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Hyperscanning is a promising tool for investigating the neurobiological

underpinning of social interactions and a�ective bonds. Recently, graph

theory measures, such as modularity, have been proposed for estimating the

global synchronization between brains. This paper proposes the bootstrap

modularity test as a way of determining whether a pair of brains is coactivated.

This test is illustrated as a screening tool in an application to fNIRS data

collected from the prefrontal cortex and temporoparietal junction of five dyads

composed of a teacher and a preschooler while performing an interaction

task. In this application, graph hub centrality measures identify that the

dyad’s synchronization is critically explained by the relation between teacher’s

language and number processing and the child’s phonological processing. The

analysis of these metrics may provide further insights into the neurobiological

underpinnings of interaction, such as in educational contexts.

KEYWORDS

fNIRS, graph theory, degree centrality, eigenvector centrality and modularity,

neuroscience

1. Introduction

Hyperscanning, the recording of brain activity from two or multiple individuals, is a

promising tool for investigating the neurobiological underpinning of social interactions

and affective bonds. Montague et al. (2002) was the first hyperscanning study. It

performed experiments in which participants could interact with each other while

functional MRI were acquired in synchrony with the behavioral interactions. The data

was recorded through a simple game of deception between pairs of subjects. The

asymmetric and asynchronous interactions analyzed in this study during interactions

are still used today in studies between two or more individuals.

Since then, hyperscanning studies have shown, for instance, how to predict leaders

and followers (Sänger et al., 2013), the influence of social proximity between teacher and

student in education (Bevilacqua et al., 2019), and how to detect track engagement and

classroom social dynamics (Dikker et al., 2017).
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The proposed methods for hyperscanning analysis can

be classified into connectivity measures, correlation analysis,

information flow analysis, and graph theory measures

(Czeszumski et al., 2020). A common trait between connectivity

measures, correlation analysis, and information flow is that

they determine locally the strength of the synchronization

between each pair of inter-brain regions. Although such an

analysis is useful, one might also be interested in understanding

brain-to-brain synchronization on a global scale. Graph theory

provides useful tools for this line of investigation.

A Graph is a mathematical representation of a network and

is essentially a list of nodes and list of connections between

nodes (Kunegis, 2013). Measures such as graph modularity have

been used for estimating the global strength of synchronization

of groups of brains. For instance, De Vico Fallani et al.

(2010) furthers the understanding between brain networks and

neural mechanisms responsible for human social interactions.

Also, Liu et al. (2021) shows global estimates of drum-beat

synchronization in the team-focus condition of a nine-person

drumming task. However, it remains an open question to test

whether a group of individuals are globally synchronized or not.

Such a question is often useful. For instance, one might

require a screening tool to remove pairs of desynchronized

brains from a sample. In this exploratory study, we propose

a bootstrap modularity test for determining whether two

subjects are coactivated. This method is demonstrated with an

application to fNIRS data from a naturalistic hyperscanning

experiment in which a teacher presents a mechanism for

summing two numbers to a child.

More specifically, we build a graph of inter-brain

connections between regions. The proposed bootstrap

modularity test is used to screen out not coactivated individuals.

Next, we use a combination of graph hub centrality measures to

identify which brain regions are most influential in explaining

coactivation. We show that, in most pairs, coactivation is

mediated by the relation between the teacher’s prefrontal

cortex and the child’s right temporoparietal junction. We seek

to provide a novel framework to assess the neural dynamics

synchronization across pairs of different brains.

The data used in this work refers to an experimental context

involving arithmetic procedure as described in Brockington

et al. (2018), Barreto et al. (2021). This task was chosen

under the perspective of education as a cooperative social

process that occurs at the zone of proximal development, a key

construct in Lev Vygotsky’s theory of learning and development

(McLeod, 2019).

Using the aforementioned data, this paper introduces a new

method based on graph theory that explains how the prefrontal

cortex region (PFC) connects with the right temporoparietal

junction (rTPJ). While the PFC is known to be involved

in processes of high order cognition such as counting and

calculating (Fuster, 2000; Artemenko et al., 2018; Soltanlou et al.,

2018), the temporo-parietal junction (TPJ) is involved in social

functions such as empathy and mentalizing (Van Overwalle,

2009; Carter et al., 2012). Thus, we hypothesized that activity

between teacher and child would couple in a cross-link.

2. Methods

2.1. Participants

Five pairs of teacher-child which reported no cognitive

disabilities participated in the experiment, as described in

Barreto et al. (2021): Five children aged between 3 and 5 (four

boys) and four adults aged between 21 and 28 (two males).

