
METHODOLOGY ARTICLE Open Access

Incorporation of covariates in simultaneous
localization of two linked loci using affected
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Abstract

Background: Many dichotomous traits for complex diseases are often involved more than one locus and/or
associated with quantitative biomarkers or environmental factors. Incorporating these quantitative variables into
linkage analysis as well as localizing two linked disease loci simultaneously could therefore improve the efficiency
in mapping genes. We extended the robust multipoint Identity-by-Descent (IBD) approach with incorporation of
covariates developed previously to simultaneously estimate two linked loci using different types of affected relative
pairs (ARPs).

Results: We showed that the efficiency was enhanced by incorporating a quantitative covariate parametrically or
non-parametrically while localizing two disease loci using ARPs. In addition to its help in identifying factors
associated with the disease and in improving the efficiency in estimating disease loci, this extension also allows
investigators to account for heterogeneity in risk-ratios for different ARPs. Data released from the collaborative
study on the genetics of alcoholism (COGA) for Genetic Analysis Workshop 14 (GAW 14) were used to illustrate the
application of this extended method.

Conclusions: The simulation studies and example illustrated that the efficiency in estimating disease loci was
demonstratively enhanced by incorporating a quantitative covariate and by using all relative pairs while mapping
two linked loci simultaneously.

Background
With the advance of genotyping techniques, genome-
wide association analysis has become the mainstream
technique in genetic mapping. However, studies have
shown that using information from linkage scans can
improve the power of association mapping in genome
scans [1]. In addition, linkage analysis could be more
powerful than association analysis for some genetic
mechanisms; family data can also help to estimate famil-
ial risks [2]. Hence, linkage analysis remains a useful
and supplemental tool to map genes for complex dis-
eases. As complex diseases often involve quantitative
biomarkers or environmental factors, incorporating
these quantitative factors into linkage mapping can
improve the power to detect disease loci [3] or the

efficiency of estimating disease loci. Efficiency is defined
as the inverse of the variance estimate for the disease
locus estimate. Thus, smaller variance estimates have
higher efficiencies. Moreover, the incorporation of cov-
ariates provides information that can be used to charac-
terize disease loci, which is important for understanding
disease etiologies and mechanisms and for identifying
population subgroups that may have particularly high
disease risks [4]. Methodologic work has demonstrated
that failure to adequately account for gene-covariate
interaction in a genetic analysis can mask the effects of
both genes and covariates [5-7]. Hence, it is important
to develop linkage approaches that allow the inclusion
of covariates.
Thus far, several linkage analyses including covariates

have been proposed to account for linkage heterogeneity
or to examine biological, environmental, gene-gene or
gene-environment interaction effects. Devlin (2002) [5]
accounts for linkage heterogeneity by incorporating a

* Correspondence: yfchiu@nhri.org.tw
1Division of Biostatistics and Bioinformatics, Institute of Population Health
Sciences, National Health Research Institutes, 35 Keyan Rd., Zhunan, Miaoli
350, Taiwan

Chiu et al. BMC Genetics 2010, 11:67
http://www.biomedcentral.com/1471-2156/11/67

© 2010 Chiu et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

mailto:yfchiu@nhri.org.tw
http://creativecommons.org/licenses/by/2.0


family-level covariate into likelihood-based mixture
models; however, this approach accounts for linkage
heterogeneity only. Greenwood and Greenwood (1997,
1999) [6,8] incorporated covariates into genome scan-
ning approaches using sib-pair or relative-pair through
model-based logarithms of odds (LOD) score
approaches, where the generalized expected identity-by-
descent (IBD) sharing was modeled as a function of
some covariates through multinomial logistic regression.
Rice (1999) [7] applied a novel technique to detect sig-
nificant covariates in linkage analyses with a logistic
regression approach using all sib pairs (concordant
affected, concordant unaffected, and discordant), and
Saccone et al. (2001) [9] further extended this analysis
to cousin pairs. Olson (1999) [10] proposed a unified
framework for model-free linkage analysis that can han-
dle the separate inclusion of other ARPs, discordant
relative pairs, covariates, or additional disease loci
through a conditional-logistic parameterization. These
regression-based approaches can easily be generalized to
include all covariates; however, they assume either one
disease locus or multiple unlinked loci and thus are not
applicable to analyses of multiple linked loci. For non-
regression-based approaches, Hauser et al. (2004) [11]
proposed a model-free LOD scores approach that
includes family-level covariate information. This
approach also assumes only one disease locus and can
only incorporate one covariate at a time. In addition,
the problem of multiple testing may arise when
researchers perform multiple tests or analyses using var-
ious combinations of multiple loci or covariates using
these approaches.
On the other hand, most two-locus linkage

approaches aim to detect the presence of a second sus-
ceptibility gene by accounting for the effects of a known
susceptibility gene [12-14]. However, when two suscept-
ibility loci are linked, the location of the first gene may
be inaccurate because it was mapped without account-
ing for the effects of the linked gene. Thus, conditional
analyses that rely on an inaccurate position for the first
locus may result in an inaccurate second disease loci
estimate as well. Biswas et al. (2003) [15] applied a Baye-
sian approach to simultaneously detect two linked dis-
ease genes; however, their approach was designed to
detect genes under locus heterogeneity only, and this
model-based approach requires the specification of
unknown genetic parameters. Hence, linkage approaches
that can simultaneously localize two linked disease
genes are in great demand.
Rather than testing the presence of linkage, Liang

