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Abstract: Plant leaf 3D architecture changes during growth and shows sensitive response to environ-
mental stresses. In recent years, acquisition and segmentation methods of leaf point cloud developed
rapidly, but 3D modelling leaf point clouds has not gained much attention. In this study, a parametric
surface modelling method was proposed for accurately fitting tea leaf point cloud. Firstly, principal
component analysis was utilized to adjust posture and position of the point cloud. Then, the point
cloud was sliced into multiple sections, and some sections were selected to generate a point set to
be fitted (PSF). Finally, the PSF was fitted into non-uniform rational B-spline (NURBS) surface. Two
methods were developed to generate the ordered PSF and the unordered PSF, respectively. The PSF
was firstly fitted as B-spline surface and then was transformed to NURBS form by minimizing fitting
error, which was solved by particle swarm optimization (PSO). The fitting error was specified as
weighted sum of the root-mean-square error (RMSE) and the maximum value (MV) of Euclidean
distances between fitted surface and a subset of the point cloud. The results showed that the pro-
posed modelling method could be used even if the point cloud is largely simplified (RMSE < 1 mm,
MV < 2 mm, without performing PSO). Future studies will model wider range of leaves as well as
incomplete point cloud.

Keywords: leaf point cloud; surface fitting; principal component analysis; slice; particle swarm opti-
mization

1. Introduction

Plant leaves show different 3D architecture during growth [1], and their spatial ap-
pearance also shows sensitive responses to environmental conditions, such as drought
stress [2–4], cold stress [5], and light availability [6]. Additionally, the morphological
features of leaf influences nutrients resorption [7] and canopy capacity, such as rainfall
interception [8,9] and light interception [10]. Moreover, leaf morphological features can
be utilized in the analysis of leaf shape diversity of a species [11] and crop breeding [12].
In addition, a previous study [13] has found a quadratic function relationship between
lettuce fresh weight and leaf surface areas estimated from convex and concave hulls, which
could be used for estimation of crop yield with further investigation. Some morphological
characteristics, such as leaf length, leaf width, leaf area, specific leaf area, leaf inclination
angle, and leaf bend angle, have been directly taken as research objects among these stud-
ies. However, almost no consideration was given to three dimensional morphological
traits, which can be used to accurately describe leaf shape and can provide more nuanced
understandings to leaf’s dynamic adaptions to environmental conditions.

To describe leaf’s spatial shape and its changes, it is necessary to obtain 3D architecture
information of leaf surface. Nowadays, devices like depth camera, stereo camera and laser
scanner can be easily used to obtain point cloud of plant and its organs. Over the last few
years, leaf and stem classification of plant point cloud [14–18] has received an immense
amount of attention, whereas few studies in the literature have been published specifically
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on parametric modeling for plants and their organs. Modeling for leaf point cloud is a
challenging problem due to wide variations in leaf morphology caused by species diversity.

General meshing or remeshing methods, such as advancing-front mesh [19], De-
launay triangular mesh [20], and meshes combined with simplification or refinement
algorithms [21,22] could be used to fit leaf point cloud. Oqielat [23,24] proposed a kind of
surface fitting method for plant leaf by combining the Clough-Tocher method with radial
basis functions. Although fitted meshes could represent leaf shape well, it is difficult to
describe complicated spatial features of leaf surface with mathematic expressions. Para-
metric surface modelling technologies could fit a leaf point cloud into a spatial surface,
by which leaf’s geometric features can be easily described. For example, leaf edge can
be represented as spatial curves, whose geometric parameters such as perimeter, the first
derivative, the second derivative, and curvature, and so on, could be calculated to describe
leaf’s morphological changes. Wen et al. [25] proposed a leaf modelling method based
on hierarchical representation of veins and margin, which were constructed with B-spline
curves, but this method is only applicable for leaf point clouds with obvious venation
structure. Earlier studies [26,27] have realized visualization and reconstruction of plant
leaves using Bezier and B-spline surface; however, no metrics were specified to evaluate
fitting error, and important parameters like control points or interpolated points were
selected manually. Additionally, Beardsley and Chaurasia [28] reconstructed plant leaf by
using Bezier curves to represent salient leaf components (midrib, silhouettes, and cross-
section), but this method considered these components separately and thus resulted in loss
of surface’s information.

In summary, accurate parametric leaf surface model could be used to describe leaf
morphology and further describe leaf’s adaptation process to environment; however, few
relevant studies have been conducted until now. Non-uniform rational B-spline (NURBS)
is applicable to construct free-form curves and surfaces of real-world objects, and it was
adopted in this study. Additionally, tea leaf was taken as the modeling object; the obtained
results can be applied to similar shaped leaves. Figure 1 illustrated the overview of our
proposed method for parametric leaf modeling.
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The aim of this study is to provide a parametric surface modeling method for ac-
curately fitting tea leaf point cloud into NURBS surface. There are two key problems
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in the method. One is to generate the point set to be fitted (PSF) from leaf point cloud,
the other is to fit the PSF into precise NURBS surface. Two methods were proposed to
generate different PSFs based on principal component analysis (PCA) and point cloud
slicing technique. Additionally, the PSF was firstly fitted by B-spline surface and then was
transformed to NURBS form by adjusting weights of control points by minimizing fitting
error, which was defined as a multi-objective optimization problem, and particle swarm
optimization (PSO) was employed to solve the problem.

2. Materials and Methods
2.1. Data Acquisition

Experimental tea leaves were obtained from two species of camellia sinensis (zhongcha
108 and Maolv) in Maichun tea plantation at Danyang, Jiangsu province, China (32◦02′35′′ N,
119◦67′80′′ E), in October 2020. As shown in Figure 2, morphologically from top to bottom,
there are apical bud, real leaves, and fish leaf in sequence on a tea stalk. Real leaves were
collected as experimental object of this study. In the experiment, a 12 m× 5 m rectangle
sampling zone was chosen for each tea species, and each zone lay across 8 lines of tea trees
as each line is 1.5 m wide. Each sampling zone was divided into 40 sampling plots, namely
the involved tea trees in each line were divided into 5 plots, and one leaf was sampled
from each plot. 40 real leaves of each tea species, were picked down, removed petioles,
and scanned to get point clouds by EXAscan 3D scanner (CREAFORM INC., Lévis, QC,
Canada). For avoiding leaf shape changes largely, the leaves were picked and scanned one
by one, and the entire process consumed less than 5 min for each leaf.
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Figure 2. (a) A tea stalk with several leaves; (b) Upper side of a real leaf; (c) Underside of a real leaf.

