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A B S T R A C T

Chronic primary pain including fibromyalgia for the musculoskeletal system persists for more than 3 months. Its 
etiological factors and the pathophysiological mechanisms are not known, and therefore, there is no satisfactory 
therapy, it is an unmet medical need condition. The only etiological and aggravating factor is chronic psycho-
social distress, which is known to cause neuroimmune and endocrine changes both in the periphery and the 
central nervous system. In this short review, we introduce our research perspective by summarizing the recent 
literature on the interactions between chronic pain, stress, and commonly co-morbid mood disorders. Immune 
activation, autoimmunity, neuro-immune-vascular crosstalks and neuroinflammation play roles in the patho-
physiology of these conditions. Data on stress-induced neuroplasticity changes at cellular and molecular levels 
were also collected in relation to chronic primary pain both from clinical studies and animal experiments of 
translational relevance. Understanding these mechanisms could help to identify novel therapeutic targets for 
chronic primary pain including fibromyalgia.

1. Chronic primary pain as an unmet medical need condition, 
focus on fibromyalgia (FM)

According to the latest definition of the International Association for 
the Study of Pain chronic primary pain (CPP) is defined as pain lasting 
for more than 3 months without any specific underlying cause (Nicholas 
et al., 2019). It has substantial negative impact not only on the patients’ 
quality of life and working abilities, but also on the healthcare system 
and the society (D’Onghia et al., 2022). Chronic psychosocial distress is 
known to be the only etiological and/or aggravating factor of these 
conditions (Barke, 2019; Nicholas et al., 2019; Scholz et al., 2019). Fi-
bromyalgia (FM) and complex regional pain syndrome (CRPS) represent 
two out of the five main CPP categories. FM is a chronic widespread 
musculoskeletal pain without any known underlying background dam-
age condition (Buskila and Sarzi-Puttini, 2006; Harden et al., 2010), 
with an incidence of 7–12 per 1000 per year (Creed, 2020; Weir et al., 
2006). CRPS develops after a minor tissue trauma on the affected limb 
with excessive swelling and, with an incidence of 5–26 per 100,000 per 
year (de Mos et al., 2007; Ott and Maihöfner, 2018). These conditions 
share several common features as chronic primary pain syndromes; such 

as the lack of definitive etiology and pathophysiology, involvement of 
chronic psychosocial distress, potential autoimmunity, common mood 
disorders and psychological co-morbidities. However, they have many 
distinct characteristics regarding the localisation of the pain and 
concomitant autonomic nervous system disorders. In CRPS, a minor 
injury always precedes the condition, however, the extent of the chronic 
pain in the injured limb is disproportional to the original trauma. In 
contrast, FM develops without tissue damage, muscular tender points 
are specific, but there are no demonstratable lesions. Depression and 
anxiety are common comorbidities in FM patients, which suggests 
several common pathophysiological mechanisms and interactions be-
tween the pain and mood regulation pathways.

This review focuses on FM, which is the most common musculo-
skeletal chronic primary pain condition with no identified causative 
factors besides psychosocial distress and abnormal stress-coping ca-
pacities. This is still an under-diagnosed and often misunderstood dis-
ease, in which not only the diagnosis, but also the therapy is greatly 
challenging. The classical analgesic drugs such as non-steroid anti-in-
flammatory drugs and opioids are not or only minimally effective in FM 
conditions. The first line therapy are the adjuvant analgesics including 
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antidepressants (e.g. amitriptyline, nortriptyline, duloxetine, venlafax-
ine) and antiepileptics (e.g. gabapentin, pregabalin), but they also have 
only minor effect in a subset of patients (Bellato et al., 2012; Macfarlane 
et al., 2017). Furthermore, psychotherapy might be effective on a 
long-term after months, but these treatments usually start together with 
medications at the earlier stages; further suggesting the complex treat-
ment paradigm: targeting the psychosocial component of these diseases 
(Gomez-De-Regil and Estrella-Castillo, 2020). Therefore, there is a great 
need to understand the complex molecular mechanisms and pathways to 
identify novel, instant and fast acting pain-relievers and specific thera-
peutic options.