et al. (2001) [16] developed a novel, robust, model-free
multipoint linkage method that simultaneously estimates
both the position of a disease locus as well as its effect
on the disease, along with its sampling uncertainty. The

advantages of this method include: (i) It does not
require specification of an underlying genetic model;
hence, estimation of the parameters is robust to a wide
variety of genetic mechanisms. (ii) The multiple testing
issue is eliminated as a single test statistic is provided
for linkage in the entire studied region; rather than test-
ing the hypothesis for one marker at a time. (iii) While
multiple markers are incorporated simultaneously in the
gene mapping, there is no need to specify the phase of
genotypic data with multiple markers. Many complex
diseases, such as hypertension, schizophrenia, diabetes,
and asthma are usually defined as dichotomous pheno-
typic traits; however, they are also associated with quan-
titative biological markers or quantitative risk factors.
As a result, Glidden et al. (2003) [17] further incorpo-
rated quantitative covariates into Liang’s approach [16]
and estimated the genetic effect of a disease locus
through a logistic-type parametric model using affected
sib pairs (ASPs). Based on the same study design, Chiou
et al. (2005) [18] incorporated quantitative covariates
into their linkage mapping and estimated the genetic
effect of a disease locus non-parametrically. This quanti-
tative covariate could be either an environmental risk
factor or itself a quantitative trait. For the quantitative
trait incorporated as a covariate, its QTL (quantitative
trait locus) may directly underlie a pathway of the dis-
ease or be linked to the disease locus, or the trait may
be indirectly associated with the disease.
Meanwhile, Schaid et al. (2005) [19] extended the with-

out-a-covariate approach by Liang et al. [16] to different
types of ARPs. The authors’ extension relaxed the limita-
tion to ASPs only and allowed an investigator to study
the risk-ratios of a disease gene estimated from multiple
relative pairs; this work helped to uncover the underlying
genetic mechanism of disease. To jointly localize two
linked disease loci using ASP data, Biernacka et al. (2005)
[20] extended this approach [16] to the localization of
two linked disease-susceptibility genes. They also pro-
vided tests for the presence of two linked disease-sus-
ceptibility genes by a quasi-likelihood ratio test and a
modified score test in another article [21]. Lin and Schaid
(2007) [22] generalized the two-locus localization method
to a variety of ARPs. Both of the unconstrained and con-
strained models, along with a score test and the examina-
tion of the goodness of fit of a used constrained model,
were described in their generalized method. As the etiol-
ogy of complex diseases often involves quantitative vari-
ables (either genetic biomarkers or environmental
factors) in addition to multiple disease loci, it is helpful
to incorporate a quantitative variable while localizing two
linked disease loci simultaneously using ARPs. We
extended Lin and Schaid’s (2007) [22] approach to incor-
porate quantitative covariates in two-locus linkage map-
ping using ARPs. Generally, a statistical parametric
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model is simpler and easier to interpret than a non-para-
metric model, while a non-parametric model has the flex-
ibility to fit the data perfectly. To take advantages of
parametric and non-parametric statistical models, we
applied both models to incorporate covariates. These
methods can also be applied to account for heterogeneity
from quantitative covariates as well as from multiple sub-
groups that are stratified by categorical covariates. Sys-
tematic simulation studies under a variety of quantitative
covariates were conducted to evaluate the gain in effi-
ciency of estimating the disease loci from the proposed
methods. The estimates from the proposed approaches
with incorporation of covariates were compared with
those from the approach without incorporating covari-
ates. The collaborative study on the genetics of alcohol-
ism (COGA) data released for GAW14 was used to
illustrate the proposed approaches.

Methods
To incorporate relevant covariate information while
simultaneously estimate the locations of two genes using
all types of relative pairs in linkage analysis, we pro-
posed the following linkage approaches.

Simultaneous Localization of Two Linked Disease
Susceptibility Genes with Incorporation of Covariates
Consider a chromosomal region harboring two linked
disease loci, τ1 and τ2, with M markers genotyped at the
locations 0 = t1 <t2 < ... <tM. Let Ski(tj) be the identity-
by-descent (IBD) sharing for the jth marker of the ith

pair of the ARP type k, j = 1,...,M, i = 1,...,nk, k = 1,...,5.
The five types of relative pairs considered include full
siblings (SP, k = 1), half siblings (HS, k = 2), first cou-
sins (FC, k = 3), grandparent-grandchild pairs (GP, k =
4) and avuncular pairs (AP, k = 5) [19]. The five affected
relative pairs are abbreviated as ASP, AHS, AFC, AGP
and AAP. Let xki1, xki2 be the covariates associated with
relatives 1 and 2 in the ith relative pair of type k, respec-
tively. Given the covariates and assuming that the
recombination fraction does not depend on the covari-
ates, the expectation of IBD sharing at tj for a relative
pair ki [22] is
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where Clk(xki1, xki2) = E(Ski (τ1)|xki1, xki2, F)- ak is the
genetic effect at locus l for a relative pair ki ;l = 1, 2; F