2.2. Data Pre-Processing

The scanned point cloud data inevitably included noise points, therefore, denoising
and extracting the portion belonging to leaf is the precondition before modeling. Since
pre-processing of the point cloud is not the key problem of this study, MeshLab software
(version 2020.12) was used to remove redundant points of backgrounds to obtain pure leaf
point cloud.

2.3. Parametric Surface Modelling

The parametric surface modeling process contains two tasks: generating the PSF and
NURBS surface modeling. In the section that follows we briefly present how to generate
the PSF from leaf point cloud and how to fit the PSF into NURBS surface. To begin the
process, the PCA was used to adjust the position and posture of the point cloud. Then, the
point cloud was sliced into multiple sections, and several slices were selected to generate
the PSF. Finally, the obtained PSF was fitted into NURBS surface.
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2.3.1. Principal Component Analysis of Leaf Point Cloud

To avoid unnecessary complexity caused by difference in position and posture of
leaf point clouds in the process of generating PSF, PCA is used to find three principal
components of individual leaf point cloud, and then the point cloud is transformed into
a standard position and posture, which is called as standard leaf point cloud (SLPC).
As shown in Figure 3, the center of the SLPC is located at the origin of the coordinate
system, and the first, second and third principal components correspond to x-direction,
y-direction, and z-direction of the coordinate system, respectively. All following treatments
are implemented on the SLPC.
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Figure 3. An example of principal component analysis (PCA) for tea leaf point cloud. (a) A tea
leaf point cloud in cartesian coordinate system, and three principal components represented as red
arrows; (b) The standard leaf point cloud (SLPC) from view of the third principal component, and
the L is defined as the length of leaf; (c) The SLPC from the view of the second principal component.
Component 1, 2, and 3 correspond to the first, second, and third principal components of the point
cloud, respectively.

2.3.2. Point Cloud Slicing and Slice Selection

Generally, it is unnecessary to construct a surface interpolating thousands of points
due to considerations of the computation cost and the precision limitation of measuring
devices. Therefore, slice technique is adopted to divide the SLPC into multi-sections, and
part of slices are selected to generate the PSF.

To be specific, the SLPC is sliced along the direction of the first principal component,
as shown in Figure 4a. Supposing that number of slices nums is determined, then slice’s
thickness Ws can be calculated as:

Ws =
L

nums
(1)

where L is leaf length. Centre plane, perpendicular to the first principal component and
defined as projection plane, of a slice was calculated as:

PLi = min(x) + (i− 0.5)×Ws, i = 1, · · · , nums (2)

where x is the coordinates of the SLPC in the first principal component.
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Figure 4. (a) An example for slicing point cloud into multi-sections; (b) Schematic diagram of
extracting feature points belonging to midrib and margin of leaf in different slices. Components 1
and 2 are the first and second principal components of the leaf point cloud, respectively.

To detect leaf base and leaf tip, two additional projection planes PL0 and PLend(PLnums+1)
together with corresponding slices Slice0 and Sliceend(Slicenums+1) are created on corre-
sponding positions.

PL0 = min(x), PLend = max(x) (3)

Thicknesses of Slice0 and Sliceend are set to zero, and they are overlapping with PL0 and
PLend, respectively. As shown in Figure 4b, Slice0 comprises three feature points Pl0, Pm0
and Pr0 belonging to left edge, midrib, and right edge, respectively. While Slicenums+1 also
comprises three feature points, and they are overlapping and denoted as Pend.

To determine three feature points in Slice0, supposing there is a slice ranging from
leaf base, increasing its thickness till the range of the y-coordinates of the slice’s points is
not less than 2 mm, which is average diameter of tea leaf petiole. The minimum value and
the maximum value of the y-coordinates of the slice’s points are set as the y-coordinates
of Pl0 and Pr0, respectively. The mean value of z-coordinates of the slice’s points is set as
z-coordinates of Pl0 and Pr0, and the x-coordinates of Pl0 and Pr0 are set as min(x). Pm0 is
calculated as midpoint between Pl0 and Pr0. Besides, Pend is the point of the SLPC in the
Sliceend, and mean value would be calculated if there are more than one point in the slice.

To avoid excessive computation, part of slices is selected to generate the PSF. Note
that the selected slices should distribute uniformly in the SLPC to contain as much surface
information as possible, and the slices Slice0 and Sliceend must be included.

2.3.3. Generating the Point Set to Be Fitted

Margin and midrib are distinct geometric features of tea leaf, and they can be extracted
as framework of leaf surface. However, the framework is insufficient to represent spatial
architecture of tea leaf, so points belonging to leaf surface should be taken as consid-
eration together. Consequently, the PSF consists of points belonging to leaf framework
and leaf surface in each selected slice. Two methods are developed to generate an or-
dered PSF, and an unordered PSF from l + 1 selected slices, respectively. The ordered PSF
consists of a point set

{
Qi,j | j = 0, · · · , l; i = 0, · · · k; l, k >2 and l, k ∈ N∗

}
by extracting

k + 1 points from each of the l + 1 slices, while the unordered PSF consists of a point set{
Qi,j

∣∣ j = 0, · · · , l; i = 0, · · · k j; l, k j >2 and l, k j ∈ N∗
}

, in which the number, k j, of points
extracted from each slice could be different.
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For generating an ordered PSF, k = 3 + tl + tr (tl , tr ∈ N∗) points are selected from
each selected Slicei(i 6= 0, nums+1), as shown in Figure 5a. Firstly, three feature points,
Pli, Pmi and Pri belonging to left edge, midrib and right edge, are found in each slice.
Specifically, the three points are leftmost, highest, and rightmost points in a smaller region
Ti inside Slicei, and the region lays on the center of the slice and its thickness is Ws

2 . Then,
tl equally spaced points between Pli and Pmi, and another tr equally spaced points between
Pmi and Pri are calculated, respectively. Finally, corresponding nearest points of these points
in the slice are selected.
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spaced points between 𝑃௟଴ and 𝑃௠଴, and 𝑡௥ equally spaced points between 𝑃௠଴ and 𝑃௥଴ 
are selected directly. Additionally, there are 3 + 𝑡௟ + 𝑡௥  overlapping points 𝑃௘௡ௗ  in 𝑆𝑙𝑖𝑐𝑒௡௨௠ೞାଵ. 

2.3.4. Accuracy evaluation for fitted surface model 
To better understand the procedure for fitting obtained PSF into NURBS surface and 

assess accuracy of fitted surface model, definition of NURBS surface and metrics of 
accuracy evaluation for fitted surface are introduced in this section. 

Figure 5. Two generating methods for PSF. (a) Seven points are selected as examples in a slice, and Pli, Pmi and Pri are three
feature points in the slice; (b) All points in a slice are projected vertically on the central plane.