2. Chronic psychosocial distress as an etiological and 
aggravating factor of chronic primary pain: stress-pain 
interactions in FM

2.1. Clinical data

Positive correlations were found between the baseline stress levels 
and pain intensity scores in FM and other chronic widespread pain 
conditions in a longitudinal long-term clinical study (Bergenheim et al., 
2019). Furthermore, both stress and pain catastrophizing showed strong 
positive correlations with pain severity and the co-occurrence of mul-
tiple painful diseases (Fillingim et al., 2020). Different psychosocial 
stressors influence the pathogenesis of low back pain, another chronic 
primary pain. The inflammatory cytokine interleukin-6 (IL-6), the 
sympathetic mediator norepinephrine, and resting heart rate were sug-
gested to have predictive values in this condition (Wippert et al., 2022). 
The impact of chronic pain on stress levels, anxiety, and depression is 
confirmed, and the psychopathological profile, stress, and differences in 
coping mechanisms are associated with FM symptoms and pain 
threshold decrease (Weber et al., 2022). Psychotherapeutic tools like 
mindfulness in combination with exercise to reduce stress level was also 
effective for chronic pain (Deegan et al., 2023).

Trier Social Stress Test - a standardized and reliable acute psycho-
social stress task that decreases both thermo- and mechanonociceptive 

thresholds resulting in hyperalgesia (increased pain sensitivity) and 
allodynia (pain induced by a non-painful stimulus, such as touch or 
stroke) in FM patients (Crettaz et al., 2013).

Besides the clinical, psychological and neuroimaging (e.g. fMRI) 
outcomes, postmortem brain tissue examination with high-resolution 
microscopic techniques and omics (transcriptomic, metabolomic, pro-
teomic) analysis could provide information about the molecular mech-
anisms of the disease. Nevertheless, these approaches are not applicable 
in FM patients, since it is not a lethal disease and postmortem samples 
are not available without other serious concomitant diseases. Therefore, 
it is inevitable to perform extensive research on brain samples obtained 
from translationally relevant animal models.

2.2. Preclinical models to investigate chronic primary pain: stress-related 
pain mechanisms

Although no animal models are suitable for reflecting all aspects of 
the complex symptomatology of human diseases, they can provide a 
good basis for understanding the cellular and molecular pathophysio-
logical processes.

Several FM rodent models including chronic stress as an etiological 
factor are currently used in the literature which mimics different aspects 
of the disease (Table 1.). To draw strong conclusions, more of these 
models are suggested to be parallelly investigated and validated by 
functional techniques (e.g. behavioral outcomes for pain, anxiety and 
depression), morphological and imaging methods (e.g. microscopy, 
fMRI), and pharmacological tools using drugs currently registered for 
FM therapy (e.g. antidepressants, opioids).

Different types of chronic stress paradigms, such as repeated swim 
stress (Quintero et al., 2000), intermittent cold stress (Nishiyori and 
Ueda, 2008), sound stress of four different frequencies combined with 
bradykinin hind paw injection (Khasar et al., 2005) as well as chronic 
immobilization stress induce both mechanical and thermal 
hyper-nociception similar to the FM patients (Da Silva Torres et al., 
2003; Gamaro et al., 1998; Scheich et al., 2017). However, literature 
data suggests that not all stress types can mimic the basic symptoms of 

Table 1 
Chronic stress-induced behavioral and molecular alterations in animal models of stress-induced pain, related to fibromyalgia.

Rodent Model (rat and mice) Pain and mood Neuroinflammation and inflammatory mechanisms

Models using stress 
paradigms

Repeated swim 
stress

Mechanical and thermal hypersensitivity (Quintero et al., 
2000)

↑ CR3 microglia activation in dorsal horn of lumbar spinal cord (Quintero 
et al., 2003) 
↑ IL-1 concentration in spinal tissue (Suarez-Roca et al., 2014)Anxiety-like behavior 

EPM (Nazeri et al., 2018)
Intermittent cold 
stress

Mechanical and thermal hypersensitivity (Nishiyori and 
Ueda, 2008)