is the event of an ARP; d1 = |τ1 - tj|, d2 = |tj - τ2|; d3 =
|τ2 - τ1|; ak is the expected count for random sharing; bk
(dv) controls the rate of decrease of expected sharing as
the distance dv from the trait locus increases; and v =
1,2,3. Haldane’s mapping function was used to translate
recombination fraction to map distance. The values of
bk (dv) and dv for each relative type k and functions
relating the risk ratio l to C are listed in supplemental
Additional file 1 Table S1 (adopted from Table 1 in Lin
and Schaid (2007) [22]).
C1 and C2 represent the amount of excess IBD sharing
at each of the two disease gene loci, which is increased
by effects due to both disease genes. The simple “effect
size” interpretation does not apply to C1 and C2 in the
two-locus model because the magnitude of C1 depends
not only on the effect of gene 1 but also on the distance
between gene 1 and gene 2. C1 and C2 can each be re-
parameterized to represent excess sharing at a location
due to the gene at that location and thus can be consid-
ered the “effect size” of that particular gene (see Appen-
dix of [20], page 47). They can then be used to test for
the presence of linkage. We applied parametric and
non-parametric methods to model the association
between the excess IBD sharing (Cl) at τl, l = 1, 2 and
the covariates.

Parametric Modeling on C
In the parametric model, C1k and C2k can be modeled as
a function of covariates [17]; an example is the postula-
tion of a logistic regression for IBD sharing at τ1 and τ2.
For a relative-pair type k, assuming Glk = (glk1,...,glkp)

T is
the covariate vector, C1k and C2k were modeled sepa-
rately, where glkr = glkr(xkr1, xkr2), r = 1,...,p, indicate cov-
ariates.
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where blkT = (blk1,...,blkp), l = 1, 2, k = 1,...,5; fk = 1 for
ASP, fk = 4 for AFC, and, fk = 2 for other ARPs. The
gene-environment interaction for environmental vari-
able, xr, could be assessed by examining whether the
corresponding b-coefficient, br, is statistically signifi-
cantly different from zero. In addition, the interactions
between two covariates on the genetic effects of the dis-
ease loci could also be assessed by adding an interaction
term between the two covariates.

Nonparametric Modeling on C
For the non-parametric model, given the data
( , ( ))*G Ski ki l�τ , where Glki = (glki1,...,glkip)

T with glkir, =
glkir(xkir1, xkir2), r = 1,...,p, i = 1...,nk, and the imputed
IBD sharing Ski l

* ( )�τ at �τ l, which is a specified or esti-
mated value of τl, the estimator of Clk at an arbitrary
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target glk = (glk1,...,glkp)
T is obtained by C glk lk lk=( ) β 0

such that β β β β=lk lk lk lkp( , ,..., )0 1 is the minimizer of
the following kernel-weighted least squares function
with respect to blk = (blk0, blk1,...,blkp), ∀l = 1, 2,
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where K is a p-variate Epanechikov kernel function,
H is a nonsingular square bandwidth matrix [18], and

ak is the expected count for random sharing [19].

Estimating τ1 and τ2
Given the function Clk(xki1, xki2), the trait locus τl can be
estimated by solving the estimating equation [16,18] (4)

below. Once the estimate of Clk is obtained, it can be
plugged into the equation (4) and the estimate of τl can
be updated. That is, we replace Clk(xki1, xki2) with the
estimate C x ,xlk ki ki( )1 2 , which then yields the following
estimating equation for δ = (τ1, τ2):
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where Ski = (Ski(t1),...,Ski(tM))’, and
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Table 1 Simultaneous two-locus search incorporating quantitative traits with QTLs at τ1(XQTL1) or τ2(XQTL2)

Disease Loci (cM) Estimate of C 95% coverage probability
(%)

yl: covariate for
modeling Cl, l = 1,

2

Parametric Nonparametric Parametric Nonparametric Parametric Nonparametric

τ1 τ2 τ1 τ2 ASP AGP ASP AGP τ1 τ2 τ1 τ2

C11 C21 C14 C24 C11 C21 C14 C24

Bias 0.1 -0.1 -0.008 1.1 0.04 0.03 -0.05 0.01 -0.02 -0.05 -0.04 0.02 95 95 93 91 y1 = XQTL1
Sample
variance

4.0 4.0 5.4 6.2 0.003 0.003 0.001 0.001 0.002 0.002 0.001 0.001 y2 = XQTL1

Mean
variance

4.0 4.0 4.8 5.7

̆1
0.26 -0.25 0.16 -0.08

p-value 0.03 0.05 0.50 0.81

Bias 0.2 -0.05 -1.1 -0.01 0.04 0.03 -0.05 0.02 -0.04 -0.02 -0.04 0.03 94 95 91 93 Y1 = XQTL2
Sample
variance

4.9 4.2 6.7 5.0 0.003 0.003 0.001 0.001 0.002 0.002 0.001 0.001 y2 = XQTL2

Mean
variance

4.1 3.8 5.9 4.6

̆1
-0.25 0.26 -0.09 0.16

p-value 0.05 0.03 0.79 0.53

Bias 0.1 -0.1 -0.5 0.5 0.04 0.03 -0.05 0.02 -0.02 -0.02 -0.04 0.03 94 94 91 91 y1 = XQTL1
Sample
variance

4.5 4.5 5.7 5.4 0.003 0.003 0.001 0.001 0.002 0.002 0.001 0.001 y2 = XQTL2

Mean
variance

3.9 3.8 4.8 4.6

̆1
0.26 0.26 0.16 0.16

p-value 0.03 0.03 0.50 0.53

Bias 0.2 -0.1 -0.6 0.6 0.04 0.04 -0.05 0.02 -0.04 -0.05 -0.04 0.02 94 94 91 91 y1 = XQTL2
Sample
variance

5.5 5.6 7.6 6.9 0.003 0.003 0.001 0.001 0.002 0.002 0.001 0.001 y2 = XQTL1

Mean
variance

4.4 4.2 5.9 5.7

̆1
-0.25 -0.25 -0.09 -0.09

p-value 0.05 0.05 0.79 0.81
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The estimates of Clk and δ were iteratively updated
until the convergent criteria for δ were met. Assuming
all relative pairs share a common δ, the estimates of δ
follows asymptotic normality (see Additional file 2,
Appendix for details) with a mean vector δ and a covar-
iance matrix ∑-1, where.