For generating an unordered point set, a different method is developed, in which
all points in a selected Slicei(i 6= 0, nums+1) are projected vertically on the corresponding
center plane, as shown in Figure 5b.

Additionally, same points are obtained in Slice0 and Slicenums+1 for both the ordered
PSF and the unordered PSF. Specially, for Slice0, three feature points, tl equally spaced
points between Pl0 and Pm0, and tr equally spaced points between Pm0 and Pr0 are selected
directly. Additionally, there are 3 + tl + tr overlapping points Pend in Slicenums+1.

2.3.4. Accuracy Evaluation for Fitted Surface Model

To better understand the procedure for fitting obtained PSF into NURBS surface
and assess accuracy of fitted surface model, definition of NURBS surface and metrics of
accuracy evaluation for fitted surface are introduced in this section.

A NURBS surface of degree (p, q) with (n + 1)× (m + 1) control points is defined as
a bivariate vector-valued piecewise rational function of the form:

S(u, v) =
∑n

i=0 ∑m
j=0 Ni,p(u)Nj,q(v)ωi,jPi,j

∑n
i=0 ∑m

j=0 Ni,p(u)Nj,q(v)ωi,j
, a ≤ u, v ≤ b (4)

where, u and v are two independent parameters; Pi,j is the (i, j)th control point in three-
dimensional space; ωi,j is corresponding weight of Pi,j; Ni,p(u) and Nj,q(v) are the ith and
jth non-rational B-spline basis functions of p-degree and q-degree defined on knot vectors
U =

[
u0, u1, · · · , un+p+1

]
and V =

[
v0, v1, · · · , vm+q+1

]
, respectively. Specifically,

Ni,0(u) =
{

1, ui ≤ u < ui+1
0, otherwise

Ni,p(u) =
u−ui

ui+p−ui
Ni,p−1(u) +

ui+p+1−u
ui+p+1−ui+1

Ni+1,p−1(u)
(5)
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U =

a, · · · , a︸ ︷︷ ︸
p+1

, up+1, · · · , un, b, · · · , b︸ ︷︷ ︸
p+1

 (6)

In this study, domain of both parameters u and v are set as [0, 1]. The surface is also
known as B-spline surface if all weights ωi,j are set as 1.

It would be argued that geometric model of tea leaf should be built to describe its
morphological features as much as possible. Therefore, Euclidean distance between fitted
surface and the SLPC could be used to evaluate the accuracy of fitted surface.

To decrease computation cost, an ordered test subset was obtained to represent the
SLPC by method described in Figure 5a. To calculate Euclidean distance between a point
G and a surface, it is equal to find a point G′ on the surface, which satisfies the distance
between the two points is smaller than distance between the point G and any other points
on the surface. Newton iteration method [29] was used to determine G′, see Appendix A.
The initial values of parameters u and v of G′ are calculated as:

u1 =
‖ G− S(0, 0.5) ‖

‖ G− S(0, 0.5) ‖+ ‖ S(1, 0.5)−G ‖ (7)

v1 =
‖ G− S(u1, 0) ‖

‖ G− S(u1, 0) ‖ + ‖ S(u1, 1)−G ‖ (8)

Additionally, the root-mean-square error (RMSE) is calculated as:

RMSE =

√
∑n

i=1 dist2
i

n
(9)

where disti is distance between the ith point and fitted surface. Furthermore, a weighted
sum of the RMSE and maximum value (MV) of the distances between the subset and the
fitted surface is prescribed as error metric:

F = α1RMSE + α2MV (10)

where α1 and α2 are subjected to α1 + α2 = 1.

2.3.5. Modeling the Point Set to Be Fitted

In this study, the PSF is fitted with B-spline surface firstly and then is transformed to
NURBS form. B-spline surface fitting is performed to determine knot vectors and control
points of the surface, then multi-objective optimization is employed to adjust weights of
control points according to accuracy requirements.

For an ordered PSF
{

Qi,j | j = 0, · · · , l; i = 0, · · · k; l, k >2 and l, k ∈ N∗
}

, it can be
fitted by a (p, q)th-degree B-spline surface with (m + 1)× (n + 1) control points (p ≤ m,
q ≤ n). It satisfies m = k and n = l in the case of interpolation, while m < k or n < l
in the case of approximation. Two popular algorithms, respectively for B-spline surface
interpolation and approximation, can be employed to fit the ordered PSF; however, they
are unavailable for an unordered PFS due to the number of points in each selected slice
are not equal. Therefore, a different fitting algorithm is proposed, which can be applied to
fit not only the ordered PSF but also the unordered PSF. Main steps of the new algorithm
and the general algorithms are shown in Algorithm 1 and Algorithm A1 (Appendix B),
respectively. The general algorithms use fixed parameterized values u (v) and knot vector
U (V) when performing B-spline curve fitting for each of columns (rows) of the PSF, while
the new algorithm uses different parameterized values and knot vectors when performing
B-spline curve fitting.
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Algorithm 1: A New B-spline surface fitting algorithm

Input: Q, p, q, m, n
Output: U, V, P
1: function GetUVP(Q, p, q, m, n)
2: // (1) Perform B-spline curve approximation through l + 1 columns of points of Q
(u-direction)
3: for j = 0→ l do
4: temp0← {Q[0][j], Q[1][j], . . . , Q[kj][j]}
5: Parameterize temp0 to obtain uj by Equations (A4), (A5), or (A6)
6: Calculate knot vector Uj using uj by Equation (A8)
7: Fit temp0 into p −degree curve to obtain control points Rj using uj and Uj
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8:  end for 

9:  𝑅 ← {𝑅0, 𝑅1, …, 𝑅𝑙}                                        

▷ 𝑅 consists of  (𝑚 + 1) × (𝑙 + 1)  points 

10:   Calculate mean value of each elements of 𝑈0, 𝑈1, ..., 𝑈𝑙 to get knot vector 𝑈 

11: // (2) Perform B-spline curve approximation through 𝑚 +  1 rows of points of the 𝑅 

(v-direction) 

12:  for 𝑖 = 0 → 𝑚 do 

13:  𝑡𝑒𝑚𝑝1 ← {𝑅[𝑖][0], 𝑅[𝑖][1], ..., 𝑅[𝑖][𝑙]} 

14:  Parameterize 𝑡𝑒𝑚𝑝1 to obtain 𝑣̅𝑖 by Equations (A4), (A5), or (A6) 

15:  Calculate knot vector 𝑉𝑖 using 𝑣̅𝑖 by Equation (A8) 

16:  Fit 𝑡𝑒𝑚𝑝1 into q−degree curve to obtain control points 𝑃𝑖 using 𝑣̅𝑖 and 𝑉𝑖      ▷ 