↑ Iba1 positive cells in hippocampus(Qu et al., 2017) 
No IL-1 and TNFα elevation in hypothalamus and prefrontal cortex (
Girotti et al., 2011), but IL-1 elevation in the plasma(Liao and Lin, 2021)Anxiety and depression-like behavior 

FST (Hata,’ Hata’ Eiji et al., 1995), EPM (Montserrat-De 
La Paz et al., 2013)

Repeated sound 
stress

Mechanical and thermal hypersensitivity (Khasar et al., 
2005)

IL-6 but not TNFα elevation in plasma levels in early life sound stress 
protocol (Alvarez et al., 2013)

Anxiety-like behavior 
OFT(Green et al., 2011), EPM (Hung et al., 2020)

Chronic restraint 
stress

Mechanical and thermal hypersensitivity (Gamaro et al., 
1998)

↑ GFAP and Iba1 immunoreactivity in the hippocampus and cerebral 
cortex (Fülöp et al., 2023) 
↑ IL-1 in hippocampus (Guo et al., 2014)Anxiety and depression-like behavior 

FST (Platt et al., 1982) TST(Yin et al., 2020), OFT (Liang 
et al., 2015), EPM (Jeong et al., 2013),

Models without 
stress application

Reserpine- 
induced

Mechanical and thermal hypersensitivity (Nagakura et al., 
2009) and spontaneous pain (Nagakura et al., 2019)

↑ GFAP fluorescence intensity in the lumbar spinal cord.(De La 
Luz-Cuellar et al., 2019) 
↑ Iba1 immunoreactivity activation in the spinal dorsal horn (Taguchi 
et al., 2015) 
↑ glia produced mediators: IL-1, TNFα in cerebral cortex region and in the 
hippocampus (Arora and Chopra, 2013; Xu et al., 2013)

Anxiety and depression-like behavior 
FST (Hubner de Souza et al., 2014), TST (Yao et al., 2020), 
OFT (Brusco et al., 2019), EPM (Kaur et al., 2019)

Acid saline- 
induced

Mechanical hypersensitivity (Sluka et al., 2001) ↑ GFAP expression in hippocampus (Abd-Ellatief et al., 2018; Lambert 
et al., 2000) 
↑ IL-1 and TNFα in hippocampus (Abd-Ellatief et al., 2018)

Anxiety and depression-like behavior 
FTS, OFT (Lottering and Lin, 2021)

GFAP = Glial fibrillary acidic protein; Iba1 = Ionized calcium binding adaptor molecule 1; FST=Forced swim test; TST = Tail suspension test; OFT=Open field test; 
EPM = Elevated plus maze test; IL= Interleukin; TNFα = Tumor necrosis factor alpha
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FM. Although chronic variable mild stress is an appropriate depression 
model, it is not suitable to investigate stress-induced pain mechanisms 
(Liu et al., 2018; Shi et al., 2010).

Systemic reserpine injection depleting monoamines mimics sponta-
neous pain, thermal and mechanical hyperalgesia (Nagakura et al., 
2009). Meanwhile, acid saline (pH 4 
hydroxyethyl-piperazineethane-sulfonic acid buffered saline) injection 
into the gastrocnemius muscle results in mechanical hypersensitivity, 
but the development of thermal sensitivity is debated (Sluka et al., 
2001).

The characteristics of rodent FM models are summarized in Table 1.

3. Mood disorders as common comorbidities of chronic pain

Chronic pain patients often suffer from comorbidities of mental ill-
nesses, such as depression and anxiety disorders (Dahan et al., 2014; 
McWilliams et al., 2003). Chronic psychosocial distress particularly in 
vulnerable patients with inappropriate coping abilities and resilience, 
induces rumination, consequent anxiety, mood negativities and 
depression (Bø et al., 2023; Bylsma et al., 2008; Richter-Levin and Xu, 
2018). Higher percentage of mood disorders are present in FM patients 
compared to the healthy population (Galvez-Sánchez et al., 2019; 
Henao-Pérez et al., 2022; Wan et al., 2019). Depression as a comorbidity 
is also suspected to worsen the treatment outcomes in FM patients 
(Munipalli et al., 2022). In women, pain severity and catastrophizing 
were associated with both higher depression and anxiety levels 
(Hadlandsmyth et al., 2020). Personality traits such as neuroticism, 
conscientiousness and extraversion are associated with FM symptoms 
including pain, depression, anxiety and stress level (Seto et al., 2019). As 
a stress management method, cognitive behavior therapy significantly 
improved coping and self-reported depression ratings in FM (Karlsson 
et al., 2023).