Childrenwere recruited by advertisements in a public school and

teachers were tutors from a Science Museum at the University of

São Paulo, Brazil.

We obtained informed and written consent from all

adult participants and parents/legal guardians of all non-adult

participants. All subjects had normal vision and hearing and

no neurological or psychiatric disorders history. The Federal

University of ABC—Ethics Committee approved all aspects of

our experiment, which was performed following all relevant

guidelines and regulations. All subjects participated voluntarily

and without any financial compensation.

2.2. Experiment

Experimental data was obtained using fNIRS. The fNIRS

provides safe, comfortable, and realistic means for data

collection in a natural condition. We used safe levels of light

(with wavelengths between 650 and 900 nm) to infer the

oxygenation variation level of brain tissue in a non-invasive

way. The light penetrates the biological tissue and reaches

the cortex, allowing the analysis of oxyhemoglobin (O2Hb),

deoxyhemoglobin (HHb), and total hemoglobin (tHb; tHb =

O2Hb+HHb) from cerebral blood (Delpy and Cope, 1997).

The teacher-student data was collected in a hyperscanning

paradigm, as described in Brockington et al. (2018), Barreto et al.

(2021).

Briefly, the dyads interacted in a task which the teacher

presents the mechanisms to sum two numbers (1 to 12)

using matchsticks in a context of a space-race game with the

child. They need to move two pawns (representing the child

and the teacher) on a pathway board marked with numbers.

At first, after throwing two six-sided dice, the player who

got the highest sum started the game. They continued the

race by walking the steps to the sum of the dice numbers

until the finish line. Brockington et al. (2018) presents more

details about the experimental design, such as a scheme

with the setup of the experiment and characteristics of the

collected signals, in the Experiment 1 subsection under the Case

Studies section.
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2.3. Data acquisition and preprocessing

We collected the data as described in Barreto et al. (2021).

We used a NIRScout (NIRx Medical Technologies, New York,

NY, United States) with a sampling rate of 7.81 Hz, 16 sources

and detectors were placed in the prefrontal cortex (PFC) and

right temporoparietal junction (rTPJ) as demonstrated in the

Supplementary material. We chose those regions because of our

interest in social functions such as empathy and mentalizing

(Artemenko et al., 2018; Brockington et al., 2018; Barreto et al.,

2021).

Raw data were processed using a home-made MATLAB

script from our research group, as described in Barreto et al.

(2021). We used a 0.01–0.2 Hz bandpass filter to reduce

physiological signal artifacts at the cutoff frequencies of the

global deviations (< 0.01 Hz), cardiac cycles (> 0.5 Hz)

and systemic interferences such as respiration rate (> 0.2

Spearman). Other motion artifacts (spikes) were removed.

The modified Beer-Lambert law (Delpy and Cope, 1997) was

then applied to calculate concentration changes in oxygenated

hemoglobin (HbO2) and deoxygenated hemoglobin (HHb).

Afterward, we used the mean of the entire timeline as a baseline

and differential path length factor (DPF) of 7.25 for the 760 nm

and 6.38 for 850 nm wave lengths.

2.4. Proposed methodology—Graph
measures for intercerebral inferences

Centrality measures identify which nodes are most relevant

in the composition of networks and supports to find the

main edges (the connection between brains). In the following,

we analyze the centrality measures aggregated over all dyads

and individually.

We processed all learning algorithms in R version 3.6.3. We

illustrate our proposed framework by applying it to the O2Hb

signals from the five teacher-child dyads. The dyad’s adjacency

matrix, A, was obtained by calculating the Spearman correlation

between each of the 18 teacher channels against each of the 18

child channels.

Since we intend to find inter-brain visualization, we zeroed

all intrabrain correlations in A. Also, we zeroed out correlations

below the delimited corr = 0.15 to ensure better visualization.

We chose this cut so that at most 10% of the edges were

retained in each dyad. Other cutoffs would not change the

qualitative nature of the results, but could lead to a more difficult

visualization of the graph. The five resulting matrices represent

undirected graphs over the dyad’s brain regions.

For each graph, we calculated the modularity and centrality

measures using the “igraph” (version 1.2.5) library of R (Csardi

and Nepusz, 2006), which uses the method proposed by

Kleinberg (1999) for calculating the eigenvector centrality from

Bonacich (1972).

The modularity, introduced by Newman and Girvan (2004),

measures how well we can divide a graph into two or more

isolated groups of nodes. In this application, high modularity

indicates the lack of relevant interbrain connections. The

lower the modularity, the higher the coactivation between

two subjects.