Pi  consists of 𝑛 + 1 points 

17:   end for 

18:  𝑃 ← {𝑃0, 𝑃1,  …, 𝑃𝑚}                                    

▷ 𝑃 consists of (𝑚 +  1) × (𝑛 +  1) points 

19:  Calculate mean value of each elements of 𝑉0, 𝑉1, ..., 𝑉𝑚 to get knot vector 𝑉 

20:  return 𝑈, 𝑉, 𝑃 

21: end function 

To improve the fitting accuracy, it is equal to decrease the error metric 𝐹 . Once 

control points, knot vectors, or weights of control points changes, fitted surface will 

change accordingly. In this study, weights of control points are adjusted to reduce fitting 

error, and an objective function 𝐹(𝑋) is used: 

𝐹(𝑋) = 𝛼1𝑅𝑀𝑆𝐸 + 𝛼2𝑀𝑉 (11) 

where 𝑋 is the weights matrix of the surface, 𝛼1 and 𝛼2 are subjected to 𝛼1 + 𝛼2 = 1. 

PSO, a kind of swarm intelligence algorithms proposed by Kennedy and Eberhart 

[30], is used to solve 𝐹(𝑋). In the algorithm, every potential solution is regarded as a 

Rj consists of m + 1 points
8: end for
9: R← {R0, R1, . . . , Rl}
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R consists of (m + 1)× (l + 1) points
10: Calculate mean value of each elements of U0, U1, ..., Ul to get knot vector U
11: // (2) Perform B-spline curve approximation through m + 1 rows of points of the R
(v-direction)
12: for i = 0→ m do
13: temp1← {R[i][0], R[i][1], ..., R[i][l]}
14: Parameterize temp1 to obtain vi by Equations (A4), (A5), or (A6)
15: Calculate knot vector Vi using vi by Equation (A8)
16: Fit temp1 into q−degree curve to obtain control points Pi using vi and Vi
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17:   end for 

18:  𝑃 ← {𝑃0, 𝑃1,  …, 𝑃𝑚}                                    

▷ 𝑃 consists of (𝑚 +  1) × (𝑛 +  1) points 

19:  Calculate mean value of each elements of 𝑉0, 𝑉1, ..., 𝑉𝑚 to get knot vector 𝑉 

20:  return 𝑈, 𝑉, 𝑃 

21: end function 

To improve the fitting accuracy, it is equal to decrease the error metric 𝐹 . Once 

control points, knot vectors, or weights of control points changes, fitted surface will 

change accordingly. In this study, weights of control points are adjusted to reduce fitting 

error, and an objective function 𝐹(𝑋) is used: 

𝐹(𝑋) = 𝛼1𝑅𝑀𝑆𝐸 + 𝛼2𝑀𝑉 (11) 

where 𝑋 is the weights matrix of the surface, 𝛼1 and 𝛼2 are subjected to 𝛼1 + 𝛼2 = 1. 

PSO, a kind of swarm intelligence algorithms proposed by Kennedy and Eberhart 

[30], is used to solve 𝐹(𝑋). In the algorithm, every potential solution is regarded as a 

Pi consists of n + 1
points
17: end for
18: P← {P0, P1, . . . , Pm}

Sensors 2021, 21, x FOR PEER REVIEW 8 of 17 
 

 

For an ordered PSF  {𝑄𝑖,𝑗  | 𝑗 = 0,⋯ , 𝑙;  𝑖 = 0,⋯𝑘;  𝑙, 𝑘 > 2 and  𝑙, 𝑘 ∈ ℕ
∗} , it can be 

fitted by a (𝑝, 𝑞)th-degree B-spline surface with (𝑚 + 1) × (𝑛 + 1) control points (𝑝 ≤

𝑚, 𝑞 ≤ 𝑛). It satisfies 𝑚 = 𝑘 and 𝑛 = 𝑙 in the case of interpolation, while 𝑚 < 𝑘 or 𝑛 <

𝑙 in the case of approximation. Two popular algorithms, respectively for B-spline surface 

interpolation and approximation, can be employed to fit the ordered PSF; however, they 

are unavailable for an unordered PFS due to the number of points in each selected slice 

are not equal. Therefore, a different fitting algorithm is proposed, which can be applied to 

fit not only the ordered PSF but also the unordered PSF. Main steps of the new algorithm 

and the general algorithms are shown in Algorithm 1 and Algorithm 2 (Appendix B), 

respectively. The general algorithms use fixed parameterized values 𝑢̅ (𝑣̅)  and knot 

vector 𝑈 (𝑉) when performing B-spline curve fitting for each of columns (rows) of the 

PSF, while the new algorithm uses different parameterized values and knot vectors when 

performing B-spline curve fitting. 

Algorithm 1: A New B-spline surface fitting algorithm 

Input: 𝑄, 𝑝, 𝑞, 𝑚, 𝑛 

Output: 𝑈, 𝑉, 𝑃 

1: function GetUVP(𝑄, 𝑝, 𝑞,𝑚, 𝑛) 

2: // (1) Perform B-spline curve approximation through 𝑙 +  1 columns of points of 𝑄 

(u-direction) 

3: for 𝑗 = 0 → 𝑙 do 

4: 𝑡𝑒𝑚𝑝0 ← {𝑄[0][𝑗], 𝑄[1][𝑗], …, 𝑄[𝑘𝑗][𝑗]} 

5: Parameterize 𝑡𝑒𝑚𝑝0 to obtain 𝑢̅𝑗 by Equations (A4), (A5), or (A6) 

6: Calculate knot vector 𝑈𝑗 using 𝑢̅𝑗 by Equation (A8) 

7: Fit 𝑡𝑒𝑚𝑝0 into p −degree curve to obtain control points 𝑅𝑗 using 𝑢̅𝑗 and 𝑈𝑗   

▷       𝑅𝑗 consists of  𝑚 + 1 points 

8:  end for 

9:  𝑅 ← {𝑅0, 𝑅1, …, 𝑅𝑙}                                        

▷ 𝑅 consists of  (𝑚 + 1) × (𝑙 + 1)  points 

10:   Calculate mean value of each elements of 𝑈0, 𝑈1, ..., 𝑈𝑙 to get knot vector 𝑈 

11: // (2) Perform B-spline curve approximation through 𝑚 +  1 rows of points of the 𝑅 

(v-direction) 

12:  for 𝑖 = 0 → 𝑚 do 

13:  𝑡𝑒𝑚𝑝1 ← {𝑅[𝑖][0], 𝑅[𝑖][1], ..., 𝑅[𝑖][𝑙]} 

14:  Parameterize 𝑡𝑒𝑚𝑝1 to obtain 𝑣̅𝑖 by Equations (A4), (A5), or (A6) 