Stress has a huge negative impact on patients’ mental health and 
illness course, which often leads to depression. Similarly, in mice, 
chronic unpredictable stress results in anxiety and depression-like 

behaviors combined with severe cognitive impairment (Liu et al., 2020). 
Social defeat stress and subthreshold social defeat paradigm also induces 
depression-like behavior in mice accompanied by long-lasting hyper-
algesia further suggesting interactions between mood disorders and pain 
(Pagliusi et al., 2020; Piardi et al., 2020).

In different rodent FM models, such as reserpine-, direct muscle 
harm- and stress-induced paradigms anxiety and depression-like 
behavior were also observed (Blasco-Serra et al., 2015; Liu et al., 
2014; Scheich et al., 2017) which correlated with the extent of hyper-
algesia (Zhao et al., 2022).

Both chronic pain and depression have been suggested to induce 
neuroinflammation via glia-neuron interactions and neuroplasticity al-
terations by remodeling of the neural networks in the affected brain 
regions, making the treatment more difficult (Lithwick et al., 2013).

4. Neuroinflammation and neuroplasticity changes as common 
mechanisms of chronic primary pain: interaction of pain, mood 
and stress pathways

Neuroinflammation is defined as the activation of the innate immune 
system of the central nervous system (CNS) in response to noxious 
stimuli like trauma, infarction, infection, or even chronic stress. It is 
characterized by cellular (glia cells and neurons) and molecular changes 
(cytokines, chemokines, neuropeptides, neurotransmitters). Microglia 
and astrocytes also contribute to the regenerative and/or apoptotic 
processes (Calcia et al., 2016; DiSabato et al., 2016; Patani et al., 2023). 
(Fig. 1.)

4.1. Clinical data

One of the milestone clinical findings for neuroinflammation playing 
a role in FM was the increased uptake of the radioligand tracer [11C] 
PBR28 in the prefrontal cortex of these patients positively correlated 
with their fatigue symptoms. The radioligand is a positron emission 
tomography (PET) radiotracer binding to a 18pkD translocator protein 
(TSPO), which is expressed in activated microglia, reactive astrocytes, 
vascular endothelium, and to a much lower degree in neurons (Albrecht 
et al., 2019). Choline levels linked to glial activation were also elevated 
in FM patients in several brain areas assessed by functional magnetic 
imaging (fMRI), which showed positive correlation with the pain pa-
rameters (Jung et al., 2020). Functional connectivity within the salience 
network involved in the coordination of external and internal stimuli 
increased in participants exposed to chronic psychosocial stressors 
compared to unexposed ones. These cortico-striatal connectivity alter-
ations and signal processing abnormalities suggest neuroplasticity 
changes due to the reorganization of neural networks and synaptic links 
(McCutcheon et al., 2019). Similarly, increased salience network con-
nectivity was observed in post-traumatic stress disorder patients, which 
normalized after evidence-based psychotherapy (Abdallah et al., 2019). 
Maladaptive tuning of several brain functions, more specifically pre-
frontal processes are suggested to be involved in pain catastrophizing in 
FM patients (Hubbard et al., 2020; Sandström et al., 2020, 2022). Cat-
astrophizing and ruminations are long known to be involved in the 
maintenance and aggravation of chronic pain (Gracely et al., 2004) 
positively correlating with pain intensity in different body regions of FM 
patients (Ellingsen et al., 2021). Besides the salience network enhanced 
connectivity was observed in FM patients also in the default mode 
network representing different brain areas simultaneously activated in 
response to diverse experimental tasks (Galambos et al., 2019) positive 
correlating with the pain intensity (Čeko et al., 2020). A recent 
meta-analysis (Wang et al., 2022) demonstrated gray matter abnor-
malities in chronic primary pain patients. Neuroinflammation was 
detected with [11C]-(R)-PK11195, a translocator protein expressed by 
activated microglia or astrocytes in positron emission tomography, in 
different brain areas of fibromyalgia and CRPS patients. Distribution 
volume ratio correlated with stress and anxiety levels which supports 