Community structure in networks reflects the concentration

of edges of a graph within communities compared to the

random distribution of connections across all nodes, regardless

of communities.

Let ki and kj be the degrees of nodes i and j, respectively, of

the graph G. Also, let Gij be 1 if there exists an edge between i

and j and 0, otherwise. Suppose the graph’s edges were randomly

distributed between each pair of nodes. Then, the expected

number of edges between i and j would be
kikj∑
i ki

.

Thus, the modularityQ is given by the sum of the difference:

Gij −
kikj∑
i ki

over all pairs of nodes i, j within the same group

(Newman, 2006).

Conceptually, modularity evaluates the number of

interbrain connections concerning the expected number of

edges between the same group of nodes but in a random graph

with the same sequence of edges.

In order to test whether the teacher and child are

synchronized, we applied a bootstrap hypothesis test. In this

test, the null hypothesis is that teacher and child are not

synchronized. The modularity is calculated on resampled data

in Figure 1 repeatedly. A p-value is obtained by counting how

often the modularity was higher than in the original data.

In addition to modularities, we seek to identify measures

for the level of relevance of nodes present in graphs. Centrality

indices are given by a real-valued function on the nodes of a

graph, which the values produced are expected to provide a

ranking that identifies the most critical nodes in the network.

There are some ways to calculate measures of centrality,

which vary according to the relevance index to be studied, such

as a node’s number of direct connections (degree centrality)

or the sum of the centralities of its direct neighbors, named

eigenvector centrality (Zhang and Luo, 2017).

We used degree centrality to find the nodes which were

generally more connected. By aggregating centrality measures

over all obtained graphs, one obtains an overall idea of the

central nodes and their communities.We defined the node count

as the sum over all graphs of the number of edges connected to

a node. Also, we defined the node relevance as the node count

divided by the total number of edges over all graphs. That is, the

node relevance is the relative frequency of edges connected to a

given node over all graphs.

During interactions, the eigenvector centrality measures

prominent channels in the brain network hierarchy

(Binnewijzend et al., 2014). While degree centrality provides
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FIGURE 1

Modularity hypothesis test procedure: For each analyzed dyad,

we calculated the consistency of the modularity found. We test

the hypothesis that the teacher’s channels are independent of

the child’s channels. We applied a permutation test in which, for

each iteration, we permuted the teacher’s channels.

a simple count of the number of connections a node has,

eigenvector centralities recognize that not all connections are

equal and that some nodes can influence much better than

others (Newman, 2008).

LetA be the adjacency matrix of a graphGwith nodes i and j

and denoting by xi and xj their respective centralities. Then, the

score of the vertex i is determined by:

xi =
1

λ

n∑

j=1

Aijxj,

where λ is a constant. By defining the centrality vector x =

(x1, x2, ..., xn) it is possible to rewrite:

λx = Ax

Thus, we obtain x an eigenvector of the adjacency matrix

with eigenvalue λ.

Eigenvector centrality attributes a value to each fNIRS

channel in the brain such that each one receives a large value if it

is strongly correlated with many other central nodes within the

network. In practice, the eigenvector centrality determines for

each channel (vertex) a centrality that depends simultaneously

on the number and quality of its intercerebral connections.

In other words, a channel with many connections does not

necessarily outperform a channel with a smaller number of

connections if the quality of the latter relationships is better.

With the centrality measures calculated for each channel

analyzed in the dyads, we were able to visualize, per dyads, which

channels are considered a hub in the influence of other regions.

We calculated the positions of the fNIRS channels based

on the 10-10 EEG system from the library “eeg_positions”

(Appelhoff, 2021) to improve the graphical visualization. We

exported and interpolated the EEG coordinates to fNIRS, which

could be generated for any dyads and scaled according to the

assembly. More details about the assembly and detailed picture

description can be seen in the Supplementary materials.

3. Results

This section describes the main methodological results

that were obtained. Sections 3.1, 3.2, and 3.3 describe,

respectively, the adjacency matrix, modularity measures, and

centrality measures.

3.1. Adjacency matrix

The proposed graph analysis of interbrain connectivity

relies on an adjacency matrix, summarized in Table 1. Most

of the teacher’s nodes refer to cognitive functions such as

task management, planning, working memory, attention, and

executive function (Koessler et al., 2009; Bandeira et al.,

2019). Areas relevant to phonological processing and emotional

responses also were involved. Most of the children’s nodes refer

to phonological processing, and some to emotional responses

and cognitive functions (Zimeo Morais et al., 2018). Table 1

indicates low interbrain correlations in the first dyad.