15:  Calculate knot vector 𝑉𝑖 using 𝑣̅𝑖 by Equation (A8) 
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17:   end for 
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P consists of (m + 1)× (n + 1) points
19: Calculate mean value of each elements of V0, V1, ..., Vm to get knot vector V
20: return U, V, P
21: end function

To improve the fitting accuracy, it is equal to decrease the error metric F. Once
control points, knot vectors, or weights of control points changes, fitted surface will change
accordingly. In this study, weights of control points are adjusted to reduce fitting error, and
an objective function F(X) is used:

F(X) = α1RMSE + α2MV (11)

where X is the weights matrix of the surface, α1 and α2 are subjected to α1 + α2 = 1.
PSO, a kind of swarm intelligence algorithms proposed by Kennedy and Eberhart [30],

is used to solve F(X). In the algorithm, every potential solution is regarded as a particle
with its own position X and velocity V in multiple dimensional variable space. Addi-
tionally, N particles, respectively with positions of X0

1 , X0
2 , · · · , X0

N and velocities of
V0

1 , V0
2 , · · · , V0

N , are randomly generated in initialization stage. Each particle adjusts its
velocity and position as Equations (12) and (13) until reaching the optimal solution:

V j
i = θV j−1

i + c1r1

(
Pbest,i − X j−1

i

)
+ c2r2

(
Gbest − X j−1

i

)
(12)

X j
i = X j−1

i + V j
i (13)

where i = 1, · · · , N, V j
i and X j

i is the velocity and position of the ith particle in jth
iteration, and the best position of the ith particle and best position of all particles up to
current iteration are denoted as Pbest,i and Gbest, respectively. c1 and c2 are the non-negative
learning rates representing the influences of cognitive (individual) ability and social (group)
ability, respectively. r1 and r2 are uniformly distributed random numbers in the range
[0, 1], which increasing the randomness of particles’ movement. θ is inertia weight and is
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assumed to decrease linearly as Equation (14), which can ensure both strong capabilities of
global search in early stage and local search at late stage [31].

θ = θmax −
(θmax − θmin)× j

jmax
(14)

where θmax and θmin are 0.9 and 0.4 in this study, j and jmax are current iteration number
and maximum iteration number, respectively.

3. Results

The scanned point clouds consist of 33,000 to 50,000 points by over-scanning 80 ex-
perimental tea leaves. The leaf length ranged from 45 to 85 mm along the first principal
component direction. According to observation of underside of experimental tea leaves, the
leaf shape could be roughly divided into two categories. One looks like a hill, in which the
midrib is a distinct ridge line. The other includes those leaves, which looks like a smoother
convex, or is flatter, or with wrinkles on leaf surface, a common feature is that leaf midrib
is difficult to extract.

In this section, a case study, illustrating the whole process of the proposed parametric
surface modelling method for tea leaf point cloud, was demonstrated in detail. Furthermore,
the impacts of point’s number in point cloud on the fitting accuracy were investigated.

3.1. Case Study of the Proposed Parametric Surface Modeling Method

The whole process to modelling leaf point cloud into a parametric surface includes
2 steps: generate the PSF and fit the PSF into NURBS surface. A case study was demonstrated
as following to show how a PSF was generated and how it was fitted into a NURBS surface.

3.1.1. Generating an Ordered PSF and an Unordered PSF

Firstly, a tea leaf point cloud was transformed to a SLPC by PCA, and it could be
referred to Figure 3. Then, the SLPC was sliced into 50 slices, and another two slices
were created on the leaf base and leaf tip, respectively, as shown in Figure 6a. Next,
7 slices, {Slicei|i = 0, 9, 17, 26, 34, 43, 51}, evenly distributed in the SLPC were selected
to generate an ordered PSF (Figure 6b) and an unordered PSF (Figure 6c). Total 7× 7 points
were generated for the ordered PSF, by selecting 7 points from each of selected slices as
Figure 5a. While all points in a selected slice were projected onto corresponding projection
planes for the unordered PSF. It should be noticed that in both PSFs, there were same points
in Slice0 and Slice51, respectively.
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selected slices; (c) An unordered PSF generated by projecting points of selected sections onto corresponding center planes.
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3.1.2. Fitting the PSF into NURBS Surface

Either the two general algorithms or the new algorithm, B-spline curve fitting was
performed across each of slices of the PSF at first. Figure 7 showed different fitting results
of points in the 4th selected slice of Figure 6b,c, and degrees of all curves are 2. Figure 7a
showed an interpolated curve and an approximated curve through 7 points, the two curves
have 7 and 5 control points, respectively. Additionally, Figure 7b showed an approximated
curve, with 5 control points, through all projected points. Notice that two fitted curves
were in space rather on a plane in Figure 7a, while the fitted curve in Figure 7b was on the
projection plane.
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Take the unordered PSF in Figure 6c as example, the new algorithm was adopted to fit
the PSF into a (2, 2)th B-spline surface with 5× 5 control points. As illustrated in Figure 8a,
B-spline curve fitting was performed in u-direction for each of slices of points of the PSF
firstly. Then, the obtained point set, composed of the control points of the fitted curves
in u-directions, were fitted in v-direction, and in the meantime control net of the B-spline
surface were obtained, as shown in Figure 8b. Finally, the fitted B-spline surface could be
obtained, as seen in Figure 8c.
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Visually, the obtained B-spline surface well fitted the SLPC, as illustrated in Figure 8c.
For quantitatively describing fitting error, a test subset composed of 90 points, evenly
distributed on the leaf surface, were selected from the SLPC. The subset was obtained
by dividing the point cloud into 10 slices with 9 points selected in each slice (selected
as Figure 5a, and satisfied 3 + tl + tr = 9, tl = tr = 3). The RMSE and MV of distances
between the subset and fitted surface shown in Figure 8c were 0.31 and 1.08 mm, respec-
tively. To reduce the fitting error, a PSO multi-objective optimization process by minimizing
F(X) = 0.8RMSE + 0.2MV, was conducted to transform the fitted B-spline surface into
NURBS form. Additionally, the particle number and iterative number were set as 5 and 10,
respectively. The RMSE and MV were reduced to 0.25 mm and 1.04 mm, respectively.