Σ = ∂ ∂ ′ ∂ ∂−
== ∑∑ ( ( ) / ) ( )( ( ) / ).     ki ki ki

i

n

k
Cov S

k 1

11

5

Simulation Studies
Families with three generations including eight members
were simulated: The first generation (4 grandparents)
included one or zero affected subjects, the second gen-
eration had no affected members, and the third genera-
tion included two affected individuals. In total, 200
independent families were simulated, each including one
affected sibpair. Of the 200 families, 100 included two
affected grandparent-grandchild pairs, with the others
not having any affected grandparent-grandchild pairs.
Hence, there were 200 ASPs and 200 AGPs per repli-
cate. In total, 1,000 replicates were simulated for each
configuration.

One disease locus model
First, we extended the one-locus model proposed by
Schaid et al. (2005) [19] with ARP to incorporate covari-
ates using both parametric modeling [17] and non-para-
metric modeling [18]. We studied the enhancement of
efficiency incurred by the incorporation of a quantitative
covariate and by the usage of relative pairs in place of
using sib pairs alone within a one-locus model. Three sets
of penetrance rates (f2, f1, f0) for the genotypes of two
high-risk alleles (f2), one high and one low-risk alleles (f1),
and two low-risk alleles (f0) at the disease locus used in
the simulation study were (i) (0.67,0.05,0.007) (recessive
model), (ii) (0.67,0.55,0.007) (dominant model) and (iii)
(0.8,0.4,0.0) (additive model), respectively.
A covariate might be directly or indirectly associated

with the disease loci, and the information from covari-
ates under different genetic mechanisms may differen-
tially enhance the search for the disease loci. We
studied a variety of covariates correlated with the dis-
ease trait under different scenarios: (1) a quantitative
trait with a pleiotropic effect (that is to say a quantita-
tive trait that is controlled by the disease locus, τ1,
namely, its QTL is τ1, yet is not directly associated with
liability of the disease); (2) a quantitative trait with a co-
incidence effect in which the QTL is linked to a disease
locus by incidence, yet does not share common genetic
components from the disease locus; (3) a quantitative
trait unlinked to the disease loci; (4) a covariate of age

at onset with the distribution logT = -log l- bZ + ε/g,
where Z is the number of copies of the disease allele
[17] at one disease locus. The variable ε is distributed as
a standard extreme-value random variable with l =
0.03, g = 5.0, and b = 0.57; this distribution was built
while assuming that the disease allele frequency is 0.05.
The distribution of age at onset (T) followed a Weibull
distribution, and the disease allele accelerated the onset
of disease by a factor of 1.78. The threshold of age at
onset was 70.
The quantitative trait y for scenarios (1) - (3)

follows a multivariate normal distribution yi = μi + gi
+ ei, ei ~ N(0, Σi), i = 1,...,n, where

y g ei i i n i

T

i i i n i

T

i i iy y y g g g e e
i i

= ( ) = ( ) =1 2 1 2 1 2, , , , , , , , , ,  and een i

T

i( ) . ni is

the total family members in the ith family; μ is a ni × l
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; and gi is a vec-

tor of genotypic effects of the QTL. The genotypic
effects are 2, 0 and -2 for the genotypes of two high-risk
alleles, one high-risk together with one low-risk allele
and two low-risk alleles, respectively.

Two disease locus model
Furthermore, we simulated a two-locus disease model
and compared the estimates of τ1 and τ2 from
approaches with and without incorporating a covariate.
We generated the two-locus models of model B in Bier-
nacka et al. [20] as described in Additional file 3, Table
S2 to study the impact of covariates on the estimates
from the without-a-covariate approach and parametric
and non-parametric with-a-covariate approaches.
For genotype data, we generated ten markers that were

equally spaced at 10 cM between adjacent markers, with
each marker having eight equal-frequency alleles, and the
two diallelic disease loci were located at 35 and 75 cM.
For scenarios (1), (2) and (3), an additive genetic model
for the quantitative trait covariate was assumed. The cov-
ariate used in modeling Cl was denoted by yl , with l =
1,2. Assuming the quantitative traits XQTL1 and XQTL2

were controlled by τ1, τ2 respectively, we examined the
impact of different combinations of traits incorporated in
functions of glk on estimating the two trait loci. As in the
simulation for the one-locus model, four scenarios were
considered for the QTL of each covariate: (1) The QTL is
at 35 cM (τ1) (pleiotropic effect); (2) the QTL for “age at
onset” (covariate) is at 35 cM (τ1); (3) the quantitative
trait’s QTL is at 45 cM (coincident effect); (4) the covari-
ate’s QTL is not linked to either disease locus. All
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Figure 1 Relative efficiency (RE) between two approaches in estimating the disease locus under three genetic models (a), (b) and (c).
The dotted lines are the RE for comparisons between two types of affected relative pairs in the non-parametric approach. The solid lines are the
RE for comparisons between two types of affected relative pairs in the parametric approach. ASP, AGG and COM stand for affected sib pairs,
affected grandparent-grandchild, and combined affected sib pairs and grandparent-grandchild pairs, respectively. ASP_wo stands for using ASP
without incorporating a covariate. The circle, pund, v and x signs refer to the relationship between the covariate’s QTL and the disease locus,
including (i) pleiotropy, (ii) co-incident, (iii) unlinked, and (iv) a covariate of age at onset.
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covariates were determined by averaging the two indivi-
duals’ covariate values in one pair, that is, gki= (xki1+
xki2)/2.