Fig. 1. Interactions of chronic pain, mood disorders and stress: chronic psy-
chosocial distress induces neuroinflammation and neuroplasticity changes in 
brain areas involved also in pain processing, e.g. the prefrontal cortex (PFC), 
amygdala (A), hippocampus (HI), periaqueductal gray (PAG) and somatosen-
sory cortex (SSC). Created with BioRender.com.
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the hypothesis that neuroinflammation is the link between mood dis-
orders and pain (Gritti et al., 2021; Jeon et al., 2017; Seo et al., 2021).

4.2. Preclinical results

Chronic stress-induced microglia and astrocyte activation were 
demonstrated in animal experiments more than 2 decades ago 
(O’Connor et al., 2003). Chronic stress paradigms in rats activated 
microglia shown by increased density of ionized calcium-binding 
adapter molecule 1 (Iba1) immunoreactivity in the medial prefrontal 
cortex (Hinwood et al., 2012; Kopp et al., 2013). Several neuro-
inflammatory parameters were increased in FM models as summarized 
in Table 1 Pointing out the translational relevance of the models to 
investigate this pathophysiological component of FM.

In the medial amygdala, loss of neural dendritic spines was shown in 
mice in response to chronic restraint stress (Bennur et al., 2007) 
Brain-derived neurotrophic factor (BDNF) is suggested to be involved in 
the remodeling and neuroplasticity changes of affected brain areas in 
mice caused by chronic stress (Ammosova et al., 2011; Govindarajan 
et al., 2006). Deteriorated salience network connectivity was also 
observed in animal models of chronic stress (Dai et al., 2023; Seewoo 
et al., 2020). In the acid saline FM mouse model, the default mode 
network-periaqueductal gray matter functional connectivity showed the 
strongest positive correlation with the pain threshold decrease (Nasseef 
et al., 2021). In the reserpine-induced rat FM model moderate electrical 
forepaw stimulation induced significantly higher activation of the 
default mode network compared to controls (Wells et al., 2017).

These clinical and pre-clinical results described above may provide a 
good basis for a more precise understanding of the pathophysiological 
mechanisms behind stress-induced pain, thus opening novel drug 
development perspectives in FM. Immunological factors and neuro-
inflammatory mechanisms are suggested to be involved in FM. In this 
chapter, we summarized the key mediators, which could serve as po-
tential pharmacological targets.

5. Potential mechanisms and novel therapeutic targets of FM 
and stress-induced pain

5.1. Autoimmunity, autoantibodies

Autoimmunity has been implicated in chronic primary pain syn-
dromes as a potential pathogenic factor. Systemic injection of purified 
serum immunoglobulin G (IgG) antibodies of FM patients were shown to 
bind to the satellite glia cells in the DRGs and induce severe symptoms 
including hyperalgesia in a mouse model (Krock et al., 2023).

Furthermore, FM symptoms such as mechanical hyperalgesia, 
reduced grip strength and locomotor activity, increased nociceptor 
excitability were also mimicked in mice by the passive transfer of FM 
patients’ IgG (Goebel et al., 2021). In this model glial fibrillary acidic 
protein (GFAP) expression increased in the lumbar DRGs at the level of 
the primary sensory neuronal cells, but not in the spinal dorsal horn at 
the level of secondary sensory neurons.

5.2. Nerve growth factor (NGF) and brain-derived neurotrophic factor 
(BDNF)

NGF and BDNF are involved in pain sensitization and hyperalgesia 
(Sluka and Clauw, 2016). These mediators have recently been investi-
gated in FM, and the results suggested their potential predictive values 
for pain. FM patients had lower levels of circulating NGF and IL-1β, 
while BDNF and IL-8 levels were higher than healthy controls. However, 
no correlation was found between these biomarkers and cytokines with 
the patients’ depressive and anxiety symptoms, pain-catastrophizing, 
and pain levels (Jablochkova et al., 2019).