3.2. Impacts of Point’s Number in Point Cloud on Fitting Accuracy

For studying the influences of points’ number in point cloud on fitting accuracy,
8 samples were randomly chosen from 80 experimental point clouds. By using voxel grid
filter [32], the number of points of the 8 sample point clouds were down-sampled to 300,
500, 1000, 2000, 4000, 8000, 16,000 and 32,000 with 10 repetitions, respectively. Every point
cloud was sliced into 10 sections, and 8 slices were selected to generate unordered PSF,
which was fitted into surfaces of degree (2,2) with (3 × 7) control points. The RMSE and
MV of Euclidean distances between fitted surfaces and subsets (selected just like the test
subset described in Section 3.1.2 from SLPC) were calculated. Figure 9 showed the fitting
errors of fitted B-spline surfaces of simplified point clouds, and each RMSE or MV value
was calculated by mean value of 10 repeating groups. The results showed that the RMSE
values were always less than 1 mm, while the MV values were less than 2 mm, as the
point’s number ranged from 300 to 32,000. It is worth nothing that the MV usually occurs
on the edge near the leaf base or tip. Additionally, fitting error could be further reduced by
PSO when transforming B-spline surface into NURBS form.
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4. Discussion

The parametric surface modelling method proposed in this study can accurately
reconstruct 3D architecture of leaf point cloud with NURBS surface. The method included
two essential steps: generating the PSF and fitting the PSF into NURBS surface.

Based on PCA and slicing technique, two methods were developed to generate ordered
PSF (i.e., (r + 1)× (s + 1) points) and unordered PSF (i.e., a point set composed of r + 1
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columns of unequal number of points), respectively. Although the ordered PSF was
obtained based on feature points on left edge, midrib, and right edge of leaf, all points
were selected automatically instead of manually [26], and there was no need for extracting
points belonging to the secondary and tertiary veins [25]. Moreover, the unordered PSF
was not affected by the feature points, and it can be generally applied to other plant leaves.
In addition, both PSFs included information of leaf surface as well as leaf edge and midrib.

A new B-spline surface fitting algorithm was proposed for the unordered PSF. Com-
pared to the general interpolation and approximation algorithms, the new algorithm can
be used to fit not only the ordered PSF but also the unordered PSF, while the general
algorithms only can be applied to the ordered PSF. Previous studies ended up with Bezier
or B-spline surface fitting [26,33], and the fitting error was fixed. However, a multi-objective
optimization process, solved by PSO, was employed in this study to reduce fitting error by
adjusting weights of control points, and the B-spline surface was transformed to NURBS
form in the meantime.

Compared to meshing and remeshing methods, such as Delaunay triangulation, edge
collapse [34], vertex removal [35], vertex clustering [36], our method just generates PSF
from point cloud without complicated operations on points themselves. Additionally, in
the end, our method obtains a NURBS surface, while in essence all meshing or remeshing
methods obtain a set of points, which connect to other according to special rule.

The proposed parametric surface modelling method works well even if there are few
points in the point cloud, as illustrated in Figure 9. However, some limitations need to be
acknowledged. First, feature points belonging to leaf midrib were not easy to be extract
sometimes, which results in failure to generate the ordered PSF, and an unordered PSF
must be chose in this situation. Secondly, the leaf tip was simplified as a point in this study,
which caused maximum fitting error occurs on the leaf edge. Thirdly, this study made
no attempt to reconstruct leaf point cloud in incomplete situation as well as the leaves’
point cloud with other shapes. Additionally, the study would have been more interesting if
including intelligent methods to determine the number and selection of slices, the degree
of NURBS surface, and the number of control points. More research is needed to account
for these questions.

The proposed parametric surface modelling method has several practical and potential
applications: (1) monitoring changes in 3D architecture of plant leaves under both suitable
growth conditions and abnormal growth conditions, such as suffering from drought, salty,
cold, diseases, and pests, etc., which provides a basis to quantitatively evaluate the impacts
of environmental stress, diseases, or insect pests on plants; (2) studying the diversity of
species or genetic expression of crops, which can be used to explore plants’ adaptability to
the environment or promote the breeding process of crops; (3) simulating the leaf growth
process in virtual plants by adjusting control points or weights of NURBS surface, which
easily changes leaf shape; (4) combining the parametric surface model with the mechanical
model to investigate dynamic leaf responses to rainfall, droplets, and wind, or interaction
with agricultural and horticultural machinery; (5) analyzing the canopy capability of a
plant, such as light or rainfall interception.

5. Conclusions

In this study, a parametric surface modelling method was proposed for tea leaf point
cloud. Firstly, the principal component analysis is used to adjust leaf point cloud into
a standard position and posture. Then, the obtained point cloud is sliced into multiple
sections, and some slices are selected to generate the point set to be fitted. Next, the point
set to be fitted is fitted as B-spline surface. Finally, the fitted B-spline surface is transformed
to NURBS form by particle swarm optimization for improving fitting accuracy. The fitting
error is described as the Euclidean distance between fitted surface and leaf point cloud.

The principal component analysis operation decreased difficulty of subsequent slicing
operation brought by differences in shape, spatial posture, and position of leaf point cloud.
According to 3D structure of tea leaf, two methods were proposed to generate two types of
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points to be fitted: ordered and unordered. The latter could be easily obtained than the
former since the former relies on distinguished framework of leaf margin and midrib in
point cloud. In addition, a new B-spline surface fitting method was developed for the latter,
and it could be employed in fitting the former as well.

Preliminary study demonstrated that the proposed method could accurately recon-
struct tea leaf point cloud even if the point’s number in point cloud decreased sharply.
Additionally, as illustrated in Figure 9, no distinct increases occurred on the root-mean-
square error and maximum value of Euclidean distances between fitted B-spline surfaces
and test subsets of point clouds, as the point’s number decreased from 32,000 to 300.
It could be observed that all values of RMSE and MV were smaller than 1mm and 2mm,
respectively, and the values could be further decreased by particle swarm optimization.
Future research should assess the influences of slice number, surface degree, and number of
control points on fitting accuracy. It should be noticed that the maximum distance between
fitted surface and the test subset usually appears near the leaf base or tip, which may be
resulted from simplifications of them in the fitted surface. Therefore, further studies should
improve accuracy of the leaf model, especially in the leaf base and tip. The proposed
method could be applied in other plant leaves with similar shape to tea leaf. Additionally,
the methods for PSF generation and NURBS surface fitting should be improved for satis-
fying needs of wider range of plant types. Moreover, modelling an incomplete leaf point
cloud should be conducted in the future.
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Appendix A

Newton iteration method is used to determine point’s projection G′ on a surface by
solving two scalar equations:

f (u, v) = r(u, v) · Su(u, v) = 0 (A1)

g(u, v) = r(u, v) · Sv(u, v) = 0 (A2)

where r(u, v) = S(u, v)− G, Su(u, v) = ∂S(u,v)
∂u and Sv(u, v) = ∂S(u,v)