Results
For the comparison under one-locus models (Figure 1,
Additional file 4, Tables S3 - S5), the efficiency in esti-
mating the disease locus was enhanced substantially
when incorporating a quantitative covariate, regardless
of its underlying genetic mechanisms. In the additive
model using affected sibpairs, the relative efficiency (RE)
ranged from 1.24 to 1.69 for the parametric approach
and from 2.37 to 2.40 for the non-parametric approach.
After adding affected grandparent-grandchild pairs, the
RE ranged increase to 3.9-3.95 for the parametric
approach and 1.67-2.13 for the non-parametric
approach. The parametric approach generally had higher
RE than the non-parametric approach in the simulated
scenarios (Additional file 4, Tables S3 - S5). Given the
same heritability of a quantitative trait, incorporating a
quantitative trait with a pleiotropic effect was generally
more efficient than when incorporating a linked or an
unlinked trait. The variance estimate for τ in the one-
locus models was generally smaller in the parametric
approach than that found in the non-parametric
approach under the same scenarios. As expected, with
the same sample size, the efficiency in estimating the
disease locus was always higher when using affected sib-
pairs than when using grandparent-grandchild pairs.
The efficiency in estimating the disease locus was always
improved when combining both relative pairs. The 95%
coverage probabilities for the disease locus were almost
always slightly underestimated, as most of the variance
estimates tended to be underestimated.
The smoothing parameter in (3) was set to one half of
the range of the covariates, which roughly minimizes
the variance estimate of the estimated loci in the analy-
sis. The choice of bandwidth in the non-parametric
approach did not have much impact on the estimation
though [18]. The selection of function g(·) might slightly
influence bias and variance of the estimates for disease
loci (these results not shown here). Results from both
parametric and non-parametric approaches suggested
that the efficiency in estimating disease locus was
improved when combining affected sib pairs and grand-
parent-grandchild pairs.
Since there were two linked loci controlling the dis-

ease, we generated covariates XQTL1 and XQTL2, con-
trolled by τ1 and τ2, respectively, and studied the impact
of four different ways to incorporate XQTL1 or XQTL2

into the linkage mapping: (i) incorporating XQTL1 only
(y1 = XQTL1, y2 = XQTL1); (ii) incorporating XQTL2 only
(y1 = XQTL2, y2 = XQTL2); (iii) incorporating y1 = XQTL1,
y2 = XQTL2 to estimate C1, C2, respectively; (iv)

incorporating y1 = XQTL2, y2 = XQTL1, to estimate C1,
C2, respectively. Tables 1 illustrates the impact of choos-
ing different covariates on estimates by parametric and
non-parametric approaches, respectively. In reality, we
do not have information about the underlying genetic
mechanism of the quantitative traits (covariates); luckily,
the efficiency in estimating the disease loci was
improved under any one of the above scenarios when
compared to the estimates made without covariates.
Since the quantitative traits were controlled by the two
disease loci, incorporating both quantitative traits was
helpful in estimating both loci and their 95% coverage
probabilities. When incorporating only one quantitative
trait, the bias and variance estimate for its correspond-
ing disease locus (QTL) were smaller; this finding was
particularly true within the parametric approach. Addi-
tionally, both of the covariates were significantly asso-
ciated with the genetic effects from the two disease loci
in the parametric approach (p-values = 0.029 ~ 0.050).
We also evaluated the performance of the parametric

and non-parametric approaches with varying locations
for covariates’ QTLs (Table 2). In the parametric
approach, the efficiency in estimating a disease locus
was improved when the set location of the covariate’s
QTL was linked to the disease locus, particularly when
the disease locus was also the QTL of the covariate. For
example, when no covariate was incorporated, the var-
iance estimates were 7.5 and 6.9 for the two disease loci,
respectively (Additional file 5, Table S4); when a quanti-
tative trait with a pleiotropic effect was incorporated,
the variance estimates were 4.0 and 4.0 respectively
(Table 2). Compared with the estimate without incor-
porating a covariate, the bias was slightly higher than
when the covariate’s locus was not the disease locus but
was instead linked or unlinked to the disease locus. The
biases for estimating the two loci were -0.02 and -0.2
with the pleiotropic covariate and 0.3 and -0.4 with the
unlinked covariate (Table 2). In the parametric
approach, the magnitude of the regression coefficient
reflects the association between the disease locus and
the covariate. The regression coefficient was significant
only when the covariate’s QTL was one of the disease
loci (pleiotropy effect) (Table 2). After incorporating a
covariate, the 95% coverage probabilities for τ1 and τ2
were both more precise than those obtained without
incorporating a covariate (Tables 1 and 2; Additional file
5, Table S6). In the non-parametric approach, the effi-
ciency in estimating both disease loci was improved
when the covariate’s QTL was at position τ1 (Table 2;
pleiotropic covariate or age at onset). The efficiency was
lower when the covariate’s QTL was linked or unlinked
to position τ1 (Tables 2). The bias was generally higher
for τ2 in the scenario where the covariate provides infor-
mation for τ1 only (Tables 2).
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A Data Example
We conducted an autosome-wide scan for affected rela-
tive pairs from the COGA data [23]. Note that the dis-
ease was defined as “having psychological problems
from drinking.” There are 149 affected sib pairs, 8 half
sib pairs, 16 first-cousins pairs, 7 grandparent-grand-
child pairs, and 71 avuncular pairs in this data set. Due
to the limited sample sizes for some relative pairs, we
examined the linkage peak on chromosome 1 using 149
affected sib pairs and 71 avuncular pairs, with and with-
out incorporating the quantitative covariate “Maximum
number of drinks in a 24 hour period.” Using both
ASPs and AGPs, the disease locus was estimated to be