In rats, neuroinflammation with Nod-like receptor protein 3 (NLRP3) 
inflammasome activation in the hippocampus and basolateral amygdala 

was present in rats in response to CRS (Feng et al., 2019) accompanied 
by increased expression of the chronic neuronal activation marker c-fos 
and IL-1β (Yu et al., 2021). Reducing hippocampal CRS-induced 
proBDNF upregulation resulted in reduced anxiety- and 
depression-like behaviors in rats (Zhong et al., 2019). CVMS-induced 
thermal hyperalgesia could be prevented by blocking BDNF signaling 
(Liu et al., 2018).

5.3. Inflammatory cytokines, chemokines and neuropeptides

The role of inflammatory cytokines are widely investigated in fa-
tigue, pain and psychological disturbances as well (Dantzer and Kelley, 
2007). Psychological distress, pain intensity and sensitivity in FM pa-
tients showed positive correlations with specific plasma proteins 
involved in inflammation and immunity (e.g. IL-6, IL-2, haptoglobin) 
(Wåhlén et al., 2020). Inflammatory response proteins were detected in 
FM patients’ cerebrospinal fluid by proteomic analysis suggesting in-
flammatory and neuroendocrine disturbances (Khoonsari et al., 2019). 
Female FM patients’ isolated monocytes secreted higher levels of IL-1, 
IL-5, IL-6 and IL-10 compared to healthy controls. Concentrations of 
IL-4, IL-5 and the anti-inflammatory cytokine IL-10 showed positive 
correlations with the pain intensity and related mood disturbances 
(Merriwether et al., 2021).

The importance of several neuropeptides released from capsaicin- 
sensitive peptidergic nociceptive fibers has been suggested in chronic 
pain conditions. Increased levels of tachykinins like substance P and 
hemokinin-1 (HK-1) were detected in the serum of FM patients 
compared to controls, which decreased by cognitive behavior therapy 
(Karlsson et al., 2019; Tsilioni et al., 2016).

Preclinical data demonstrated the important regulatory roles of 
several neuropeptides released from neurons, glia or mast cells such as 
neuropeptide Y, pituitary adenylate cyclase-activating peptide, so-
matostatin and tachykinins, substance P, neurokinin A and B and HK-1 
in neuroinflammatory processes (Carniglia et al., 2017; Suto et al., 2014; 
Theoharides et al., 2019). HK-1 deficiency prevented CRS-induced 
hyperalgesia in both male and female mice (Borbély et al., 2023).

A recent publication from our laboratory as a part of the PhD project 
of B. Fülöp showed that CRS-induced hyperalgesia and related neuro-
inflammation demonstrated by both astroglia and microglia activation 
in stress and pain-related brain regions do not develop in mice lacking 
IL-1. This suggests the importance of this cytokine in this pain sensiti-
zation mechanism (Fülöp et al., 2023). An important pathway of neu-
roinflammation is medicated by fractalkine, which predominantly acts 
at microglial cells in the CNS. Fractalkine receptor 1 (CX3CR1) deficient 
mice are resistant to chronic unpredictable mild stress-induced depres-
sion-like behavior, cognitive impairment and neuroinflammation. 
Stress-induced elevation of IL-1 in both brain homogenates and plasma 
samples were not present in CX3CR1 deleted mice, suggesting IL-1 
release from microglia in response to fractalkine receptor activation 
upon chronic stress (Liu et al., 2020).

6. Conclusions and future perspectives

Chronic psychosocial distress is an important etiological and aggra-
vating factor of chronic primary pain conditions such as FM, and pain 
further triggers stress, anxiety and depression forming a vitious circle. 
Stress and pain pathways share several structures in the brain, as well as 
a range of common mechanisms and mediators. Both have been sug-
gested to induce neuroinflammation via glia-neuron interactions and 
neuroplasticity alterations by remodeling of the neural networks in the 
affected brain regions, making the treatment more difficult (Lithwick 
et al., 2013). A better understanding of the complex interactions be-
tween psychosocial distress, pain and inflammation/immunity is crucial 
to identify preventive and early therapeutic strategies. There has not 
been original innovative drug development for chronic pain in the last 
decades as demonstrated by the clinical trial databases, therefore it 
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represents a real unmet medical need.
In agreement with the latest literature data, we conclude that tar-

geting neuroinflammation is a promising novel direction for the treat-
ment of chronic primary pain including FM. Besides extensive human 
studies, animal models with translational relevance are crucial to 
determine the key mediators and targets of the neural and immune 
systems for drug development.