∂u .
The (k+1)th iterative values (uk+1, vk+1) can be calculated by solving linear equations

in the unknown δk, given by:
Jkδk = Dk (A3)

where δk =

[
∆u
∆v

]
=

[
uk+1 − uk
vk+1 − vk

]
,Jk =

[
∂ f
∂u

∂ f
∂v

∂g
∂u

∂g
∂v

]
and Dk = −

[
f (uk, vk)
g(uk, vk)

]
. All

elements of Jk are calculated at the (uk, vk).
There are three convergence criteria:
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(1) ‖ S(ui, vi)− P ‖≤ ε1;
(2) |Su(ui ,vi)(S(ui ,vi)−P)|
‖Su(ui ,vi)‖‖S(ui ,vi)−P‖ ≤ ε2, |Sv(ui ,vi)(S(ui ,vi)−P)|

‖Sv(ui ,vi)‖‖S(ui ,vi)−P‖ ≤ ε2;
(3) ‖ (ui+1 − ui)Su(ui, vi) + (vi+1 − vi)Sv(ui, vi) ‖ ≤ ε1.
In this study, ε1 = 10−10 mm, ε2 = 10−10, stop iteration when one of the three criteria

are satisfied.

Appendix B

Algorithm A1: General algorithms for B-spline surface fitting

Input: Q, p, q, m, n
Output: U, V, P
1: function GetUVP(Q, p, q, m, n)
2:// (1) Compute fixed parameterized values u and knot vector U
3: for j = 0→ l do
4: temp0← {Q[0][j], Q[1][j], . . . , Q[k][j]}
5: Parameterize temp0 to obtain uj by Equation (A4), (A5), or (A6)
6: end for
7: Calculate mean values of each elements of u0, u1, . . . , ul to get the u
8: Compute U using u by Equations (A7) or (A8) for interpolation or approximation, respectively
9: Parameterized values v and knot vector V can be obtained by using k + 1 rows of points of Q
like u and U
10: // (2) Perform B-spline curve fitting through l + 1 columns of points of Q (u-direction)
11: for j = 0→ l do
12: temp1← {Q[0][j], Q[1][j], . . . , Q[k][j]}
13: Fit temp1 into p−degree curve to obtain control points Rj using u and U
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5: Parameterize 𝑡𝑒𝑚𝑝0 to obtain 𝑢̅𝑗 by Equations (A4), (A5), or (A6) 

6: Calculate knot vector 𝑈𝑗 using 𝑢̅𝑗 by Equation (A8) 

7: Fit 𝑡𝑒𝑚𝑝0 into p −degree curve to obtain control points 𝑅𝑗 using 𝑢̅𝑗 and 𝑈𝑗   

▷       𝑅𝑗 consists of  𝑚 + 1 points 

8:  end for 

9:  𝑅 ← {𝑅0, 𝑅1, …, 𝑅𝑙}                                        

▷ 𝑅 consists of  (𝑚 + 1) × (𝑙 + 1)  points 

10:   Calculate mean value of each elements of 𝑈0, 𝑈1, ..., 𝑈𝑙 to get knot vector 𝑈 

11: // (2) Perform B-spline curve approximation through 𝑚 +  1 rows of points of the 𝑅 

(v-direction) 

12:  for 𝑖 = 0 → 𝑚 do 

13:  𝑡𝑒𝑚𝑝1 ← {𝑅[𝑖][0], 𝑅[𝑖][1], ..., 𝑅[𝑖][𝑙]} 

14:  Parameterize 𝑡𝑒𝑚𝑝1 to obtain 𝑣̅𝑖 by Equations (A4), (A5), or (A6) 

15:  Calculate knot vector 𝑉𝑖 using 𝑣̅𝑖 by Equation (A8) 

16:  Fit 𝑡𝑒𝑚𝑝1 into q−degree curve to obtain control points 𝑃𝑖 using 𝑣̅𝑖 and 𝑉𝑖      ▷ 

Pi  consists of 𝑛 + 1 points 

17:   end for 

18:  𝑃 ← {𝑃0, 𝑃1,  …, 𝑃𝑚}                                    

▷ 𝑃 consists of (𝑚 +  1) × (𝑛 +  1) points 

19:  Calculate mean value of each elements of 𝑉0, 𝑉1, ..., 𝑉𝑚 to get knot vector 𝑉 

20:  return 𝑈, 𝑉, 𝑃 

21: end function 

To improve the fitting accuracy, it is equal to decrease the error metric 𝐹 . Once 

control points, knot vectors, or weights of control points changes, fitted surface will 

change accordingly. In this study, weights of control points are adjusted to reduce fitting 

error, and an objective function 𝐹(𝑋) is used: 

𝐹(𝑋) = 𝛼1𝑅𝑀𝑆𝐸 + 𝛼2𝑀𝑉 (11) 

where 𝑋 is the weights matrix of the surface, 𝛼1 and 𝛼2 are subjected to 𝛼1 + 𝛼2 = 1. 

PSO, a kind of swarm intelligence algorithms proposed by Kennedy and Eberhart 

[30], is used to solve 𝐹(𝑋). In the algorithm, every potential solution is regarded as a 

Rj consists of m + 1 points
14: end for
15: R← {R0, R1, . . . , Rl}
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14:  Parameterize 𝑡𝑒𝑚𝑝1 to obtain 𝑣̅𝑖 by Equations (A4), (A5), or (A6) 

15:  Calculate knot vector 𝑉𝑖 using 𝑣̅𝑖 by Equation (A8) 

16:  Fit 𝑡𝑒𝑚𝑝1 into q−degree curve to obtain control points 𝑃𝑖 using 𝑣̅𝑖 and 𝑉𝑖      ▷ 

Pi  consists of 𝑛 + 1 points 

17:   end for 

18:  𝑃 ← {𝑃0, 𝑃1,  …, 𝑃𝑚}                                    

▷ 𝑃 consists of (𝑚 +  1) × (𝑛 +  1) points 

19:  Calculate mean value of each elements of 𝑉0, 𝑉1, ..., 𝑉𝑚 to get knot vector 𝑉 

20:  return 𝑈, 𝑉, 𝑃 

21: end function 

To improve the fitting accuracy, it is equal to decrease the error metric 𝐹 . Once 

control points, knot vectors, or weights of control points changes, fitted surface will 

change accordingly. In this study, weights of control points are adjusted to reduce fitting 

error, and an objective function 𝐹(𝑋) is used: 

𝐹(𝑋) = 𝛼1𝑅𝑀𝑆𝐸 + 𝛼2𝑀𝑉 (11) 

where 𝑋 is the weights matrix of the surface, 𝛼1 and 𝛼2 are subjected to 𝛼1 + 𝛼2 = 1. 