at 113.7 cM on chromosome 1 with a 95% CI: 109.5-
118.0 cM. The estimate for CASP was 0.18 with a 95%
CI from 0.10-0.26 (p-value = 7.6e-6), whereas the esti-
mate for CAAP was 0.064 with a 95% CI from -0.0001-
0.13 (p = 0.051) (Table 3 and Additional file 6, Figure
S1). We also applied single locus with covariate linkage
mapping using ARP to locate the disease locus and
assess the significance of its covariates. The disease
locus estimate was 110.8 (standard error (SE) = 1.5) and
109.2 (SE = 2.3) cM in the parametric and non-para-
metric approaches, respectively, using all ARPs. The
p-values of the covariate in the parametric approach are
0.52 and 0.20 for ASP and AAP, respectively (Table 3).

Table 2 The impact of the location of the QTL for the covariate - parametric and nonparametric approaches

Disease Loci (cM) Estimate of C 95% coverage probability
(%)

The Location of
the Covariate’s
QTL

Parametric Nonparametric Parametric Nonparametric Parametric Nonparametric

τ1 τ2 τ1 τ2 ASP AGP ASP AGP τ1 τ2 τ1 τ2

C11 C21 C14 C24 C11 C21 C14 C24

Bias -0.02 -0.2 -0.1 1.0 0.04 0.03 -0.05 0.02 -0.02 -0.04 -0.04 0.02 95 96 96 93

Sample
variance

4.4 3.7 4.7 5.9 0.003 0.003 0.001 0.001 0.002 0.002 0.001 0.001

Mean
variance

4.0 4.0 4.8 5.6

̆1
0.26 -0.25 0.16 -0.08

p-value 0.03 0.05 0.52 0.82

Bias 0.2 -0.03 0.4 1.8 0.03 0.03 -0.05 0.02 -0.007 -0.06 -0.03 0.02 95 96 93 88 Age onset at 35
cM (τ1)

Sample
variance

4.4 3.9 5.2 5.9 0.003 0.003 0.001 0.001 0.002 0.002 0.001 0.001

Mean
variance

4.1 4.1 4.4 6.0

̆1
-0.04 0.04 -0.03 0.01

p-value 0.05 0.06 0.54 0.83

Bias 0.3 -0.3 -0.1 0.7 0.06 0.05 -0.05 0.02 -0.03 -0.04 -0.05 0.02 95 97 95 95 Co-incident 45
cM

Sample
variance

6.8 5.7 9.1 8.5 0.003 0.003 0.001 0.001 0.002 0.002 0.001 0.001

Mean
variance

6.7 6.3 8.9 9.0

̆1
-0.007 0.003 -0.002 0.006

p-value 0.96 0.95 0.94 0.95

Bias 0.3 -0.4 -0.8 0.6 0.003 0.05 -0.05 0.02 -0.05 -0.04 -0.06 0.010 96 96 94 95 Unlinked

Sample
variance

6.8 5.5 9.6 8.6 0.005 0.003 0.001 0.001 0.002 0.002 0.001 0.001

Mean
variance

6.7 6.3 10.3 9.3

̆1
0.96 0.002 0.006 -0.001

p-value 0.96 0.96 0.92 0.93
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To identify a region harboring two disease loci, we
plotted the empirical IBD sharing of all autosomes for
ASP (because the data set included mostly sib pairs).
After visually reviewing all the empirical IBD sharing on
autosomes, we selected chromosome 3 as a region to
illustrate our approach, as there appeared to be two
disease-susceptibility loci harbored within this region
(Figure 2). First, we conducted the two-locus search
without incorporating the covariate (Table 4) and com-
pared the estimates to those that did incorporate covari-
ates. The quantitative measure “maximum number of
drinks in a 24-hour period” [24] was incorporated into
the linkage mapping, both parametrically (Table 5) and
non-parametrically (Table 6). The 95% confidence inter-
vals (CIs) for C or l were constructed with the boot-
strap re-sampling approach. A total of 1,000 replicates
were obtained by re-sampling. The disease loci estimates
were computed for each sample and ranked. The lower
and upper limits of the 95% confidence interval were
the 2.5% and 97.5% percentiles of the 1,000 replicates,
respectively.