3.2. Modularity measures

Next, we used the bootstrap modularity test to check which

pairs were coactivated. As an initial probe, we found out that

no pair of children from different trials were coactivated, which

proves the robustness of the bootstrap modularity test. Also,

Table 1 points to the hypothesis that all teacher-child dyads are

both coactivated, except for the first. These hypotheses can be

confirmed through the modularity test: only the first dyad had

no coactivation (p = 0.36). The complete p-value results of

all pairs can be seen in the Supplementary materials. Based on

these results, the centrality hubs for interbrain connectivity were

studied only in the four remaining dyads.
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TABLE 1 The adjacency matrix is composed of Spearman correlations between each of the 18 teacher channels against each of the 18 child

channels.

Correlation Pair 1 Pair 2 Pair 3 Pair 4 Pair 5

< 0.1 318 286 273 272 276

0.1–0.15 6 24 26 23 33

0.15–0.2 0 11 18 19 11

0.2–0.25 0 3 4 6 4

(FP1-AF7; CP4-CP6) (P4-P6; AF4-F6) (AF3-F5; CP4-CP6) (FP2-AF8; FP1-AF7)

(AF3-F5; TP8-P8) (AF7-F5; CP4-CP6) (CP6-TP8; CP6-TP8) (C6-CP6; FP1-AF7)

(P8-P6; C4-CP4) (CP6-TP8; CP6-TP8) (P8-P6; C4-C6) (FP2-AF8; FP2-AF4)

(FP2-AF8; TP8-P8) (AF3-F5; CP4-P4) (C6-CP6; FP1-AF3)

(FP1-AF7; CP4-CP6)

(FP2-AF8; CP4-CP6)

0.25-0.3 0 0 3 2 0

(FP2-AF8; CP4-CP6) (P4-P6; C4-C6)

(AF8-F6; CP6-TP8) (C4-CP4; AF4-F6)

(FP1-AF7; CP4-CP6)

> 0.3 0 0 0 2 0

(CP4-CP6; C4-C6)

(CP6-P6; C4-C6)

Total 324 324 324 324 324

This table counts for each pair of how many intra-brain correlations fall in each interval. The number of inter-brain connections of each pair of graphs is determined by the sum of lines in

each interval. Pair 1 has low intra-brain correlations. For intra-brain correlations above 0.2, we identified the teacher-child edges in parenthesis. The number of connections in each pair

was considered in the analysis of modularity and in the hypothesis test. The most frequent channels are highlighted in bold.

TABLE 2 Teacher’s node count and node relevance.

Teacher Child

Channel Position Node count Node relevance Channel Position Node count Node relevance

V5 FP2-AF8 5 21 V12 CP4-CP6 7 29

V1 FP1-AF7 3 13 V9 C4-C6 4 17

V4 AF3-F5 3 13 V13 CP6-TP8 3 13

V13 CP6-TP8 2 8 V1 FP1-AF7 2 8

V16 P4-P6 2 8 V8 AF4-F6 2 8

V11 C6-CP6 2 8 V17 TP8-P8 2 8

V18 P8-P6 2 8 V10 C4-CP4 1 4

V12 CP4-CP6 1 4 V15 CP4-P4 1 4

V10 C4-CP4 1 4 V7 FP2-AF4 1 4

V6 AF8-F6 1 4 V3 FP1-AF3 1 4

V14 CP6-P6 1 4 V5 FP2-AF8 0 0

V2 AF7-F5 1 4 V4 AF3-F5 0 0

V9 C4-C6 0 0 V16 P4-P6 0 0

V8 AF4-F6 0 0 V11 C6-CP6 0 0

V17 TP8-P8 0 0 V6 AF8-F6 0 0

V15 CP4-P4 0 0 V14 CP6-P6 0 0

V7 FP2-AF4 0 0 V18 P8-P6 0 0

V3 FP1-AF3 0 0 V2 AF7-F5 0 0

Nodes FP2-AF8, FP1-AF7, and AF3-F5 have the highest node relevance. These nodes belong to PFC. Children’s node count and node relevance. Nodes CP4-CP6, C4-C6, and CP6-TP8

have the highest node relevance. These nodes belong to rTPJ.
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FIGURE 2

We identified several relationships of the PFC channels (teacher and child) to the rTPJ channels in the four pairs with coactivation. In dyads 2, 3,

and 4, the primary interbrain connections occur between the teacher’s PFC and the child’s rTPJ. This pattern was inverted in dyad 5, where the

primary connection is between the teacher’s rTPJ and the child’s PFC.
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3.3. Centrality measures

The aggregated centrality measures were obtained through

node counts and node relevance, as described in Section 2.4.

