 38 

 858 

Figure 5. Delay Discounting of COVID-19 Diagnostic Testing by Delay Type and Cost 859 

(Experiment 5). Plotted are group discounting curves by delay type (delay to receiving a test with 860 

immediate feedback = red circles; delay to receiving results from an immediate test = blue circles) 861 

and cost (Free = open circles, dotted lines; $125; closed circles, solid lines). Curves are plotted 862 

using the hyperbolic discounting equation including a non-linear scaling parameter [38]. Vertical 863 

lines are estimated ED50 or the delay at which half of the population is likely to procure a test. 864 
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 866 

 867 

Figure 6. Vaccine Acceptance by Efficacy, Type, and Choice Framing. Plotted are group 868 

discounting curves by vaccine type (COVID-19 = red; flu = blue). Demand curve data are plotted 869 

using the exponential demand function [48]. Vertical lines plot the efficacy needed to reach a 870 

critical coverage of 70%. 871 
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 874 

Figure 7. COVID-19 Vaccine Acceptance by Development Timeline and Safety Framing. 875 

Plotted are group discounting curves by safety framing (positive = red; negative = blue). Demand 876 

curve data are plotted using the exponential demand function [48]. 877 
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