The standard errors for the estimates of the disease loci
were always smaller when using the entire data set with
both sibpairs and avuncular pairs, compared to the esti-
mates using sib pairs or avuncular pairs alone. Com-
pared to the approach without the covariate, the relative
efficiencies (each defined as the ratio of reversed var-
iance estimates for the disease locus estimates) in esti-
mating τ1 and τ2 are 20.25 ((0.7/0.2)2) and 8.92 ((6.84/
2.29)2) for the non-parametric approach (Table 6) and
0.24 ((0.72/1.47)2) and 11.8 ((6.84/1.99)2) for the para-
metric approach (Table 5). The average estimated C1

and C2 were 0.084 and 0.16 for affected sibpairs in the
non-parametric approach (Table 6), and were 0.16 and
0.24 in the parametric approach (Table 5). The corre-
sponding risk ratios ll for these two loci in sib pairs
within the non-parametric approach were 1.20 (95% CI:
0.99 to 1.79) and 1.45 (95% CI: 1.02 to 2.09), respec-
tively (Table 6). The C value (or risk ratio) at τ2 (0.237,
95% CI: 0.066 to 0.430) was higher than that at τ1
(0.156, 95% CI: -0.014 to 0.319), and it was marginally
significant after incorporation of the covariate (Table 5).

Table 3 One-locus search on chromosome 1 with or without incorporation of “Maximum number of drinks in
a 24 hour period”

ESTIMATE [95% CI] or (S.E.)

τ (cM) C l

Without a
covariate

Parametric Nonparametric Without a
covariate

Parametric Nonparametric Without a
covariate

Parametric Nonparametric

Using one ARP
only:

Full siblings 112.9 112.8 110.4 0.18 0.16 0.14 1.75 1.65 1.47

(6.1) (6.5) (7.2) [0.04, 0.32] [0.001,0.32] [0.06,0.23] [1.14,2.84] [1.00,2.77] [1.13,1.87]

p-value for the
covariate

0.58

Avuncular
pairs

98.8 105.0 102.8 0.08 0.20 0.036 1.46 1.74 1.37

(12.4) (7.8) (6.2) [-0.07, 0.24] [-0.06,0.28] [-0.10,0.23] [0.81,2.50] [0.79,3.56] [0.67,2.67]

p-value for the
covariate

0.23

Using both
ARPs:

Full siblings 0.18 0.17 0.14 1.70 1.61 1.44

[0.10, 0.26] [0.009,0.32] [0.045,0.23] [1.08,2.74] [1.02,2.70] [1.10,1.87]

p-value for the
covariate

0.52

Avuncular
pairs

0.064 0.10 0.034 1.66 1.77 1.28

[-0.0001,
0.13]

[-0.04,0.28] [-0.07,0.18] [0.69,3.72] [0.85,3.55] [0.74,2.09]

p-value for the
covariate

0.20

Common τ 113.7 110.8 109.2

(2.2) (1.5) (2.3)
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The Cl and ll values estimated from avuncular pairs
were smaller than those estimated from sib pairs (Tables
4, 5, 6) with incorporation of the covariate; however,
this difference was not statistically significant. Since
there was no evidence of linkage at τ1, the estimate for
τ1 varied in the three approaches.

Discussion and Conclusions
Many complex diseases involve multiple loci as well as
multiple quantitative biological markers or quantitative
risk factors. Incorporating covariates into linkage analy-
sis is not only helpful for the identification of disease
loci but is also informative with respect to disease etiol-
ogy. In family-based studies, data are often available for
larger pedigrees with multiple relative pairs, and there-
fore it is desirable to have linkage mapping approaches
that can use these potentially informative data. In addi-
tion, different types of ARPs may have the potential of
providing some insight into the underlying genetic
mechanism [19]. Applying a one-locus model to localize
a disease gene when there are actually two linked dis-
ease genes in the region is likely to estimate the two
true disease gene locations inaccurately, while the corre-
sponding effect size tends to be over-estimated [20].
Therefore, we extended a robust multipoint linkage
approach in simultaneously mapping two linked disease
loci while using affected relative pairs with an incor-
poration of quantitative covariates. A series of intensive
simulation studies were conducted to examine the per-
formance of the approach when the incorporated covari-
ate was a quantitative trait under a variety of genetic
models or when the trait was a risk factor associated
with a disease locus. The simulation study suggested
that incorporating a quantitative covariate, which also
happened to be a quantitative trait, helped improve the
efficiency of the disease-locus estimate, regardless of the
genetic models that actually underlie the incorporated
covariate. It seems that the underlying genetic models of
the quantitative covariate (trait) did not have much
impact on the efficiency in estimating τl, l = 1,2. In addi-
tion, the inclusion of different relative pairs would make
the sample size larger and improve the efficiency of the
disease-locus localization when the different relative
pairs share common disease loci; this would be particu-
larly true when the genetic effect of the disease loci is
small or modest. When the covariate was directly related
to the liability of the disease, the efficiency improvement
was greater than when it was not directly related to the
disease liability; when the covariate was associated with
only one disease locus, incorporating the covariate helped
improve the efficiency of that locus’ estimate more than

Figure 2 Comparisons of estimates (denoted by “x”) and their
95% CIs (denoted by brackets) for disease loci from
nonparametric, parametric and without-a-covariate approaches
using affected sib pairs.
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Table 4 Simultaneous two-locus search without incorporating a covariate

ESTIMATE
(S.E.) or [95% CI]

τ1 (cM) τ2 (cM) C1 C2 l1 l2
Using one ARP only:

Full siblings 1.38 124.27 -0.04 0.12 1.25 1.44

(39.44) (7.64) [-0.17,0.10] [-0.008,0.25] [0.83,1.89] [0.91,2.13]

Avuncular pairs 50.77 142.05 0.11 0.097 1.17 1.36

(0.73) (13.42) [-0.07,0.29] [-0.03,0.22] [0.80,1.69] [0.83,1.95]

Using both ARPs:

Full siblings 0.06 0.12 1.17 1.40

[-0.07,0.18] [-0.01,0.24] [0.86,1.70] [0.90,2.08]

Avuncular pairs 0.11 0.060 1.30 1.45

[-0.07,0.29] [-0.034,0.154] [0.55,2.40] [0.68,2.28]

Common τ 50.98 125.43

(0.72) (6.84)

Table 5 Simultaneous two-locus search with incorporation of “Maximum number of drinks in a 24 hour period” -
parametric approach

ESTIMATE
(S.E.) or [95% CI]

τ1 (cM) τ2 (cM) C1 C2 l1 l2
Using one ARP only:

Full siblings 58.95 126.55 0.16 0.24 1.45 1.90

(2.42) (3.43) [-0.01,0.32] [0.07,0.43] [0.91,2.76] [1.11,7.18]

Avuncular pairs 75.14 123.55 -0.07 0.04 0.76 1.17

(0.72) (5.85) [-0.15,0.21] [-0.15,0.24] [0.54,2.40] [0.65,2.07]

Using both ARPs:

Full siblings 0.16 0.23 1.46 1.82

[-0.08,0.32] [0.02,0.43] [0.86,2.70] [1.03,6.68]

Avuncular pairs 0.005 0.04 1.02 1.16

[-0.15,0.20] [-0.21,0.23] [0.54,2.38] [0.40,2.65]

Common τ 58.53 127.41

(1.47) (1.99)

Table 6 Simultaneous two-locus search with incorporation of “Maximum number of drinks in a 24 hour period” –
nonparametric approach

ESTIMATE
(S.E.) or [95% CI]

τ1 (cM) τ2 (cM) C1 C2 l1 l2
Using one ARP only:

Full siblings 58.97 124.42 0.084 0.16 1.20 1.45

[-0.004,0.27] [0.94,1.71] [0.99,2.21]

(3.37) (4.99) [-0.03,0.21]

Avuncular pairs 60.66 123.46 0.018 0.048 1.07 1.21

[-0.081,0.19] [0.64,1.58] [0.77,1.69]

(0.24) (4.84) [-0.11,0.11]

Using both ARPs:

Full siblings 0.083 0.16 1.20 1.45

[-0.005,0.22] [0.011,0.26] [0.99,1.79] [1.02,2.09]

Avuncular pairs 0.017 0.051 1.07 1.23

[-0.11,0.12] [-0.052,0.18] [0.63,1.62] [0.81,2.10]

Common τ 60.81 124.24

(0.16) (2.29)
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that of the other locus. The position of the QTL for a
quantitative trait (as a covariate) might slightly affect the
accuracy of the disease-loci localization; the accuracy was
similar to the situation in which no covariates were
incorporated given an unlinked relationship between the
QTL and disease locus. Investigators can choose to incor-
porate covariates that improve efficiency in disease-loci
estimation. Our example of an alcoholism study illustrates
that incorporating a quantitative covariate into the linkage
mapping helps improve the efficiency of disease-loci esti-
mates in the two-locus models by either the parametric
approach or the nonparametric approach. The assessment
of associations between the disease loci and covariates
helps resolve the underlying genetic mechanism of the dis-
ease. Using all affected relative pairs to estimate the com-
mon disease loci could also enhance the efficiency in
estimating disease loci, and, furthermore, it could help dis-
sect disease etiology by assessing risk ratios among differ-
ent types of relative pairs.
Although the proposed approaches can be quite help-

ful and can also be widely applied to localize disease
loci for complex diseases, they are built upon the
assumption of a two-locus disease mechanism. Bias may
arise when a region harboring one locus only or more
than two linked loci is examined. In addition, since the
relationships between the genetic effects on the two dis-
ease loci and covariates are modeled separately, the
number of parameters may easily be increased when (1)
several covariates are incorporated simultaneously; or
(2) regression relationships between the genetic effects
on the two disease loci and covariates are not assumed
to be identical; or (3) several relative types are analyzed.
Additionally, since fitting an incorrect model can lead to
biased estimates with anti-conservative confidence inter-
vals, it is important to decide whether a one-locus or
two-locus model is more appropriate. In practice, it is
always helpful to check the empirical plot (as shown in
Figure 2) to determine how many “peaks” are present in
the region of interest. If there is only one “peak,” a one-
locus model might be more appropriate than a two-
locus model. If more than two peaks are present, it
might be helpful to split the region into multiple smaller
regions containing only two peaks each. Indeed, it is
always helpful to apply both one-locus and two-locus
models and evaluate which model fits the data better. In
addition, the test developed by Biernacka et al. [21] can
be used to help choose an appropriate model.
The proposed approaches allow gene-gene and gene-

environment interactions to be assessed. As complex dis-
eases often involve more than two disease genes, further
efforts to extend this method to situations involving
more than two genes are warranted. In addition, as the
regions identified through linkage mapping are quite
wide and may harbor numerous genes, future approaches

should be developed to identify potential causal poly-
morphisms by the joint modeling of linkage and
association.
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