For better visualization, we present the teacher’s and child’s

node count and relevance in Table 2. The Table 2 shows that

the three most relevant channels for the teachers (FP2-AF8,

FP1-AF7, and AF3-F5) belong to the PFC. Similarly, the three

most relevant channels for the children (CP4-CP6, C4-C6, and

CP6-TP8) belong to the rTPJ.

We further evaluated this suggestion by inspecting each

dyad’s graph. Figure 2 show the primary connections between

the analyzed channels of all pairs with coactivation. The colors

in the graph indicate the eigenvector centrality of each node –

from red (low) to green (high). This figure corroborates that, in

the dyads 2, 3, and 4, the primary interbrain connections occur

between the teacher’s PFC and the child’s rTPJ. This pattern was

inverted in dyad 5, where the primary connection is between the

teacher’s rTPJ and the child’s PFC.

Using centrality measures, we could determine the most

relevant cortical regions involved in teacher-child coactivation.

The teacher’s most relevant nodes relies on the regions related

to phonological processing, emotional responses, language

and number processing, spatial cognition, memory retrieval,

attention, and cognitive functions. The child’s most relevant

nodes relies on the regions related to task management,

planning, attention, and executive function.

4. Discussion

The proposed methodology demonstrated the possibility

of using graph theory to detect coactivation and identify hub

areas involved during the interaction. In this methodology,

modularity measures identify the existence of coactivation

between brains and centrality measures indicate main brain

regions involved in the inter-brain connections. In the featured

experiment, our proposal suggests that the teacher’s PFC is

usually strongly connected to the child’s rTPJ.

Our study has some limitations. It involved a relatively small

sample of children and teachers with differentmath achievement

levels, representing an explicit limitation in terms of generalizing

results. The limited number of sensors restricted the study to

analyzing only the rTPJ and prefrontal regions (Barreto et al.,

2021), as well as not allowing us to use short distance detectors.

Short distance could assist in the exclusion of extracerebral

signals around the sources in fNIRS collection data (Tachtsidis

and Scholkmann, 2016).

Hyperscanning has successfully been used for establishing

the neurobiological underpinning of social interactions

and affective bonds (Vanutelli et al., 2017). In particular,

hyperscanning analysis provides relevant indicators that can

help teachers choose teaching materials, establish and maintain

a good teacher-student relationship, and attach importance to

the role of interaction in teaching activities (Cui et al., 2012;

Dikker et al., 2017; Bevilacqua et al., 2019). While traditional

approaches detect local coactivation between inter-brain

regions, graph theory provides measures of global coactivation.

Recent theoretical reviews of graph theory measures have

noted their potential key application to hyper scanning

studies (Czeszumski et al., 2020). However, it remains an

important open question to determine whether two brains are

synchronized. In this research, we sought to identify connections

between the brains of dyads using graphs constructed from the

correlation matrix between subjects.

Measures such as modularity bring a new perspective

to understanding the neural foundations of dynamic social

interactions (Czeszumski et al., 2020). For instance, our study

proposed a new method to detect coactivation between dyads,

the bootstrap modularity test.

Furthermore, centrality measures can be helpful tools for

mapping the global architecture of a brain network (Sporns,

2018). While degree centrality brings insights into the existing

connections in the network, the eigenvector centrality measures

the transitive influence of nodes (Bonacich, 2007). In our study,

degree centrality identified the central nodes involved in teacher-

child coactivation. It suggests that the interbrain connections

involve mainly the teacher’s PFC and the child’s rTPJ. A more

nuanced analysis was possible by visualizing the eigenvector

centralities in each graph.While in dyads 2, 3, and 4, the primary

interbrain connection occurred between the teacher’s PFC and

child’s rTPJ, this relation was inverted in dyad 5. Other studies

also suggest the existence of a PFC-TPJ interbrain network in

other naturalistic or cooperative behaviors (Schurz et al., 2014;

Xue et al., 2018; Duan et al., 2020).

Further investigations are necessary given the high level of

complexity of naturalistic experiments. For instance, the child’s

phonological decoding was highly relevant in all coactivated

pairs. This fact highlights the importance of future studies

that also collect data from the left TPJ. This enhanced data

together with cognitive tests for language would provide a better

understanding of social interactions in children aged 3–5 years.
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