Barbara Fülöp (Fig. 2.) has worked on integrative preclinical inves-
tigation of the mechanisms involved in chronic pain conditions related 
to psychosocial stress. Her focus is on neuroinflammation, glia-neuron 
interactions and neuroplasticity using mouse models with complex 
behavioral, molecular biological, biochemical and neuroimaging out-
comes. As a neuropharmacology PhD candidate, her deepest belief is 
that it is crucial to have a holistic approach to identify novel therapeutic 
targets for these common co-morbidities. In her opinion, preclinical 
results can substantially promote these efforts.
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24-3-II. Hungarian Research Network (HUN-REN), Chronic Pain 
Research Group, and by The National Research, Development and 
Innovation Office (Phar-maLab).

Declaration of competing interest

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper.

Acknowledgment

The authors are grateful to Lina Hudhud and Noémi Bencze for the 
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Fig. 2. Barbara started her research career as an undergraduate student 
researcher back in 2017 at the Institute of Pharmacology and Pharmacotherapy 
at the Medical University of Pécs, Hungary. Her interest focused on stress- 
induced pain syndromes in animal models. After obtaining her medical de-
gree, she started her Ph.D. studies under the supervision of brilliant researchers 
of the pain field: Dr. Éva Borbély and Professor Zsuzsanna Helyes (co-authors of 
this article). After a maternity leave, she continued her studies in the basic 
research field of chronic stress and pain interactions. Being involved in vivo 
mouse studies, behavioral testing, and pain measurements as well. She is also 
performing in vitro immunohistochemical measurements with a focus on neu-
roinflammation. Currently, she is preparing her Ph.D. thesis about the molec-
ular processes involved in chronic stress in mouse models of pain. For her 
research work, she received several awards including the Pro Scientia Gold 
Medal (2019) and the Hungarian New National Excellence Program Scholarship 
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Fülöp, B., Hunyady, Á., Bencze, N., Kormos, V., Szentes, N., Dénes, Á., Lénárt, N., 
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Kosek, E., Amris, K., Branco, J., Dincer, F., Leino-Arjas, P., Longle, K., McCarthy, G. 
M., Makri, S., Perrot, S., Sarzi-Puttini, P., Taylor, A., Jones, G.T., 2017. EULAR 
revised recommendations for the management of fibromyalgia. Ann. Rheum. Dis. 76, 
318–328. https://doi.org/10.1136/ANNRHEUMDIS-2016-209724.

McCutcheon, R.A., Bloomfield, M.A.P., Dahoun, T., Mehta, M., Howes, O.D., 2019. 
Chronic psychosocial stressors are associated with alterations in salience processing 
and corticostriatal connectivity. Schizophr. Res. 213, 56–64. https://doi.org/ 
10.1016/J.SCHRES.2018.12.011.

McWilliams, L.A., Cox, B.J., Enns, M.W., 2003. Mood and anxiety disorders associated 
with chronic pain: an examination in a nationally representative sample. Pain 106, 
127–133. https://doi.org/10.1016/S0304-3959(03)00301-4.

Merriwether, E.N., Agalave, N.M., Dailey, D.L., Rakel, B.A., Kolker, S.J., Lenert, M.E., 
Spagnola, W.H., Lu, Y., Geasland, K.M., Allen, L.A.H., Burton, M.D., Sluka, K.A., 
2021. IL-5 mediates monocyte phenotype and pain outcomes in fibromyalgia. Pain 
162, 1468–1482. https://doi.org/10.1097/J.PAIN.0000000000002089.

Montserrat-De La Paz, S., Dololores García-Giménez, M., Ngel-Martín, M.A.́, Marín- 
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