PSO, a kind of swarm intelligence algorithms proposed by Kennedy and Eberhart 

[30], is used to solve 𝐹(𝑋). In the algorithm, every potential solution is regarded as a 

R consists of (m + 1)× (l + 1) points
16: // (3) Perform B-spline curve fitting through m + 1 rows of points of R (v-direction)
17: for i = 0→ m do
18: temp2← {R[i][0], R[i][1], ..., R[i][l]}
19: Fit temp2 into q−degree curve to obtain control points Pi using v and V
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5: Parameterize 𝑡𝑒𝑚𝑝0 to obtain 𝑢̅𝑗 by Equations (A4), (A5), or (A6) 

6: Calculate knot vector 𝑈𝑗 using 𝑢̅𝑗 by Equation (A8) 

7: Fit 𝑡𝑒𝑚𝑝0 into p −degree curve to obtain control points 𝑅𝑗 using 𝑢̅𝑗 and 𝑈𝑗   
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8:  end for 

9:  𝑅 ← {𝑅0, 𝑅1, …, 𝑅𝑙}                                        

▷ 𝑅 consists of  (𝑚 + 1) × (𝑙 + 1)  points 

10:   Calculate mean value of each elements of 𝑈0, 𝑈1, ..., 𝑈𝑙 to get knot vector 𝑈 

11: // (2) Perform B-spline curve approximation through 𝑚 +  1 rows of points of the 𝑅 

(v-direction) 

12:  for 𝑖 = 0 → 𝑚 do 

13:  𝑡𝑒𝑚𝑝1 ← {𝑅[𝑖][0], 𝑅[𝑖][1], ..., 𝑅[𝑖][𝑙]} 

14:  Parameterize 𝑡𝑒𝑚𝑝1 to obtain 𝑣̅𝑖 by Equations (A4), (A5), or (A6) 

15:  Calculate knot vector 𝑉𝑖 using 𝑣̅𝑖 by Equation (A8) 

16:  Fit 𝑡𝑒𝑚𝑝1 into q−degree curve to obtain control points 𝑃𝑖 using 𝑣̅𝑖 and 𝑉𝑖      ▷ 

Pi  consists of 𝑛 + 1 points 

17:   end for 

18:  𝑃 ← {𝑃0, 𝑃1,  …, 𝑃𝑚}                                    

▷ 𝑃 consists of (𝑚 +  1) × (𝑛 +  1) points 

19:  Calculate mean value of each elements of 𝑉0, 𝑉1, ..., 𝑉𝑚 to get knot vector 𝑉 

20:  return 𝑈, 𝑉, 𝑃 

21: end function 

To improve the fitting accuracy, it is equal to decrease the error metric 𝐹 . Once 

control points, knot vectors, or weights of control points changes, fitted surface will 

change accordingly. In this study, weights of control points are adjusted to reduce fitting 

error, and an objective function 𝐹(𝑋) is used: 

𝐹(𝑋) = 𝛼1𝑅𝑀𝑆𝐸 + 𝛼2𝑀𝑉 (11) 

where 𝑋 is the weights matrix of the surface, 𝛼1 and 𝛼2 are subjected to 𝛼1 + 𝛼2 = 1. 

PSO, a kind of swarm intelligence algorithms proposed by Kennedy and Eberhart 

[30], is used to solve 𝐹(𝑋). In the algorithm, every potential solution is regarded as a 

Pi consists of n + 1 points
20: end for
21: P← {P0, P1, . . . , Pm}
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14:  Parameterize 𝑡𝑒𝑚𝑝1 to obtain 𝑣̅𝑖 by Equations (A4), (A5), or (A6) 

15:  Calculate knot vector 𝑉𝑖 using 𝑣̅𝑖 by Equation (A8) 

16:  Fit 𝑡𝑒𝑚𝑝1 into q−degree curve to obtain control points 𝑃𝑖 using 𝑣̅𝑖 and 𝑉𝑖      ▷ 

Pi  consists of 𝑛 + 1 points 

17:   end for 

18:  𝑃 ← {𝑃0, 𝑃1,  …, 𝑃𝑚}                                    

▷ 𝑃 consists of (𝑚 +  1) × (𝑛 +  1) points 

19:  Calculate mean value of each elements of 𝑉0, 𝑉1, ..., 𝑉𝑚 to get knot vector 𝑉 

20:  return 𝑈, 𝑉, 𝑃 

21: end function 

To improve the fitting accuracy, it is equal to decrease the error metric 𝐹 . Once 

control points, knot vectors, or weights of control points changes, fitted surface will 

change accordingly. In this study, weights of control points are adjusted to reduce fitting 

error, and an objective function 𝐹(𝑋) is used: 

𝐹(𝑋) = 𝛼1𝑅𝑀𝑆𝐸 + 𝛼2𝑀𝑉 (11) 

where 𝑋 is the weights matrix of the surface, 𝛼1 and 𝛼2 are subjected to 𝛼1 + 𝛼2 = 1. 

PSO, a kind of swarm intelligence algorithms proposed by Kennedy and Eberhart 

[30], is used to solve 𝐹(𝑋). In the algorithm, every potential solution is regarded as a 

P consists of (m + 1)× (n + 1) points
22: return U, V, P
23: end function

Appendix C

Parameterized values corresponding to each point of a given point set {Qk|k = 0, . . . , m}
are usually calculated as equally spaced (Equation (A4)), chord length (Equation (A5)) or
centripetal (Equation (A6)):

u0 = 0, uk =
k
m , k = 1, 2, · · · , m (A4)

u0 = 0, uk = uk−1 +
‖Qk−Qk−1‖

∑m
i=1‖Qi−Qi−1‖

, k = 1, 2, · · · , m (A5)

u0 = 0, uk = uk−1 +

√
‖Qk−Qk−1‖

∑m
i=1

√
‖Qi−Qi−1‖

, k = 1, 2, · · · , m (A6)
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Additionally, inner knots of U = [0, · · · , 0︸ ︷︷ ︸
p+1

, up+1, · · · , um, 1, · · · , 1︸ ︷︷ ︸
p+1

] for curve interpo-

lation are calculated as:

uj+p =
1
p

j+p−1

∑
i=j

ui, j = 1, 2, · · · , m− p (A7)

While inner knots of U = [0, · · · , 0︸ ︷︷ ︸
p+1

, up+1, · · · , un, 1, · · · , 1︸ ︷︷ ︸
p+1

] for curve approximation

are calculated as:

i = INT(jd), α = jd− i
up+j = (1− α)ui−1 + αui, j = 1, 2, · · · , n− p (A8)

where d = m+1
n−p+1 .
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